小型自增湿自呼吸质子交换膜燃料电池及氢源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第三代移动通信设备及数码产品市场的大幅增长,对高性能便携式电源提出了更高的要求。小型质子交换膜燃料电池被认为是其中很有潜力的一种电源。本文着眼于研制小型质子交换膜燃料电池电堆及氢源。主要研究内容包括:自增湿膜电极的制备及研究、气体扩散层的碳化改性、小型氢气发生器的研制和小型六单体质子交换膜燃料电池电堆的研究。
     制备了具有新型结构的自增湿膜电极,该膜电极通过设置在催化层外围的非活性水扩散区来实现质子交换膜燃料电池有效的水管理并提高电池的性能。通过比较自增湿膜电极与传统膜电极的极化曲线与功率密度曲线可知,自增湿膜电极最大功率密度约为85 mW/cm2,是相同条件下传统膜电极最大功率密度的两倍。研究了阳极氢气流速、环境温度和环境相对湿度对自增湿膜电极性能的影响,并对水扩散区面积进行了优化。实验比较了自增湿膜电极与氢气在不同加湿状态下的传统膜电极的性能。结果表明,自增湿膜电极的性能更好。
     本文提出了一种通过蔗糖碳化处理气体扩散层的方法。通过这种方法,使碳化后碳均匀分布并增加碳纸的粗糙度,从而在低PTFE载量下提高了碳纸的憎水性。蔗糖碳化温度为400℃,碳化二次。25℃时,PTFE载量为10 %的碳化处理碳纸的接触角为137±1o。相比之下,未碳化处理碳纸在相同PTFE载量时的接触角为125±1o。不同PTFE载量碳化处理碳纸的电子电阻率相比相应PTFE载量的未处理碳纸下降了6~8个百分点。相比其他膜电极,使用PTFE载量为10 %碳化处理碳纸的膜电极具有更好的电池性能。
     设计了结构简单、操作便捷的小型氢气发生器。该氢气发生器采用铝作为原材料并与氢氧化钠水溶液反应制备纯氢气。研究了氢氧化钠水溶液浓度、滴加速率和初始反应温度对产氢速率的影响。结果表明,产氢速率随氢氧化钠水溶液浓度、滴加速率及初始温度的增加而增大。氢氧化钠水溶液浓度为25 mass%、滴加速率为0.01 ml/min时的产氢速率约为38 ml/min。比较了分别用该氢气发生器和钢瓶提供氢气的电池的极化性能和启动性能。恒电流实验表明,氢气发生器的氢气利用率可达77 %。
     最后,研制了一个六单体的小型自呼吸式质子交换膜燃料电池电堆。该电堆各膜电极呈阶梯状分布,阳极氢气内部强制循环。研究了电堆的极化性能、恒电流工作性能、电流阶跃工作性能、启动性能和长时间工作性能。为提高电堆各单体电池性能的均匀性,改进了电堆结构,并将氢气发生器与电堆组合使用,实现了二者的结合。改进后的电堆性能更加均匀,最大功率可达2.7 W。对电堆的使用条件进行了研究,并将氢气发生器与电堆联动工作,考察了电堆在300 mA与700 mA工作时的性能。
The demand for power sources with superior performance has increased as a result of the rapid growth of the third generation (3G) mobile phone and portable electronics markets. Proton exchange membrane fuel cells (PEMFC) have been considered as one of the amazing power sources. In this paper, we focused on the development of a micro-PEMFC stack and hydrogen sources. The main researches include the contents below, the preparation and investigation of a novel self-humidifying membrane electrode assembly (MEA) structure, gas diffusion layer (GDL) carbonized using sucrose carbonization, development of a mini-type hydrogen generator and investigation of a micro-PEMFC .
     A novel self-humidifying membrane electrode assembly (MEA) with the active electrode region surrounded by an unactive“water transfer region (WTR)”was fabricated to achieve effective water management and high performance for PEMFCs. Polarization curves and power density curves of conventional and the self-humidifying MEAs were compared. The self-humidifying MEA showed maximum power density of 85 mW cm-2, which is twice higher than that of conventional MEA with cathode open. The effects of anode hydrogen flow rates, environmental temperature and relative humidity on the performance of the self-humidifying MEA were investigated. Then, the area of WTR was optimized. The performance of the self-humidifying MEA was compared with that of the conventional MEA with anode hydrogen humidified as different humidity. The results showed that the self-humidifying MEA exhibited better performance.
     Treatment of gas diffusion layers (GDLs) was proposed by sucrose carbonization. By this method, carbon was coated on the surface of carbon fiber homogeneously, resulting in the enhancement of carbon paper roughness, which improved the hydrophobicity of carbon paper with low PTFE loading. The sinterring temperature for sucrose carbonization was 400 oC with twice carbonization. The water contact angle of carbonized carbon paper with 10 % PTFE loading was measured as 137±1o at 25 oC, which was higher than 125±1o for non-carbonized carbon paper with the same PTFE loading. The electronic resistances of carbonized carbon papers with different PTFE loading were lower than those of non-carbonized carbon papers by 6 %-8 %. The MEA prepared by carbonized carbon paper with 10 % PTFE loading showed better performance compared to the other MEAs.
     A mini-type hydrogen generator with smart and simple design was fabricated. Aluminum was used as raw material to react with aqueous solution of sodium hydroxide, and produce pure hydrogen. The effects of sodium hydroxide concentration, dropping rate of the sodium hydroxide, and initial temperature of the solution on the hydrogen generation were analyzed. The results showed that the rate of hydrogen generation was increased with increase of the sodium hydroxide concentration, the dropping rate of sodium hydroxide, and initial solution temperature. The rate of hydrogen generation for sodium hydroxide solution with the concentration of 25 mass% and the dropping rate of 0.01 ml/min at 20 oC was nearly 38 ml/min. The polarization behavior and start-up performance of the single cell for the anode fueled with both the generator and the steel bottle were presented. The hydrogen utilization ratio can reach to 77 % proved by constant current experiment.
     Finally, a self-breathing micro-PEMFC stack with six cells for the structure of ladder form was developed. The hydrogen flowed in series inside the stack compulsively. The polarization performance, constant current and step current performance, start-up performance and long time operation of the stack were investigated. In order to improve the performance uniformity of the single cells, the structure of the stack was improved by combining with hydrogen generator, so that both of them were unitive. The improved stack showed more homogeneous performance. The maximum power of the improved stack was about 2.7 W. The using condition for the stack was investigated. Then, the linkage performance between the stack and hydrogen generator was tested under 300 mA and 700 mA, respectively.
