单核细胞增生李斯特菌超氧化物歧化酶在菌膜形成中的功能解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单核细胞增生李斯特菌是一种常见的食源性致病菌,可以引起人类的李氏杆菌病。它在自然界中分布广泛,并可在食品加工设备上形成菌膜。菌膜是微生物粘附在介质表面形成的大量细菌群居的一种生存状态。菌膜状态下的单核细胞增生李斯特菌对消毒剂等逆境的抗性明显增强,因此会增加食品反复被污染的几率,对公共卫生和人类健康带来严重危害。揭示单核细胞增生李斯特菌的菌膜形成机制对防止和控制它的危害具有重要意义。
     本实验室前期构建了Tn917插入单核细胞增生李斯特菌(Listeriamonocytogenes4b G)基因组的突变子库,从中筛选到了菌膜形成能力增加的突变株LM-49,并确定了插入位点为lm.G_1771基因(编码一个假定的ABC转运子透性酶)。通过基因芯片和双向电泳技术,筛选野生型G和lm.G_1771基因缺失突变株(Δ1771)的差异表达基因和蛋白,发现超氧化物歧化酶(SOD)的表达量在Δ1771突变株中明显升高。本文在此基础上对单核细胞增生李斯特菌sod基因与lm.G_1771基因的相互关系及在菌膜形成中的作用进行了研究,并探究了抗氧胁迫相关基因与菌膜形成之间的关系,主要研究内容和结果如下:
     1、同源重组载体的构建与突变株的筛选。(1)sod基因两端的同源臂连接于温敏型穿梭质粒pKSV7(含氯霉素抗性基因)中,成功构建了sod基因的同源重组载体pKSV7::sod14。(2)重组质粒分别电转化于感受态细胞G和Δ1771中,得到阳性转化子,经过双交换和抗性筛选得到sod基因单缺失突变株Δsod和lm.G_1771、sod双缺失突变株Δ1771Δsod,重组几率分别为0.46%(2/436)和0.38%(5/1300)。突变株的获得为深入研究SOD的功能以及与lm.G_1771的关系提供了必要的材料。
     2、lm.G_1771基因与sod基因表达的相互影响。首先分别培养制备游离状态和菌膜状态的细胞,再利用RT-qPCR技术和酶谱分析技术测定野生型菌株G和Δ1771中的SOD表达量。结果显示,在游离状态下,Δ1771中的sod表达量与野生型相比没有发生明显变化;菌膜状态下,基因sod在Δ1771中的表达量提高了2.2倍,SOD的酶活增加了2.3倍。同时,菌膜状态下lm.G_1771基因在Δsod突变株与野生型菌株G中的表达量无明显差别。该结果表明,菌膜状态下lm.G_1771基因的缺失会使sod的表达量增加,但在游离状态下这种作用不明显;此外,菌膜状态下sod的缺失对lm.G_1771基因的表达无明显影响。
     3、SOD在菌膜形成中的生理功能及其同lm.G_1771的关系。首先,利用96孔板结晶紫染色法和荧光显微镜对野生型菌株G和三株突变株(Δ1771,Δsod和Δ1771Δsod)的菌膜形成能力进行评定。其次,对这四株菌的生长能力、活性氧组分(ROS)产量和抗氧胁迫能力进行了比较。结果显示:(1)与Δ1771菌膜形成能力增强相反,Δsod和Δ1771Δsod的菌膜形成能力均明显下降,尤其是Δ1771Δsod减少地更明显;(2)Δ1771与野生型G的生长能力无明显区别,Δsod和Δ1771Δsod生长减慢并且培养相同时间形成的菌落明显偏小;(3)Δ1771与野生型G的ROS产量无明显差异,Δsod和Δ1771Δsod的ROS产量明显升高,尤其是在Δ1771Δsod中升高的更多;(4)Δ1771对氧化剂甲基紫晶(methyl viologen, MV)的敏感性与野生型G相似,Δsod和Δ1771Δsod对MV表现出高度敏感性,并且Δ1771Δsod比Δsod对甲基紫晶的敏感性还要强。上述结果表明,SOD作为重要的抗氧胁迫酶在维持细胞生长中起到重要作用,它可以抑制细胞过量ROS的产生,对菌膜形成起到正调控作用。并且,SOD可以与lm.G_1771一起调控菌膜的形成,两者在抵御氧胁迫中具有协同作用。
     4、氧化剂MV(ROS产生诱导剂)对菌膜形成的影响。选取5种血清型共10株单核细胞增生李斯特菌野生型菌株,分别对它们在TSB培养基和TSB+MV培养基中的菌膜形成能力进行比较。结果显示,1mM MV可以明显抑制菌膜的形成,并影响该菌在玻片上的聚集,表明ROS不利于菌膜的形成。该结果为SOD通过抑制ROS的产生来调控菌膜形成的这一假说提供了辅证。
     5、双向电泳(2-DE)及质谱联用鉴定SOD调控的蛋白。运用PDQuest8.0软件对野生型和Δsod突变株的双向电泳结果进行分析,共找到差异表达2倍以上的蛋白14个,其中10个在Δsod中下调,4个在Δsod中上调。下调的蛋白涉及细胞调节子、代谢、生长和压力反应相关的酶类;上调的蛋白涉及代谢和细胞壁合成相关的酶类;并且部分差异蛋白在菌膜形成中起到重要作用。这些结果暗示了SOD在生长和抗性方面可能的作用方式,推测了SOD正调控菌膜形成的途径。
     6、利用RT-qPCR技术分析抗氧胁迫相关基因在不同状态及不同突变株中的表达。研究涉及的抗氧胁迫相关基因共分为三类:直接参与抗氧胁迫的基因(kat和fri);抗氧胁迫基因表达的反应调节子(perR和sigB);氧化损伤DNA修复基因(recA)。结果显示:(1)游离状态下,Δ1771和Δsod中抗氧胁迫基因和反应调节子的表达均比野生型要低,表明lm.G_1771和sod对这些基因均有正调控作用,并且这两个基因不影响recA的表达;但在双突变株Δ1771Δsod中,recA基因的表达量明显升高,由于recA具有启动SOS来维持生存的功能,表明了sod基因和lm.G_1771基因在共同维持细胞的正常生长中起到重要作用。(2)菌膜的形成会导致部分抗氧胁迫基因的上调,尤其在sod缺失突变株中,表明了菌膜的形成有利于抗氧胁迫缺陷菌株抗氧能力的修复。(3)MV可以刺激机体产生过量的内源性ROS,在MV的作用下,所研究的目的基因在野生型G中均被诱导上调,表明菌膜中形成的氧胁迫适应机制比起单纯的氧化剂刺激引起的适应机制复杂得多。
     综上所述,ROS可以抑制菌膜的形成,菌膜的形成需要氧胁迫相关基因的参与。SOD可以消除机体代谢产生的过量ROS,抵御氧胁迫的损伤,影响抗性、代谢和生长相关酶类的表达,维持细胞的正常生长和菌膜的形成。并且,在菌膜形成中SOD的表达会受到lm.G_1771的影响,在抗氧胁迫中两者表现出协同效应。总之,SOD可与lm.G_1771基因编码的ABC转运子透性酶一起调控菌膜的形成,在菌膜形成中起到重要作用。