引文
1 K. Sopian, W. R. W. Daud. Challenges and Future Developments in Proton Exchange Membrane Fuel Cells. Renewable energy. 2006, 31(5): 719~727
    2 J. E. Brown, C. N. Hendry, P. Harborne. An Emerging Market in Fuel Cells? Residential Combined Heat and Power in Four Countries. Energy Policy. 2007, 35(4): 2173~2186
    3 H. W. Wang, M. G. Ouyang. Transition Strategy of the Transportation Energy and Powertrain in China. Energy Policy. 2007, 35(4): 2313~2319
    4 D. R. Palo, J. Holladay, R. Dagle, et al. 2004 Fuel Cell Seminar Proceedings. San Antonio, Texas. November 1-5, 2004, 283~286
    5 C. Yang, P. Costamagna, S. Srinivasan. Approaches and Technical Challenges to High Temperature Operation of Proton Exchange Membrane Fuel Cells. Journal of Power Sources. 2001, 103(1): 1~9
    6 A. Rollet, O. Diat, G. Gebel. A New Insight into Nafion Structure. Journal of Physical Chemistry B. 2002, 106(12): 3033~3036
    7 S. K. Dae, B. P. Ho, W. R. Ji, et al. Preparation and Characterization of Crosslinked PVA/SiO2 Hybrid Membranes Containing Sulfonic Acid Groups for Direct Methanol Fuel Cell Applications. Journal of Membrane Science. 2004, 240(1-2): 37~48
    8 F. Liu, B. Yi, D. Xing, et al. Nafion/PTFE Composite Membranes for Fuel Cell Applications. Journal of Membrane Science. 2003, 212(1-2): 213~223
    9 H. L. Lin, T. L. Yu, L. N. Huang, et al. Nafion/PTFE Composite Membranes for Direct Methanol Fuel Cell Applications. Journal of Power Sources. 2005, 150: 11~19
    10 B. Tazi, O. Savadogo. Parameters of PEM Fuel-Cells Based on New Membranes Fabricated from Nafion?, Silicotungstic Acid and Thiophene. Electrochimica Acta. 2000, 45(25-26): 4329~4339
    11 M. H. D. Othman, A. F. Ismail, A. Mustafa. Proton Conducting Composite Membrane from Sulfonated Poly(ether ether ketone) and Boron Orthophosphate for Direct Methanol Fuel Cell Application. Journal of Membrane Science. 2007, 299(1-2): 156~165
    12 S. Sambandam, V. Ramani. SPEEK/Functionalized Silica Composite Membranes for Polymer Electrolyte Fuel Cells. Journal of Power Sources. 2007, 170(2): 259~267
    13 S. L. Zhong, X. J. Cui, H. L. Cai, et al. Crosslinked SPEEK/AMPS Blend Membranes with High Proton Conductivity and Low Methanol Diffusion Coefficient for DMFC Applications. Journal of Power Sources. 2007, 168(1): 154~161
    14 Y. T. Hong, C. H. Lee, H. S. Park, et al. Improvement of Electrochemical Performances of Sulfonated Poly(arylene ether sulfone) via Incorporation of Sulfonated Poly(arylene ether benzimidazole). Journal of Power Sources. 2008, 175(2): 724-731
    15 S. W. Chuang, S. L. C. Hsu, Y. H. Liu. Synthesis and Properties of Fluorine-Containing Polybenzimidazole/Silica Nanocomposite Membranes for Proton Exchange Membrane Fuel Cells. Journal of Membrane Science. 2007, 305(1-2): 353~363
    16 J. L. Zhang, Y. H. Tang, C. J. Song, et al. Polybenzimidazole -membrane-based PEM Fuel Cell in the Temperature Range of 120–200°C. Journal of Power Sources. 2007, 172(1): 163~171
    17 C. H. Lee, C. H. Park, Y. M. Lee. Sulfonated Polyimide Membranes Grafted with Sulfoalkylated Side Chains for Proton Exchange Membrane Fuel Cell (PEMFC) Applications. Journal of Membrane Science. 2008, 313(1-2): 199~206
    18 H. Lin, T. Yu, W. Chang, et al. Preparation of a Low Proton Resistance PBI/PTFE Composite Membrane. Journal of Power Sources. 2007, 164(2): 481~487
    19 D. C. Papageorgopoulos, M. Keijzer, F. A. de Bruijn. The Inclusion of Mo, Nb and Ta in Pt and PtRu Carbon Supported Electrocatalysts in the Quest for Improved CO Tolerant PEMFC Anodes. Electrochimica Acta. 2002, 48(2): 197~204
    20 S. Mukerjee, S. Srinivasan, A. J. Appleby. Effect of Sputtered Film of Platinum on Low Platinum Loading Electrode on Electrode Kinetics of Oxygen Reduction in Proton Exchange Membrane Fuel Cells. Electrochimica Acta. 1993, 38(12): 1661~1669
    21 S. Mukerjee, S. Srinivasan. Effect of Preparation Conditions of Pt Alloys on Electronic, Structural and Electrocatalytic Activities for Oxygen Reduction. XRD, XAS and Electrochemical Studies. Journal of Physics Chemistry. 1995, 99(13): 4577~4589
    22 K. L. Ley, R. Liu, C. Pu. Methanol Oxidation on Single Phase Pt-Ru-Os Ternary Alloys. Journal of the Electrochemical Society. 1997, 144(5): 1543~1548
    23 H. A. Gasteiger, N. M. Markovic, P. N. Ross. H2 and CO Electrooxidation on Well-Characterized Pt, Ru and Pt-Ru. 1. Rotating Disk Electrode Studies of the Pure Gases Including Temperature Effects. Journal of Physics Chemistry. 1995, 99(20): 8290~8301
    24 H. A. Gasteiger, N. M. Markovic, P. N. Ross. H2 and CO Electrooxidation on Well-Characterized Pt, Ru and Pt-Ru. 2. Rotating Disk Electrode Studies of CO/H2 Mixture at 62 oC. Journal of Physics Chemistry. 1995, 99(20): 16757~16767
    25 H. A. Gasteiger, N. M. Markovic, P. N. Ross, et al. Electro-Oxidation Mechanism of Methanol and Formic Acid on Pt-Ru Alloy Surface. Electrochimica Acta. 1995, 40(1): 91~98
    26 S. Wasmus, A. Kuver. Methanol Oxidation and Direct Methanol Fuel Cells: a Selective Review. Journal of Electroanalysis Chemistry. 2002, 461(1-2): 14~31
    27 B. N. Grgur, N. M. Markovic, P. N. Ross. The Electro-Oxidation of H2 and H2/CO on Carbon Supported PtxMoy Alloy Catalysts. Journal of the Electrochemical Society. 1999, 146(1-2): 1613~1619
    28 P. K. Shen, A. C. C. Tseung. Anodic Oxidation of Methanol on Pt/WO3 in Acid Media. Journal of the Electrochemical Society. 1994, 141(11): 3082~3089
    29 E. Reddington, A. Sapieza, B. Gurau, et al. Combinational Electrochemistry: a Highly Parallel, Optical Screening Method forDiscovery of Better Electrocatalysts. Science. 1998, 280(5370): 1735~1737
    30 T. Okada, N. Arimura, C. Ono and M. Yuasa. Electro-Oxidation of Methanol on Mixed Catalysts Based on Platinum and Organic Metal Complexes in Acidic Media. Electrochimica Acta. 2005, 51(6): 1130~1139
    31 J. Shim, D. Yoo, J. Lee. Characteristics for Electrocatalytic Properties and Hydrogen-Oxygen Adsorption of Platinum Ternary Alloy Catalysts in Polymer Electrolyte Fuel Cell. Electrochimica Acta. 2000,45(12):1943~1951
    32 J. Vanv, H. Colijn, B. Van. Effect of a Heat Treatment on the Structure of Carbon-Supported Metalloporphyrins and Phthalocyanines. Electrochimica Acta. 1988, 33(6): 801~804
    33 G. C. Lalande, G. Tamizhmani. Physical, Chemical and Electrochemical Characterization of Heat-Treated Tetracarboxylic Cobalt Phthalocyanine Adsorbed on Carbon Black as Electrocatalyst for Oxygen Reduction in Polymer Electrolyte Fuel Cells. Electrochimica Acta. 1995, 40(16): 2635~2646
    34 C. W. B. Bezerra, L. Zhang, K. C. Lee. A Review of Fe–N/C and Co–N/C Catalysts for the Oxygen Reduction Reaction. Electrochimica Acta. 2008, 53(15): 4937-4951
    35 J. M. Zen, C. B. Wang. Oxygen Reduction on Ruthenium-Oxide Pyrochlore Produced in a Proton-Exchange Membrane. Journal of the Electrochemical Society. 1994, 141(4): L51~L52
    36 R. Manoharan, J. B. Goodenough. Oxygen Reduction on CrO2 Bonded to a Proton-Exchange Membrane. Electrochimica Acta. 2005, 40(3): 303~307
    37 D. R. Hodgson, B. May, P. L. Adcock, et al. New Lightweight Bipolar Plate System for Polymer Electrolyte Membrane Fuel Cells. Journal of Power Sources. 2001, 96(1): 233~235
    38 S. J. Lee, J. J. Lai, C. H. Huang. Stainless Steel Bipolar Plates. Journal of Power Sources. 2005, 145(2): 362~368
    39 A. Müller, P. Kauranen, A. von Ganski, et al. Injection Moulding ofGraphite Composite Bipolar Plates. Journal of Power Sources. 2006, 154(2): 467~471
    40 A. Hermann, T. Chaudhuri, P. Spagnol. Bipolar Plates for PEM Fuel Cells: A review. International Journal of Hydrogen Energy. 2005, 30(12): 1297~1302
    41 J. Wind, R. Spah, W. Kaiser, et al. Metallic Bipolar Plates for PEM Fuel Cells. Journal of Power Sources. 2002, 105(2): 256~260
    42 E. Middelman, W. Kout, B. Vogelaar, et al. Bipolar Plates for PEM Fuel Cells. Journal of Power Sources. 2003(1-2), 118: 44~46
    43 J. H. Huang, D. G. Baird, J. E. McGrath. Development of Fuel Cell Bipolar Plates from Graphite Filled Wet-Lay Thermoplastic Composite Materials. Journal of Power Sources. 2005, 150: 110~119
    44 B. D. Cunningham, J. H. Huang, D. G. Baird. Development of Bipolar Plates for Fuel Cells from Graphite Filled Wet-Lay Material and a Thermoplastic Laminate Skin Layer. Journal of Power Sources. 2007, 165(2): 764~773
    45 B. D. Cunningham, D. G. Baird. Development of Bipolar Plates for Fuel Cells from Graphite Filled Wet-Lay Material and a Compatible Thermoplastic Laminate Skin Layer. Journal of Power Sources. 2007, 168(2): 418~425
    46 D. S. Watkins, K. W. Dircks, D. G. Epp. US Patent No. 5, 108, 849, 1992
    47 D. S. Watkins, K. W. Dircks, D. G. Epp. US Patent No. 4, 988, 583, 1991
    48 X. G. Li, I. Sabir. Review of Bipolar Plates in PEM Fuel Cells: Flow-Field Designs. International Journal of Hydrogen Energy. 2005, 30(4): 359~371
    49 A. Kumar, R. G. Reddy. Effect of Gas Flow-Field Design in the Bipolar/End Plates on the Steady and Transient State Performance of Polymer Electrolyte Membrane Fuel Cells. Journal of Power Sources. 2006, 155(2): 264~271
    50 Y. Wang, C. Y. Wang. Ultra Large-Scale Simulation of Polymer Electrolyte Fuel Cells. Journal of Power Sources. 2006, 153(1):130~135
    51 F. Barreras, A. Lozano, L. Vali?o, et al. Flow Distribution in a Bipolar Plate of a Proton Exchange Membrane Fuel Cell: Experiments and Numerical Simulation Studies. Journal of Power Sources. 2005, 144(1): 54~66
    52 S. H. Chan, S. K. Goh, S. P. Jiang. A Mathematical Model of Polymer Electrolyte Fuel Cell with Anode CO Kinetics. Electrochimica Acta. 2003, 48(13):1905~1919
    53 H. P. Dhar. Near Ambient Unhumidified Solid Polymer Fuel Cell [P]. US: 5318863
    54 H. P. Dhar. Near Ambient Unhumidified Solid Polymer Fuel Cell [P]. US: 5242764