Listeria monocytogenes is a foodborne pathogen capable of causinglisteriosis in human. It is widely distributed in the environment and formsbiofilms on food processing equipments, which are communities ofmicroorganisms adhering to a surface. The resistance of L.monocytogenes in biofilm to adversity such as disinfectant is significantlyincreased, thus the pathogen can contaminate food repeatedly andthreaten public hygiene and human health. The mechanism of biofilmformation is not yet clear in L. monocytogenes, therefore, the mechanisticstudy has significant importance for food safety.
     In our previous work, a mutant library was constructed by insertingTn917into the genome of L. monocytogenes4b G. One mutant strain(LM-49) with increased biofilm formation capacity was obtained throughscreening in the library, and the insertion site of Tn917located inlm.G_1771gene encoding a putative ABC transporter permease wasidentified. Two-dimensional gel electrophoresis (2-DE) and microarrayanalyses revealed that superoxide dismutase (SOD) was also up-regulatedby about2-fold in the Δ1771mutant in comparison to the wild-type4b G. In this dissertation, we analyzed the function of the sod gene in biofilmformation and its relationship with the lm.G_1771gene, and explored therelationship between antioxidative genes and biofilm formation based onthe previous studies. The main contents and conclusions are shown as thefollowing:
     1. Vector construction for homologous recombination and screeningsod-deleted mutants.5’ and3’ flanking sequences of the sod gene werelinked into the temperature-sensitive shuttle vector pKSV7containing thechloromycetin resistant gene, and vector pKSV7::sod14of the sod genefor homologous recombination was constructed successfully. Therecombinant plasmid was transformed into the competent cells of thewild-type G and Δ1771respectively, positive transformants were obtained,and then the sod gene deletion mutant Δsod and double deletion mutantΔ1771Δsod were screened by double exchange and resistance selection.Recombination probability was0.46%(2/436) and0.38%(5/1300),respectively. The successful mutant construction provided the necessaryexperimental materials for the function analysis of SOD anddetermination of its relationship with lm.G_1771.
     2. Determination of the relationship between the lm.G_1771geneand the sod gene. First, planktonic and biofilm cells of the wild-type Gand the mutant strain Δ1771were cultured respectively. Second,RT-qPCR and zymographic analysis were performed to determine the expression level of SOD in the wild type G and Δ1771. Research resultsshowed that there was no distinct change in the expression level of SODbetween the wild-type G and Δ1771in planktonic cells, but thetranscriptional level and activity of SOD were separately increased by2.2-fold and2.3-fold in Δ1771compared to the wild type G in biofilmcells. In addition, the expression level of lm.G_1771in Δsod mutant wasnearly consistent with in the wild type G. These results showed that theexpression level of the sod was increased due to the deletion of thelm.G_1771gene in biofilm cells but not obvious in planktonic cells, andthe sod gene had no distinct impact on the expression of lm.G_1771inbiofilm cells.
     3. Physiological function of SOD in biofilm formation and itsrelationship with lm.G_1771. First, the abilities of biofilm formation inthe wild type G and three mutants (Δ1771, Δsod and Δ1771Δsod) wereassessed using crystal violet staining with96-well plates and afluorescence microscope. Second, the growth ability, ROS output and theantioxidative capacity were determined and compared among these fourstrains. The main results are as follows:(1) In contrast to the increasedability of biofilm formation in Δ1771, the biofilm formation abilities werereduced in both sod and Δ1771, especially in Δ1771Δsod.(2) There wasno obvious difference in growth rate between Δ1771and the wild-type G,but the growth rates of Δsod and Δ1771Δsod were slower than the wild-type G and their colony sizes were also smaller than the wild type Gunder the same culture conditions.(3) There was no significant differencein ROS output between Δ1771and the wild type G, and the ROSproduction of Δsod and Δ1771Δsod was enhanced distinctly compared tothe wild type G, especially in Δ1771Δsod.(4) The sensitivity of Δ1771tomethyl viologen (MV) was similar to the wild type G. Both Δsod andΔ1771Δsod were more sensitive to MV than wild type G, and thesensitivity of Δ1771Δsod was higher than that of Δsod. These resultsindicated that SOD served as an important antioxidase playing animportant role in maintaining the normal cell growth of L. monocytogenesand restraining excess ROS output, and positively regulated biofilmformation together with the lm.G_1771gene. There was a synergisticeffect in oxidative stress resistance between SOD and lm.G_1771.
     4. Influence of methyl violet (MV) inducing ROS production onbiofilm formation. The biofilm formation capabilities of five serotypes often wild-type L. monocytogenes strains in TSB were compared with inTSB+MV. Results showed that1mM MV obviously inhibited biofilmformation and cell clustering on the sheet glasses, showing that ROS wentagainst biofilm formation, which provided an evidence for the hypothesisthat SOD regulated biofilm formation by suppressing ROS.
     5. Two-dimensional electrophoresis (2-DE) and mass spectrometrywere conducted to identify proteins regulated by SOD.2-DE protein gel images were analysed by PDQuest8.0software to identify differentialprotein spots. As a result,14differentially spots with at least2-foldchange in intensity were identified, of which10were down-regulated and4up-regulated in Δsod. The down-regulated proteins were some enzymesinvolved in cell regulator, metabolism, growth and stress response. Theup-regulated proteins were enzymes related to metabolism and cell wallsynthesis. Part of these differential proteins played important roles inbiofilm formation. These results indicate the action mechanism of sod ingrowth and resistance and the action pathway of SOD positivelyregulating biofilm formation.
     6. RT-qPCR was conducted to analyze the expression of theanti-oxidative related genes in the deletion mutants both in biofilm andplanktonic cells. The anti-oxidative related genes studied in this thesiswere divided into three classes: direct participants for antioxidation suchas kat and fri, regulators (perR and sigB) for stress response regulatingthe expression of anti-oxidative genes, and genes involved in repairingDNA damage caused by oxidization such as recA. The following resultswere obtained in this section.(1) In planktonic cells, the expression levelsof antioxidative genes and regulators were lower in Δ1771and Δsod thanin the wild-type G, showing that both lm.G_1771and sod genespositively regulated these antioxidative genes and did not influence theexpression of recA. The expression level of recA was obviously increased in Δ1771Δsod. Because recA could activate SOS, it was suggested thatsod and lm.G_1771played important roles together in maintaining cellnormal growth.(2) Biofilm formation caused the up-regulation of partialantioxidative genes, especially in Δsod, showing that biofilm formationcontributed to repairing antioxdative capacity in antioxidation deficientstrains.(3) MV could stimulate L. monocytogenes cells to generate excessendogenous ROS. Under MV treatment, the expressions of allabove-mentioned genes were up-regulated in the wild type G, indicatingthat the adaptive mechanism to oxidative stress generated in biofilmformation was more complicated than that caused by the stimulation ofonly oxidant.
     In conclusion, biofilm formation can be restrained by ROS, and someanti-oxidative stress related genes were involved in biofilm formation.SOD participates in cellular detoxification and protects microorganismsagainst ROS by organism metabolism. The expression of some enzymesrelated to resistance, metabolism and growth was influenced by SOD. Inaddition, the expression of SOD was influenced by lm.G_1771, and thetwo genes showed synergistic effects on oxidative stress resistance. Theseresults indicate that SOD together with an ABC transporter coded bylm.G_1771influences biofilm formation, and they play important roles inbiofilm formation.
引文
[1]. Dongou, L. Handbook of Listeria monocytogenes. In CRC Press.: London, United Kingdom,2008:3-27.
    [2]. Swaminathan, B.,Gerner-Smidt, P. The epidemiology of human listeriosis[J]. Microbes andInfection,2007,9(10):1236-1243.
    [3]. Tompkin, R. Control of Listeria monocytogenes in the food-processing environment[J].Journal of Food Protection,2002,65(4):709-725.
    [4]. Robbins, J. B.,Fisher, C. W.,Moltz, A. G., etc. Elimination of Listeria monocytogenesbiofilms by ozone, chlorine, and hydrogen peroxide[J]. Journal of Food Protection,2005,68(3):494-8.
    [5]. Kumar, C. G.,Anand, S. K. Significance of microbial biofilms in food industry: a review[J].International Journal of Food Microbiology,1998,42(1-2):9-27.
    [6]. Kyle, J. A. Listeriosis: An Overview[J]. US Pharm,2012,37(8):38-41.
    [7]. Farber, J.,Peterkin, P. Listeria monocytogenes, a food-borne pathogen[J]. MicrobiologicalReviews,1991,55(3):476.
    [8]. Wagner, M.,Auer, B.,Trittremmel, C., etc. Survey on the Listeria Contamination ofReady-to-Eat Food Products and Household Environments in Vienna, Austria[J]. Zoonoses andPublic Health,2007,54(1):16-22.