    55 D. P. Wilkinson, H. H. Voss, K. Prater. Water Management and Stack Design for Solid Polymer Fuel Cells. Journal of Power Sources. 1994, 49(1-3): 117~127
    56于景荣,衣宝廉,韩明等. Nafion膜厚度对质子交换膜燃料电池性能的影响.电源技术. 2001, 25(6): 384~386
    57 S. Vengatesan, H. J. Kim, E. A. Cho, et al. Operation of a Proton-Exchange Membrane Fuel Cell under Non-humidified Conditions Using Thin Cast Nafion Membranes with Different Gas-Diffusion Media. Journal of power sources, 2006, 156(2): 294~299
    58 M. Han, S. H. Chan, S. P. Jiang. Investigation of Self-Humidifying Anode in Polymer Electrolyte Fuel Cells. International Journal of hydrogen energy. 2007, 32(3): 385~391
    59 Z. G. Qi, A. Kaufman. Improvement of water management by a microporous sublayer for PEM fuel cells. Journal of Power Sources. 2002, 109(1): 38~46
    60 J. H. Chen, T. Matsuura, M. Hori. Novel Gas Diffusion Layer with Water Management Function for PEMFC. Journal of Power Sources. 2004, 131(1-2): 155~161
    61 F. Q. Liu, B. L. Yi, D. Xing, et al. Nafion/PTFE Composite Membranes for Fuel Cell Applications. Journal of Membrane Science. 2003,212(1-2): 213~223
    62 Jochem A. Kerres. Development of Ionomer Membranes for Fuel Cell. Journal of Membrane Science. 2001, 185(1): 3~27
    63王诚,毛宗强.新型自增湿膜电极的制备及其燃料电池性能.高等学校化学学报. 2003, 24(1): 140~142
    64王诚,毛宗强. PEM燃料电池的自增湿膜电极制备及其性能分析.中国科学(G辑),2003,33(2):,132~137
    65 S. Y. Ahn, Y. C. Lee, H. Y. Ha, et al. Effect of the Ionomers in the Electrode on the Performance of PEMFC under Non-humidifying Conditions. Electrochimica Acta. 2004, 50(2-3): 673~676
    66 M. Watanabe, H. Uchida, Y. Seki, et al. Self-Humidifying Polymer Electrolyte Membranes for Fuel Cells. Journal of the Electrochemical Society. 1996, 143(12): 3847~3852
    67 M. Watanabe, H. Uchida. Analyses of Self Humidification and Suppression of Gas Cross over in Pt Dispersed Polymer Electrolyte Membrane for Fuel Cells. Journal of the Electrochemical Society. 1998, 145(4): 1137-1142
    68 M. Watanabe, H. Uchida, M. Emori. Experimental Analysis of the Self Humidification and Suppression of Gas Crossover in Fuel Cells. Journal of Physics Chemistry B. 1998, 102: 3129~3137
    69 Honmai, Hirakawas, K. Yamada. Synthesis of Organic Nanocomposites Protonic Conducting Membrane through Sol-Gel Processes. Solid State Ionics. 1999, 118(1-2): 29~36
    70 Honmai, Y. Takeda, J. M. Bae. Protonic Conducting Properties of Sol-Gel Organic/Inorganic Nanocoposites Membranes Doped with Acid Functional Molecules. Solid State Ionics. 1999, 120(1-4): 255~264
    71 S. H. Kwak, T. H. Yang, C. S. Kim, et al. The Effect of Platinum Loading in the Self-Humidifying Polymer Electrolyte Membrane on Water Uptake. Journal of Power Sources. 2003, 118(1-2): 200~204
    72 T. Okada, G. Xie, Y. Tanabe. Theory of Water Management at the Anode Side of Polymer Electrolyte Fuel Cell Membranes. Journal of Electroanalysis. Chemistry. 1996, 413(1-2): 49~53
    73 F. Q. Liu, B. L. Yi, D. M. Xing, et al. Development of Novel Self-Humidifying Composite Membranes for Fuel Cells. Journal of Power Sources. 2003, 124(1): 81~89
    74 B. Yang, Y. Z. Fu, A. Manthiram. Operation of Thin Nafion-Based Self Humidifying Membranes in Proton Exchange Membrane Fuel Cells with Dry H2 and O2. Journal of Power Sources. 2005, 139(1-2): 170~175
    75 T. H. Yang, Y. G. Yoon, C. S. Kim, et al. A Novel Preparation Method for a Self Humidifying Polymer Electrolyte Membrane. Journal of Power Sources. 2002, 106(1-2): 328~332
    76 Y. H. Liu, B. L. Yi, Z. G. Shao, et al. Pt/CNTs-Nafion Reinforced and Self-humidifying Composite Membrane for PEMFC Applications. Journal of Power Sources. 2007, 163(2): 807~813
    77 Y. Zhang, H. M. Zhang, C. Bi, et al. An Inorganic/Organic Self-humidifying Composite Membranes for Proton Exchange Membrane Fuel Cell Application. Electrochimica Acta. 2008, 53(12): 4096~4103
    78 Y. Zhang, H. M. Zhang, Y. F. Zhai, et al. Investigation of Self-humidifying Membranes based on Sulfonated Poly(ether ether ketone) Hybrid with Sulfated Zirconia Supported Pt Catalyst for Fuel Cell Applications. Journal of Power Sources. 2007, 168(2): 323~329
    79 Z. G. Shao, P. Joghee, I. M. Hsing. Preparation and Characterization of Hybrid Nafion-silica Membrane Doped with Phosphotungstic Acid for High Temperature Operation of Proton Exchange Membrane Fuel Cells. Journal of Membrane Science. 2004, 229(1-2): 43~51
    80 Y. M. Kim, S. H. Choi, H. C. Lee, et al. Organic Inorganic Composite Membranes as Addition of SiO2 for High Temperature Operation in Polymer Electrolyte Membrane Fuel Cells(PEMFCS). Electrochimica Acta. 2004, 49(26): 4787~4796
    81 K. T. Adjemian, S. Srinivasan, J. Benziger, et al. Investigation of PEMFC Operation above 100 oC Employing Perfluorosulfonic Acid Silicon Oxide Composite Membranes. Journal of Power Sources. 2002, 109(2): 356~364
    82 P. Costamagna, C. Yang, A. B. bocarsly, et al. Nafion?115/Zirconium Phosphate Composite Membranes for Operation of PEMFCs above 100 oC. Electrochimica Acta. 2002, 47(7): 1023~1033
    83 L. Wang, B. L. Yi, H. M. Zhang, et al. Cs2.5H0.5PWO40/SiO2 as Addition Self-humidifying Composite Membrane for Proton Exchange Membrane Fuel Cells. Electrochimica Acta, 2007, 52(17): 5479~5483
    84 D. H. Son, R. K. Sharma, Y. G. Shul, et al. Preparation of Pt/Zeolite–Nafion Composite Membranes for Self-humidifying Polymer Electrolyte Fuel Cells. Journal of Power Sources. 2007, 165(2): 733~738
    85 F. N. Fuchi, S. Srinivasan. Operating Proton Exchange Membrane Fuel Cells without External Humidification of Reactant Gases. Journal of the Electrochemical Society. 1997, 144(8): 2767~2772
    86 Z. G. Qi, A. Kaufman. PEM Fuel Cell Stacks Operated under Dry-Reactant Conditions. Journal of Power Sources. 2002, 109(2): 469~476
    87 T. Yang, P. F. Shi, C. Y. Du. Study on Self-humidified PEMFC with Reactant Circulation. Electrochimica Acta. 2006, 51(26): 5618~5625
    88 A. B. Shelekhin, C. L. Bushnell, M. S. Pien. Air-Cooled, Hydrogen-Air Fuel Cell[P]. US: 597253
    89 S. H. Ge, X. G. Li and I. M. Hsing. Internally Humidified Polymer Electrolyte Fuel Cells Using Water Absorbing Sponge. Electrochimica Acta. 2005, 50(9): 1909~1916
    90 W. H. J. Hogarth, J. B. Benziger. Operation of Polymer Electrolyte Membrane Fuel Cells with Dry Feeds: Design and Operating Strategies. Journal of Power Sources. 2006, 159(2): 968~978
    91 Adlhart. Fuel Cell System Utilizing Ion Exchange Membranes and Bipolar Plates[P]. US: 4175165
    92 G. J. Koncar, L. G. Marianowshi. Proten Exchange Membrane Fuel Cell Separtor Plate[P]. US: 5942347
    93 D. Staschewski. Internal Humidifying of PEM Fuel Cells. International Journal of Hydrogen Energy. 1996, 121(5): 381~385
    94 V. Gurau, M. J. Bluemle, E. S. De Castro, et al. Characterization ofTransport Properties in Gas Diffusion Layers for Proton Exchange Membrane Fuel Cells: 1. Wettability (Internal Contact Angle to Water and Surface Energy of GDL Fibers). Journal of Power Sources. 2006, 160(2): 1156~1162
    95拉默尼E,基恩伯格M.聚合物膜燃料电池用气体扩散电极,[P].中国专利. 98109696.4, 1998
    96 D. bevers, R. Rogers, M. von Bradke. Examination of the Influence of PTFE Coating on the Properties of Carbon Paper in Polymer Electrolyte Fuel Cells. Journal of Power Sources. 1996, 63(2): 193~201
    97 C. Lim, C. Y. Wang. Effects of Hydrophobic Polymer Content in GDL on Power Performance of a PEM Fuel Cell. Electrochimica Acta. 2004, 49(24): 4149~4156
    98 M. Han, J. H. Xu, S. H. Chan, et al. Characterization of Gas Diffusion Layers for PEMFC. Electrochimica Acta. 2008, 53(16): 5361~5367
    99 V. A. Paganin, E. A. Ticianelli, E. R. Gonzalez. Development and Electrochemical Studies of Gas Diffusion Electrodes for Polymer Electrolyte Fuel Cells. Journal of Applied Electrochemistry. 1996, 26(3): 297~304
    100 L. Giorgi, E. Antolini, A. Pozio, et al. Influence of the PTFE Content in the Diffusion Layer of Low-Pt loading Electrodes for Polymer Electrolyte Fuel Cells. Electrochimica Acta. 1998, 43(24): 3675~3680
    101 H. K. Lee, J. H. Park, D. Y. Kim, et al. A Study on the Characteristics of the Diffusion Layer Thickness and Porosity of the PEMFC. Journal of Power Sources. 2004, 131(1-2): 200~206
    102 R. B. Mathur, P. H. Maheshwari, T. L. Dhami, et al. Characteristics of the Carbon Paper Heat-Treated to Different Temperatures and Its Influence on the Performance of PEM Fuel Cell. Electrochimica Acta. 2007, 52(14): 4809~4817
    103 S. H. Ge, C. Y. Wang. Characteristics of Subzero Startup and Water/Ice Formation on the Catalyst Layer in a Polymer Electrolyte Fuel Cell. Electrochimica Acta. 2007, 52(14): 4825~4835
    104 J. P. Feser, A. K. Prasad, S. G. Advani. Experimental Characterizationof In-Plane Permeability of Gas Diffusion Layers. Journal of Power Sources. 2006, 162(2): 1226~1231
    105 M. C. Tsai, T. K. Yeh, C. H. Tsai. Electrodeposition of Platinum-Ruthenium Nanoparticles on Carbon nanotubes Directly Grown on Carbon Cloths for Methanol Oxidation. Materials Chemistry and Physics. 2008, 109(2-3): 422~428
    106 T. H. Ko, Y. K. Liao, C. H. Liu. Effects of Graphitization of PAN-Based Carbon Fiber Cloth on Its Use as Gas Diffusion Layers in Proton Exchange Membrane Fuel Cells. Carbon. 2007, 45(11): 2321
    107 T. H. Ko, Y. K. Liao, C. H. Liu. Effects of Graphitization of PAN-Based Carbon Fiber Cloth on Its Use as Gas Diffusion Layers in Proton Exchange Membrane Fuel Cells. New Carbon Materials. 2007, 22(2): 97~101
    108 T. Ralph, T. Hards, J. E. Keating. Low Cost Electrodes for Proton Exchange Membrane Fuel Cells. Journal of the Electrochemical Society. 1997, 144(11): 3845~3857
    109 Y. Wang, C. Y. Wang, K. S. Chen. Elucidating Differences between Carbon Paper and Carbon Cloth in Polymer Electrolyte Fuel Cells. Electrochimica Acta. 2007, 52(12): 3965~3975