    [9].靳晓燕,韩军,于宏伟,等.食品中单核增生性李斯特菌(Listeria monocytogenes)污染状况研究[J].中国食品学报,2009,(1):226-231.
    [10].Wiedmann, M.,Bruce, J. L.,Knorr, R., etc. Ribotype diversity of Listeria monocytogenesstrains associated with outbreaks of listeriosis in ruminants[J]. Journal of Clinical Microbiology,1996,34(5):1086-1090.
    [11]. Wiedmann, M.,Bruce, J. L.,Keating, C., etc. Ribotypes and virulence gene polymorphismssuggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential[J].Infection and Immunity,1997,65(7):2707-2716.
    [12].Liu, D. Identification, subtyping and virulence determination of Listeria monocytogenes, animportant foodborne pathogen[J]. Journal of Medical Microbiology,2006,55(6):645-659.
    [13].Rocourt, J.,Bille, J. Foodborne listeriosis[J]. World Health Statistics Quarterly. RapportTrimestriel de Statistiques Sanitaires Mondiales,1997,50(1-2):67.
    [14].Gellin, B. G.,Broome, C. V. Listeriosis[J]. JAMA,1989,261(9):1313-20.
    [15].McLauchlin, J.,Audurier, A.,Taylor, A. G. Aspects of the epidemiology of human Listeriamonocytogenes infections in Britain1967-1984; the use of serotyping and phage typing[J]. Journalof Medical Microbiology,1986,22(4):367-77.
    [16].Cossart, P.,Toledo-Arana, A. Listeria monocytogenes, a unique model in infection biology: anoverview[J]. Microbes and Infection,2008,10(9):1041-1050.
    [17].Takhistov, P.,George, B. Linearized kinetic model of Listeria monocytogenes biofilmgrowth[J]. Bioprocess and Biosystems Engineering,2004,26(4):259-70.
    [18].Vu, B.,Chen, M.,Crawford, R. J., etc. Bacterial extracellular polysaccharides involved inbiofilm formation[J]. Molecules,2009,14(7):2535-2554.
    [19].Stoodley, P.,Sauer, K.,Davies, D., etc. Biofilms as complex differentiated communities[J].Annual Reviews in Microbiology,2002,56(1):187-209.
    [20].Palmer, J.,Flint, S.,Brooks, J. Bacterial cell attachment, the beginning of a biofilm[J]. Journalof Industrial Microbiology&Biotechnology,2007,34(9):577-588.
    [21].Carpentier, B.,Cerf, O. Biofilms and their consequences, with particular reference to hygienein the food industry[J]. Journal of Applied Microbiology,2008,75(6):499-511.
    [22].Gilbert, P.,Evans, D.,Evans, E., etc. Surface characteristics and adhesion of Escherichia coliand Staphylococcus epidermidis[J]. Journal of Applied Microbiology,1991,71(1):72-77.
    [23].Van Loosdrecht, M.,Lyklema, J.,Norde, W., etc. Electrophoretic mobility and hydrophobicityas a measured to predict the initial steps of bacterial adhesion[J]. Applied and EnvironmentalMicrobiology,1987,53(8):1898-1901.
    [24].Marshall, K.,Stout, R.,Mitchell, R. Mechanism of the initial events in the sorption of marinebacteria to surfaces[J]. Journal of General Microbiology,1971,68(3):337-348.
    [25].Dunne, W. M. Bacterial adhesion: seen any good biofilms lately?[J]. Clinical MicrobiologyReviews,2002,15(2):155-166.
    [26].Poortinga, A. T.,Bos, R.,Busscher, H. J. Charge transfer during staphylococcal adhesion toTiNOX coatings with different specific resistivity[J]. Biophysical Chemistry,2001,91(3):273-279.
    [27].Busscher, H. J.,Weerkamp, A. H. Specific and non-specific interactions in bacterial adhesionto solid substrata[J]. FEMS Microbiology Letters,1987,46(2):165-173.
    [28].Meinders, J.,Van der Mei, H.,Busscher, H. Deposition efficiency and reversibility of bacterialadhesion under flow[J]. Journal of Colloid and Interface Science,1995,176(2):329-341.
    [29].Flint, S.,Brooks, J.,Bremer, P. Properties of the stainless steel substrate, influencing theadhesion of thermo-resistant streptococci[J]. Journal of Food Engineering,2000,43(4):235-242.
    [30].Schwab, U.,Hu, Y.,Wiedmann, M., etc. Alternative sigma factor sigmaB is not essential forListeria monocytogenes surface attachment[J]. Journal of Food Protection,2005,68(2):311-317.
    [31].Vadillo-Rodr g uez, V.,Busscher, H. J.,Norde, W., etc. Atomic force microscopic corroborationof bond aging for adhesion of Streptococcus thermophilus to solid substrata[J]. Journal of Colloidand Interface Science,2004,278(1):251-254.
    [32].Flint, S.,Brooks, J.,Bremer, P. The influence of cell surface properties of thermophilicstreptococci on attachment to stainlesssteel[J]. Journal of Applied Microbiology,1997,83(4):508-517.
    [33].Doyle, R.,Rosenberg, M.,Drake, D. Hydrophobicity of oral bacteria[J].1990.
    [34].Davies, D. G. Physiological events in biofilm formation[A]. In2000;37-52.
    [35].Paul, J. H.,Jeffrey, W. H. Evidence for separate adhesion mechanisms for hydrophilic andhydrophobic surfaces in Vibrio proteolytica[J]. Applied and Environmental Microbiology,1985,50(2):431-437.
    [36].Kannenberg, E. L.,Carlson, R. W. Lipid A and O-chain modifications cause Rhizobiumlipopolysaccharides to become hydrophobic during bacteroid development[J]. MolecularMicrobiology,2001,39(2):379-392.
    [37].Arnold, J.,Bailey, G. Surface finishes on stainless steel reduce bacterial attachment and earlybiofilm formation: scanning electron and atomic force microscopy study[J]. Poultry Science,2000,79(12):1839-1845.
    [38].Parkar, S.,Flint, S.,Brooks, J. Physiology of biofilms of thermophilic bacilli-potentialconsequences for cleaning[J]. Journal of Industrial Microbiology&Biotechnology,2003,30(9):553-560.
    [39].Mandrell, R.,Gorski, L.,Brandl, M., etc. Attachment of microorganisms to fresh produce[J].Microbiology of Fruits and Vegetables,2006,33-73.
    [40].Barak, J. D.,Gorski, L.,Naraghi-Arani, P., etc. Salmonella enterica virulence genes arerequired for bacterial attachment to plant tissue[J]. Applied and Environmental Microbiology,2005,71(10):5685-5691.
    [41].Barak, J. D.,Jahn, C. E.,Gibson, D. L., etc. The role of cellulose and O-antigen capsule in thecolonization of plants by Salmonella enterica[J]. Molecular Plant-Microbe Interactions,2007,20(9):1083-1091.
    [42].Patel, J.,Sharma, M.,Ravishakar, S. Effect of curli expression and hydrophobicity ofEscherichia coli O157: H7on attachment to fresh produce surfaces[J]. Journal of AppliedMicrobiology,2011,110(3):737-745.
    [43].Ryu, J. H.,Beuchat, L. R. Biofilm formation by Escherichia coli O157: H7on stainless steel:effect of exopolysaccharide and curli production on its resistance to chlorine[J]. Applied andEnvironmental Microbiology,2005,71(1):247-254.
    [44].Han, Y.,Sherman, D.,Linton, R., etc. The effects of washing and chlorine dioxide gas onsurvival and attachment of Escherichia coli O157: H7to green pepper surfaces[J]. FoodMicrobiology,2000,17(5):521-533.
    [45].Reina, L. D.,Fleming, H. P.,Breidt, J. F. Bacterial contamination of cucumber fruit throughadhesion[J]. Journal of Food Protection,2002,65(12):1881-1887.
    [46].Jayaraman, A.,Wood, T. K. Bacterial quorum sensing: signals, circuits, and implications forbiofilms and disease[J]. Annual Review of Biomedical Engineering,2008,10145-167.
    [47].Dickschat, J. S. Quorum sensing and bacterial biofilms[J]. Natural Product Reports,2010,27(3):343-369.
    [48].O'Toole, G.,Kaplan, H. B.,Kolter, R. Biofilm formation as microbial development[J]. AnnualReviews in Microbiology,2000,54(1):49-79.
    [49].Clarke, M. B.,Hughes, D. T.,Zhu, C., etc. The QseC sensor kinase: a bacterial adrenergicreceptor[J]. Proceedings of the National Academy of Sciences,2006,103(27):10420-10425.
    [50].Novick, R. P. Autoinduction and signal transduction in the regulation of staphylococcalvirulence[J]. Molecular Microbiology,2003,48(6):1429-1449.
    [51].Lyon, G. J.,Novick, R. P. Peptide signaling in Staphylococcus aureus and other Gram-positivebacteria[J]. Peptides,2004,25(9):1389-1403.
    [52].Li, Y. H.,Lau, P. C. Y.,Lee, J. H., etc. Natural genetic transformation of Streptococcus mutansgrowing in biofilms[J]. Journal of Bacteriology,2001,183(3):897-908.
    [53].Vuong, C.,Saenz, H. L.,G tz, F., etc. Impact of the agr quorum-sensing system on adherenceto polystyrene in Staphylococcus aureus[J]. Journal of Infectious Diseases,2000,182(6):1688-1693.
    [54].Pei, D.,Zhu, J. Mechanism of action of S-ribosylhomocysteinase (LuxS)[J]. Current Opinionin Chemical Biology,2004,8(5):492-497.
    [55].Bassler, B. L.,Wright, M.,Silverman, M. R. Multiple signalling systems controllingexpression of luminescence in Vibrio harveyi: sequence and function of genes encoding a secondsensory pathway[J]. Molecular Microbiology,1994,13(2):273-286.
    [56].Taga, M. E.,Semmelhack, J. L.,Bassler, B. L. The LuxS-dependent autoinducer AI-2controlsthe expression of an ABC transporter that functions in AI-2uptake in Salmonella typhimurium[J].Molecular Microbiology,2008,42(3):777-793.
    [57].Rickard, A. H.,Palmer, R. J.,Blehert, D. S., etc. Autoinducer2: a concentration-dependentsignal for mutualistic bacterial biofilm growth[J]. Molecular Microbiology,2006,60(6):1446-1456.