    110 T. Hottinen, M. Mikkola, T. Mennola, et al. Titanium Sinter as Gas Diffusion Backing in PEMFC. Journal of Power Sources. 2003, 118(1-2): 183~188
    111 V. A. Paganin, E. A. Ticianelli, E. R. Gonzalez. Development and Electrochemical Studies of Gas Diffusion Electrodes for Polymer Electrolyte Fuel Cells. Journal Applied Electrochemistry. 1996, 26(3): 297~304
    112 L. Giorgi, E. Antolini, A. Pozio, et al. Influence of the PTFE Content in the Diffusion Layer of Low-Pt Loading Electrodes for Polymer Electrolyte Fuel Cells. Electrochimica Acta. 1998, 43(24): 3675~3680
    113 J. M. Song, S. Y. Cha, W. M. Lee. Optimal Composition of Polymer Electrolyte Fuel Cell Electrodes Determined by the AC Impedance Method. Journal of Power Sources. 2001, 94(1): 78~84
    114 E. Antolini, R. R. Passos, E. A. Ticianelli. Effects of the CarbonPowder Characteristics in the Cathode Gas Diffusion Layer on the Performance of Polymer Electrolyte Fuel Cells. Journal of Power Sources. 2002, 109(2): 477~482
    115 M. Neergat, A. K. Shukla. Effect of Diffusion-Layer Morphology on the Performance of Solid-Polymer-Electrolyte Direct Methanol Fuel Cells. Journal of Power Sources. 2002, 104(2): 289~294
    116 L. R. Jordan, A. K. Shukla, T. Behrsing, et al. Diffusion Layer Parameters Influencing Optimal Fuel Cell Performance. Journal of Power Sources. 2000, 86(1-2): 250~254
    117 G. G. Park, Y. J. Sohn, S. D. Yim, et al. Adoption of Nano-Materials for the Micro-Layer in Gas Diffusion Layers of PEMFCs. Journal of Power Sources. 2006, 163(1): 113~118
    118 W. M. Yan, C. Y. Hsueh, C. Y. Soong, et al. Effects of Fabrication Processes and Material Parameters of GDL on Cell Performance of PEM Fuel Cell. International Journal of Hydrogen Energy. 2007, 32(17): 4452~4458
    119 C. H. Liu, T. H. Ko, Y. K. Liao. Effect of Carbon Black Concentration in Carbon Fiber Paper on the Performance of Low-Temperature Proton Exchange Membrane Fuel Cells. Journal of Power Sources. 2008, 178(1): 80~85
    120 A. M. Kannan, S. Sadananda, D. Parker, et al. Wire Rod Coating Process of Gas Diffusion Layers Fabrication for Proton Exchange Membrane Fuel Cells. Journal of Power Sources. 2008, 178(1): 231~237
    121 A. M. Kannan, L. Cindrella, L. Munukutla. Functionally Graded Nano-Porous Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells under Low Relative Humidity Conditions. Electrochimica Acta. 2008, 53(5): 2416~2422
    122 M. Hayashi, T. Sugitani, Y. Asano. US Patent 2005: 0173244. A1
    123 Y. W. Chen-Yang, Y. K. Lee, Y. T. Chen, et al. High Improvement in the Properties of Exfoliated PU/Clay Nanocomposites by the Alternative Swelling Process. Polymer. 2007, 48(10): 2969~2979
    124 Y. W. Chen-Yang, T. F. Hung, J. Huang, et al. Novel Single-Layer GasDiffusion Layer based on PTFE/Carbon Black Composite for Proton Exchange Membrane Fuel Cell. Journal of Power Sources. 2007, 173(1): 183~188
    125 Y. H. Pai, J. H. Ke, H. F. Huang, et al. CF4 Plasma Treatment for Preparing Gas Diffusion Layers in Membrane Electrode Assemblies. Journal of Power Sources. 2006, 161(1): 275~281
    126 M. V. Williams, E. Begg, L. Bonville, et al. Characterization of Gas Diffusion Layers for PEMFC. Journal of the Electrochemical Society. 2004, 151(8): A1173~A1180
    127 J. Benziger, J. Nehlsen, D. Blackwell, et al. Water Flow in the Gas Diffusion Layer of PEM Fuel Cells. Journal of Membrane Science. 2005, 261(1-2): 98~106
    128 J. T. Gostick, M. W. Fowler, M. A. Ioannidis, et al. Capillary Pressure and Hydrophilic Porosity in Gas Diffusion Layers for Polymer Electrolyte Fuel Cells. Journal of Power Sources. 2006, 156(2): 375~387
    129 C. S. Kong, D. Y. Kim, H. K. Lee, et al. Influence of Pore-Size Distribution of Diffusion Layer on Mass-Transport Problems of Proton Exchange Membrane Fuel Cells. Journal of Power Sources. 2002, 108(1-2): 185~191
    130 J. Zhang, G. P. Yin, Q. Z. L Lai, et al. The Influence of Anode Gas Diffusion Layer on the Performance of Low-Temperature DMFC. Journal of Power Sources. 2007, 168(2): 453~458
    131 Hand Book of Fuel Cells: Fundamentals, Technology and Applications. Volume 3. John Wiley&Sons. 2003, 526~528
    132 T. H. Zhou, H. T. Liu. Effects of the Electrical Resistances of the GDL in a PEM Fuel Cell. Journal of Power Sources. 2006, 161(1): 444~453
    133 E. Sadeghi, M. Bahrami, N. Djilali. Analytic Determination of the Effective Thermal Conductivity of PEM Fuel Cell Gas Diffusion Layers. Journal of Power Sources. 2008, 179(1): 200~208
    134 O. Chapuis, M. Prat, M. Quintard, et al. Two-Phase Flow and Evaporation in Model Fibrous Media: Application to the Gas Diffusion Layer of PEM Fuel Cells. Journal of Power Sources. 2008, 178(1):258~268
    135 P. K. Sinha, C. Y. Wang. Liquid Water Transport in a Mixed-Wet Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell. Chemical Engineering Science. 2008, 63(4): 1081~1091