    [58].McNab, R.,Ford, S. K.,El-Sabaeny, A., etc. LuxS-based signaling in Streptococcus gordonii:autoinducer2controls carbohydrate metabolism and biofilm formation with Porphyromonasgingivalis[J]. Journal of Bacteriology,2003,185(1):274-284.
    [59].Barrios, A. F. G.,Zuo, R.,Hashimoto, Y., etc. Autoinducer2controls biofilm formation inEscherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022)[J]. Journal ofBacteriology,2006,188(1):305-316.
    [60].Jahid, I. K.,Ha, S. D. A review of microbial biofilms of produce: Future challenge to foodsafety[J]. Food Science and Biotechnology,2012,21(2):299-316.
    [61].Flemming, H. C.,Neu, T. R.,Wozniak, D. J. The EPS matrix: the “house of biofilm cells”[J].Journal of Bacteriology,2007,189(22):7945-7947.
    [62].Wingender, J.,Neu, T. R.,Flemming, H. C. Microbial extracellular polymeric substances:characterization, structure, and function.New York, USA: Springer Verlag,1999:2-9.
    [63].Kreft, J. U.,Wimpenny, J. W. T. Effect of EPS on biofilm structure and function as revealedby an individual-based model of biofilm growth[J]. Water Science and Technology,2001,43(6):135-142.
    [64].Hunt, S. M.,Werner, E. M.,Huang, B., etc. Hypothesis for the role of nutrient starvation inbiofilm detachment[J]. Applied and Environmental Microbiology,2004,70(12):7418-7425.
    [65].Hentzer, M.,Riedel, K.,Rasmussen, T. B., etc. Inhibition of quorum sensing in Pseudomonasaeruginosa biofilm bacteria by a halogenated furanone compound[J]. Microbiology,2002,148(1):87-102.
    [66].Davies, D. G.,Parsek, M. R.,Pearson, J. P., etc. The involvement of cell-to-cell signals in thedevelopment of a bacterial biofilm[J]. Science,1998,280(5361):295-298.
    [67].Davey, M. E.,O'toole, G. A. Microbial biofilms: from ecology to molecular genetics[J].Microbiology and Molecular Biology Reviews,2000,64(4):847-867.
    [68].Gibson, H.,Taylor, J.,Hall, K., etc. Effectiveness of cleaning techniques used in the foodindustry in terms of the removal of bacterial biofilms[J]. Journal of Applied Microbiology,2001,87(1):41-48.
    [69].Davies, D. Understanding biofilm resistance to antibacterial agents[J]. Nature Reviews DrugDiscovery,2003,2(2):114-122.
    [70].Toté, K.,Horemans, T.,Berghe, D. V., etc. Inhibitory effect of biocides on the viable massesand matrices of Staphylococcus aureus and Pseudomonas aeruginosa biofilms[J]. Applied andEnvironmental Microbiology,2010,76(10):3135-3142.
    [71].Larsen, P.,Nielsen, J. L.,Dueholm, M. S., etc. Amyloid adhesins are abundant in naturalbiofilms[J]. Environmental Microbiology,2007,9(12):3077-3090.
    [72].Ahimou, F.,Semmens, M. J.,Haugstad, G., etc. Effect of protein, polysaccharide, and oxygenconcentration profiles on biofilm cohesiveness[J]. Applied and Environmental Microbiology,2007,73(9):2905-2910.
    [73].Boles, B. R.,Singh, P. K. Endogenous oxidative stress produces diversity and adaptability inbiofilm communities[J]. Proceedings of the National Academy of Sciences,2008,105(34):12503-12508.
    [74].Stewart, P. S.,Franklin, M. J. Physiological heterogeneity in biofilms[J]. Nature ReviewsMicrobiology,2008,6(3):199-210.
    [75].Walters III, M. C.,Roe, F.,Bugnicourt, A., etc. Contributions of antibiotic penetration, oxygenlimitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms tociprofloxacin and tobramycin[J]. Antimicrobial Agents and Chemotherapy,2003,47(1):317-323.
    [76].Rani, S. A.,Pitts, B.,Beyenal, H., etc. Spatial patterns of DNA replication, protein synthesis,and oxygen concentration within bacterial biofilms reveal diverse physiological states[J]. Journalof Bacteriology,2007,189(11):4223-4233.
    [77].Molin, S.,Tolker-Nielsen, T. Gene transfer occurs with enhanced efficiency in biofilms andinduces enhanced stabilisation of the biofilm structure[J]. Current Opinion in Biotechnology,2003,14(3):255-261.
    [78].Reisner, A.,H ller, B. M.,Molin, S., etc. Synergistic effects in mixed Escherichia colibiofilms: conjugative plasmid transfer drives biofilm expansion[J]. Journal of Bacteriology,2006,188(10):3582-3588.
    [79].Gilbert, P.,Allison, D.,McBain, A. Biofilms in vitro and in vivo: do singular mechanismsimply cross-resistance?[J]. Journal of Applied Microbiology,2002,92(s1):98S-110S.
    [80].Langsrud, S.,Sidhu, M. S.,Heir, E., etc. Bacterial disinfectant resistance-a challenge for thefood industry[J]. International Biodeterioration&Biodegradation,2003,51(4):283-290.
    [81].Lewis, K. Persister cells and the riddle of biofilm survival[J]. Biochemistry (Moscow),2005,70(2):267-274.