    136 M. Stojcev. Portable Electronics Product Design and Development. Microelectronics Reliability. 2008, 48(2): 333-334
    137 MTI Micro, Samsung Link up for Portable Electronics. Fuel Cells Bulletin. 2006, 2006(6): 1
    138 A. S. Patil, T. G. Dubois, N. Sifer, et al. Portable Fuel Cell Systems for America’s Army: Technology Transition to the Field. Journal of Power Sources. 2004, 136(2): 220~225
    139 H. P. Chang, C. L. Chou, Y. S. Chen, et al. The Design and Cost Analysis of a Portable PEMFC UPS System. International Journal of Hydrogen Energy. 2007, 32(3) 316~322
    140 M. Oszcipok, M. Zedda, J. Hesselmann, et al. Portable Proton Exchange Membrane Fuel-Cell Systems for Outdoor Applications. Journal of Power Sources. 2006, 157(2) 666~673
    141 M. Oszcipok, M. Zedda, D. Riemann, et al. Low Temperature Operation and Influence Parameters on the Cold Start Ability of Portable PEMFCs. Journal of Power Sources. 2006, 154(2): 404~411
    142 Angstrom Demos Micro Fuel Cell in Handset. Fuel Cells Bulletin. 2008, 2008(3): 6
    143 NTT DoCoMo, Aquafairy Develop Micro Hydrogen Fuel Cell for FOMA Cell Phone Handsets. Fuel Cells Bulletin. 2006, 2006(8): 1
    144 Trulite Launches High-Power Portable Fuel Cell. Fuel Cells Bulletin. 2007, 2007(10): 6
    145 Fujitsu, DoCoMo Triple Cell Phone Charger Capacity. Fuel Cells Bulletin. 2005, 2005(8): 1
    146 B. Sakintuna, F. L.Darkrim, M. Hirscher. Metal Hydride Materials for Solid Hydrogen Storage: A Review. International Journal of Hydrogen Energy. 2007, 32(9): 1121~1140
    147 F. Lamari Darkrim, P. Malbrunot, G. P. Tartaglia. Review of Hydrogen Storage by Adsorption in Carbon Nanotubes. InternationalJournal of Hydrogen Energy. 2002, 27(2): 193~202
    148 V. V. Simonyan, J. K. Johnson. Hydrogen Storage in Carbon Nanotubes and Graphitic Nanofibers. Journal of Alloys and Compounds. 2002, 330-332: 659~665
    149 X. B. Wu, P. Chen, J. Lin, et al. Hydrogen Uptake by Carbon Nanotubes. International Journal of Hydrogen Energy. 2000, 25(3): 261~265
    150 H. Woolf, I. Brown, M. Bowden. Light Metal Hydrides– Potential Hydrogen Storage Materials. Current Applied Physics. 2008, 8(3-4), 459~462
    151 H. H. Cheng, H. G. Yang, S. L. Li, et al. Effect of Hydrogen Absorption/Desorption Cycling on Hydrogen Storage Performance of LaNi4.25Al0.75. Journal of Alloys and Compounds. 2008, 453(1-2): 448~452
    152 T. Z. Huang, Z. Wu, G. X. Sun, et al. Hydrogen Storage Characteristics of Composite TiCr1.8 + X wt.% LaNi5 Alloys. Journal of Alloys and Compounds. 2008, 450(1-2): 505~507
    153 A. L. M. Reddy, S. Ramaprabhu. Design and Fabrication of Carbon Nanotube-based Microfuel Cell and Fuel Cell Stack Coupled with Hydrogen Storage Device. International Journal of Hydrogen Energy. 2007, 32(17): 4272~4278
    154 C. Bossi, A. Del Corno, M. Scagliotti, et al. Characterisation of a 3 kW PEFC Power System Coupled with a Metal Hydride H2 Storage. Journal of Power Sources. 2007, 171(1): 122~129
    155 R. K. Ahluwalia. Sodium Alanate Hydrogen Storage System for Automotive Fuel Cells. International Journal of Hydrogen Energy. 2007, 32(9): 1251-1261
    156 U. Eberle, G. Arnold, R. von Helmolt. Hydrogen Storage in Metal–Hydrogen Systems and Their Derivatives. Journal of Power Sources. 2006, 154(2): 456~460
    157 S. A. Jin, J. H. Shim, Y. W. Cho, et al. Reversible Hydrogen Storage in LiBH4–Al–LiH Composite Powder. Scripta Materialia. 2008, 58(11): 963~965
    158 B. Sakintuna, F. L. Darkrim, M. Hirscher. Metal Hydride Materials for Solid Hydrogen Storage: A Review. International Journal of Hydrogen Energy. 2007, 32(9): 1121~1140
    159 J. O. Jensen, Q. Li, R. He, et al. 100–200°C Polymer Fuel Cells for Use with NaAlH4. Journal of Alloys and Compounds. 2005, 404-406: 653~656
    160 S. Basak, K. Shashikala, S. K. Kulshreshtha. Hydrogen Absorption Characteristics of Zr Substituted Ti0.85VFe0.15 Alloy. International Journal of Hydrogen Energy. 2008, 33(1): 350~355
    161 L. B. Wang, C. N. Ma, Y. M. Sun, et al. AB5-type Hydrogen Storage Alloy Used as Anodic Materials in Borohydride Fuel Cell. Journal of Alloys and Compounds. 2005, 391(1-2): 318~322
    162刘志祥,王诚,毛宗强.微型氢空质子交换膜燃料电池系统. 2006, 30(12): 982~985
    163 Z. L. Liu, B. Guo, S. H. Chan, et al. Pt and Ru Dispersed on LiCoO2 for Hydrogen Generation from Sodium Borohydride Solutions. Journal of Power Sources. 2008, 176(1): 306~311
    164 J. H. Park, P. Shakkthivel, H. J. Kim, et al. Investigation of Metal Alloy Catalyst for Hydrogen Release from Sodium Borohydride for Polymer Electrolyte Membrane Fuel Cell Application. International Journal of Hydrogen Energy. 2008, 33(7): 1845~1852
    165 G. Y. Moon, S. S. Lee, K. Y. Lee, et al. Behavior of Hydrogen Evolution of Aqueous Sodium Borohydride Solutions. Journal of Industrial and Engineering Chemistry. 2008, 14(1): 94~99
    166 J. F. Ma, Y. N. Liu, P. Zhang, et al. A simple Direct Borohydride Fuel Cell with a Cobalt Phthalocyanine Catalyzed Cathode. Electrochemistry Communications. 2008, 10(1): 100~102
    167 C. W. Kim, K. J. Kim, M. Y. Ha. Performance Enhancement of a Direct Borohydride Fuel Cell in Practical Running Conditions. Journal of Power Sources. 2008, 180(1): 154~161
    168 R. Jamard, A. Latour, J. Salomon, et al. Study of Fuel Efficiency in a Direct Borohydride Fuel Cell. Journal of Power Sources. 2008, 176(1): 287~292
    169 H. B. Dai, Y. Liang, P. Wang, et al. AmorphouCobalt–Boron/Nickel Foam as an Effective Catalyst for Hydrogen Generation from Alkaline Sodium Borohydride Solution. Journal of Power Sources. 2008, 177(1): 17~23
    170 J. C. Walter, A. Zurawski, D. Montgomery, et al. Sodium Borohydride Hydrolysis Kinetics Comparison for Nickel, Cobalt, and Ruthenium Boride catalysts. Journal of Power Sources. 2008, 179(1): 335~339
    171 P. Krishnan, K. L. Hsueh, S. D. Yim. Catalysts for the Hydrolysis of Aqueous Borohydride Solutions to Produce Hydrogen for PEM Fuel Cells. Applied Catalysis B: Environmental. 2007, 77(1-2): 206~214
    172 B. H. Liu, Z. P. Li, L. L. Chen. Alkaline Sodium Borohydride Gel as a Hydrogen Source for PEMFC or an Energy Carrier for NaBH4-Air Battery. Journal of Power Sources. 2008, 180(1): 530~534
    173 C. W. Kim, K. J. Kim, M. Y Ha. Investigation of the Characteristics of a Stacked Direct Borohydride Fuel Cell for Portable Applications. Journal of Power Sources. 2008, 180(1): 114~121
    174 B. H. Liu, Z. P. Li, S. Suda. Development of High-Performance Planar Borohydride Fuel Cell Modules for Portable Applications. Journal of Power Sources. 2008, 175(1): 226~231
    175 D. Gervasio, S. Tasic, F. Zenhausern. Room Temperature Micro-Hydrogen-Generator. Journal of Power Sources. 2005, 149(26): 15~21
    176 J. H. Wee. A Comparison of Sodium Borohydride as a Fuel for Proton Exchange Membrane Fuel Cells and for Direct Borohydride Fuel Cells. Journal of Power Sources. 2006, 155(2): 329~339
    177 J. H. Wee. Which Type of Fuel Cell Is More Competitive for Portable Application: Direct Methanol Fuel Cells or Direct Borohydride Fuel Cells?. Journal of Power Sources. 2006, 161(1): 1~10
    178 H. Cheng, K. Scott. Influence of Operation Conditions on Direct Borohydride Fuel Cell Performance. Journal of Power Sources. 2006, 160(1): 407~412
    179 K. T. Park, U. H. Jung, S. U. Jeong, et al. Influence of Anode Diffusion Layer Properties on Performance of Direct Borohydride Fuel Cell.Journal of Power Sources. 2006, 162(1):192~197
    180 H. Cheng, K. Scott. Investigation of Non-Platinum Cathode Catalysts for Direct Borohydride Fuel Cells. Journal of Electroanalytical Chemistry. 2006, 596(2): 117~123
    181 R. K. Raman, S. K. Prashant, A. K. Shukla. A 28-W Portable Direct Borohydride–Hydrogen Peroxide Fuel-Cell Stack. Journal of Power Sources. 2006, 162(2): 1073~1076
    182 G. H. Miley, N. Luo, J. Mather, et al. Direct NaBH4/H2O2 Fuel Cells. Journal of Power Sources. 2007, 165(2): 509~516
    183 S. S. Martínez, L. A. Sánchez, A. A.álvarez Gallegos, et al. Coupling a PEM Fuel Cell and the Hydrogen Generation from Aluminum Waste Cans. International Journal of Hydrogen Energy. 2007, 32(15): 3159~3162
    184 C. R. Jung, A. Kundu, B. Ku, et al. Hydrogen from Aluminium in a Flow Reactor for Fuel Cell Applications. Journal of Power Sources. 2008, 175(1): 490~494
    185 M. Q. Fan, F. Xu, L. X. Sun. Studies on Hydrogen Generation Characteristics of Hydrolysis of the Ball Milling Al-based Materials in Pure Water. International Journal of Hydrogen Energy. 2007, 32(14): 2809~2815
    186 L. Soler, J. Macanás, M. Mu?oz, et al. Aluminum and Aluminum Alloys as Sources of Hydrogen for Fuel Cell Applications. Journal of Power Sources. 2007, 169(1): 144~149
    187 H. R. Hu, M. H. Qiao, Y. Pei, et al. Kinetics of Hydrogen Evolution in Alkali Leaching of Rapidly Quenched Ni–Al Alloy. Applied Catalysis A: General. 2003, 252(1): 173~183
    188 H. S. Kim, M. Z. Kong, K. Kim, et al. Effect of Carbon Coating on LiNi1/3Mn1/3Co1/3O2 Cathode Material for Lithium Secondary Batteries. Journal of Power Sources. 2007, 171(2): 917~921
    189 J. S. Yu, S. B. Yoon, G. S. Chai. Ordered Uniform Porous Carbon by Carbonization of Sugars. Carbon. 2001, 39(9): 1442~1446
    190 A. W. Adamson, A. P. Gast. Phyical Chemistry of Surfaces. 6th ed., Wiley, New York, 1997.
    191 J. Tse, A. W. Adamson. Adsorption and Contact Angle Studies: III. Organic Substances on Polished Polyethylene. Journal of Colloid and Interface Science. 1979, 72(3): 515~523
    192 D. K. Owens, R. C. Wendt. Estimation of the Surface Free Energy of Polymers. Journal of Applied Polymer Science. 1969, 13(8): 1741~1747
    193张雪华.单向阀的典型应用和使用注意事项.龙岩师专学报. 2005, 23(3): 64~66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700