    [82].Lewis, K. Persister cells[J]. Annual Review of Microbiology,2010,64357-372.
    [83].Keren, I.,Shah, D.,Spoering, A., etc. Specialized persister cells and the mechanism ofmultidrug tolerance in Escherichia coli[J]. Journal of Bacteriology,2004,186(24):8172-8180.
    [84].Lewis, K. Persister cells, dormancy and infectious disease[J]. Nature Reviews Microbiology,2006,5(1):48-56.
    [85].Angst, E. The fouling of ships bottoms by bacteria. United State Navy Department:Washington, DC,1923.
    [86].Duguid, J. P.,Anderson, E. S.,Campbell, I. Fimbriae and adhesive properties inSalmonellae[J]. The Journal of Pathology and Bacteriology,1966,92(1):107-138.
    [87].Herald, P. J.,Zoottola, E. A. Attachment of Listeria monocytogenes to stainless steel surfacesat various temperatures and pH values.[J]. Journal of Food Science,1988,53(5):1549-1562.
    [88].Rieu, A.,Briandet, R.,Habimana, O., etc. Listeria monocytogenes EGD-e biofilms: nomushrooms but a network of knitted chains[J]. Applied Environmental Microbiology,2008,74(14):4491-4497.
    [89].Kim, Y. H.,Lee, Y.,Kim, S., etc. The role of periplasmic antioxidant enzymes (superoxidedismutase and thiol peroxidase) of the Shiga toxin-producing Escherichia coli O157: H7in theformation of biofilms[J]. Proteomics,2006,6(23):6181-6193.
    [90].An, Y.,Friedman, R. Handbook of bacterial adhesion: principles, methods, and application.US: Humana Press,2000.
    [91].Blackman, I.,Frank, J. Growth of Listeria monocytogenes as a biofilm on variousfood-processing surfaces[J]. Journal of Food Protection,1996,59(8):827-831.
    [92].Djordjevic, D.,Wiedmann, M.,McLandsborough, L. A. Microtiter plate assay for assessmentof Listeria monocytogenes biofilm formation[J]. Applied Environment Microbiology,2002,68(6):2950-8.
    [93].Marsh, E. J.,Luo, H.,Wang, H. A three-tiered approach to differentiate Listeriamonocytogenes biofilm-forming abilities[J]. FEMS Microbiology Letters,2003,228(2):203-10.
    [94].Kalmokoff, M. L.,Austin, J. W.,Wan, X. D., etc. Adsorption, attachment and biofilmformation among isolates of Listeria monocytogenes using model conditions[J]. Journal ofApplied Microbiology,2001,91(4):725-734.
    [95].Chae, M. S.,Schraft, H. Comparative evaluation of adhesion and biofilm formation ofdifferent Listeria monocytogenes strains[J]. International Journal of Food Microbiology,2000,62(1-2):103-111.
    [96].Kolodkin-Gal, I.,Romero, D.,Cao, S., etc. D-amino acids trigger biofilm disassembly[J].Science Signalling,2010,328(5978):627.
    [97].Branda, S. S.,Vik,.,Friedman, L., etc. Biofilms: the matrix revisited[J]. Trends inMicrobiology,2005,13(1):20-26.
    [98].Borucki, M. K.,Peppin, J. D.,White, D., etc. Variation in biofilm formation among strains ofListeria monocytogenes[J]. Applied and environmental microbiology, Dec,2003,69(12):7336-7342.
    [99].Folsom, J. P.,Siragusa, G. R.,Frank, J. F. Formation of biofilm at different nutrient levels byvarious genotypes of Listeria monocytogenes[J]. Journal of food protection,2006,69(4):826-834.
    [100]. Bryers, J. D. Biofilm formation and persistence[J]. In: Biofilms Ⅱ: Process analysis andapplication,2000,45-88.
    [101]. Baker, J. Factors affecting the bacterial colonization of various surfaces in a river[J].Canadian Journal of Microbiology/Revue Canadienne de Microbiologie,1984,30(4):511-515.
    [102]. Bos, R.,van der Mei, H. C.,Gold, J., etc. Retention of bacteria on a substratum surfacewith micro-patterned hydrophobicity[J]. FEMS Microbiology Letters,2000,189(2):311-5.
    [103]. Beresford, M.,Andrew, P.,Shama, G. Listeria monocytogenes adheres to many materialsfound in food-processing environments[J]. Journal of Applied Microbiology,2001,90(6):1000-1005.
    [104]. Smoot, L.,Pierson, M. Influence of environmental stress on the kinetics and strength ofattachment of Listeria monocytogenes Scott A to Buna-N rubber and stainless steel[J]. Journal ofFood Protection,1998,61(10):1286-1292.
    [105]. Mustapha, A.,Liewen, M. B. Destruction of Listeria monocytogenes by sodiumhypochlorite and quaternary ammonium sanitizers[J]. Journal of food protection1989,52(5):306-311.
    [106]. Moltz, A. G. Formation of biofilms by Listeria monocytogenes under various growthconditions[J]. Journal of Food Protection,2005,68(1):92-97.
    [107]. Di Bonaventura, G.,Piccolomini, R.,Paludi, D., etc. Influence of temperature on biofilmformation by Listeria monocytogenes on various food-contact surfaces: relationship with motilityand cell surface hydrophobicity[J]. Journal of Applied Microbiology,2008,104(6):1552-1561.
    [108]. Zameer, F.,Gopal, S.,Krohne, G., etc. Development of a biofilm model for Listeriamonocytogenes EGD-e[J]. World Journal of Microbiology and Biotechnology,2010,26(6):1143-1147.
    [109]. Briandet, R.,Meylheuc, T.,Maher, C., etc. Listeria monocytogenes Scott A: cell surfacecharge, hydrophobicity, and electron donor and acceptor characteristics under differentenvironmental growth conditions[J]. Applied and Environmental Microbiology,1999,65(12):5328-5333.
    [110]. Tresse, O.,Lebret, V.,Benezech, T., etc. Comparative evaluation of adhesion, surfaceproperties, and surface protein composition of Listeria monocytogenes strains after cultivation atconstant pH of5and7[J]. Journal of Applied Microbiology,2006,101(1):53-62.
    [111]. Caly, D.,Takilt, D.,Lebret, V., etc. Sodium chloride affects Listeria monocytogenesadhesion to polystyrene and stainless steel by regulating flagella expression[J]. Letters in AppliedMicrobiology,2009,49(6):751-756.
    [112]. Pan, Y.,Breidt Jr, F.,Gorski, L. Synergistic effects of sodium chloride, glucose, andtemperature on biofilm formation by Listeria monocytogenes serotype1/2a and4b strains[J].Applied and Environmental Microbiology,2010,76(5):1433-1441.
    [113]. Kim, K.,Frank, J. Effect of nutrients on biofilm formation by Listeria monocytogenes onstainless steel[J]. Journal of Food Protection,1995,58(1):24-28.
    [114]. Zhao, T.,Doyle, M. P.,Zhao, P. Control of Listeria monocytogenes in a biofilm bycompetitive inhibition bacteria[J]. Abstracts of the General Meeting of the American Society forMicrobiology,2003,103p-011.
    [115]. Hassan, A. N.,Birt, D. M.,Frank, J. F. Behavior of Listeria monocytogenes in aPseudomonas putida biofilm on a condensate-forming surface[J]. Journal of Food Protection,2004,67(2):322-7.
    [116]. Chang, Y.,Gu, W.,Fischer, N., etc. Identification of genes involved in Listeriamonocytogenes biofilm formation by mariner-based transposon mutagenesis[J]. Appliedmicrobiology and biotechnology,2012,1-12.
    [117].陈永辉,史贤明.利用转座子Tn917构建单核细胞增生李斯特菌菌膜形成突变株[J].微生物学报,2005,45(6):952-954.
    [118]. Zhu, X.,Long, F.,Chen, Y., etc. A putative ABC transporter is involved in negativeregulation of biofilm formation by Listeria monocytogenes[J]. Applied and EnvironmentalMicrobiology,2008,74(24):7675-7683.
    [119]. Jordan, S. J.,Perni, S.,Glenn, S., etc. Listeria monocytogenes biofilm-associated protein(BapL) may contribute to surface attachment of L-monocytogenes but is absent from many fieldisolates[J]. Applied and environmental microbiology,2008,74(17):5451-5456.
    [120]. Riedel, C. U.,Monk, I. R.,Casey, P. G., etc. AgrD-dependent quorum sensing affectsbiofilm formation, invasion, virulence and global gene expression profiles in Listeriamonocytogenes[J]. Molecular Microbiology,2009,71(5):1177-1189.
    [121]. Challan Belval, S.,Gal, L.,Margiewes, S., etc. Assessment of the roles of LuxS,S-ribosyl homocysteine, and autoinducer2in cell attachment during biofilm formation by Listeriamonocytogenes EGD-e[J]. Appllied and Environmental Microbiology,2006,72(4):2644-2650.
    [122]. Kumar, S.,Parvathi, A.,George, J., etc. A study on the effects of some laboratory-derivedgenetic mutations on biofilm formation by Listeria monocytogenes[J]. World J Microb Biot,2009,25(3):527-531.
    [123]. Tremoulet, F.,Duche, O.,Namane, A., etc. Comparison of protein patterns of Listeriamonocytogenes grown in biofilm or in planktonic mode by proteomic analysis[J]. FEMSMicrobiology Letters,2002,210(1):25-31.
    [124]. Helloin, E.,J nsch, L.,Phan‐Thanh, L. Carbon starvation survival of Listeriamonocytogenes in planktonic state and in biofilm: a proteomic study[J]. Proteomics,2003,3(10):2052-2064.
    [125]. Storz, G.,Imlayt, J. A. Oxidative stress[J]. Current Opinion in Microbiology,1999,2(2):188-194.
    [126]. González-Flecha, B.,Demple, B. Metabolic sources of hydrogen peroxide in aerobicallygrowing Escherichia coli[J]. Journal of Biological Chemistry,1995,270(23):13681-13687.
    [127]. Cabiscol, E.,Tamarit, J.,Ros, J. Oxidative stress in bacteria and protein damage byreactive oxygen species[J]. International Microbiology,2000,3(1):3-8.
    [128]. De Beer, D.,Stoodley, P.,Roe, F., etc. Effects of biofilm structures on oxygen distributionand mass transport[J]. Biotechnology and Bioengineering,2004,43(11):1131-1138.
    [129]. Stoodley, P.,Lewandowski, Z. Liquid flow in biofilm systems[J]. Applied andEnvironmental Microbiology,1994,60(8):2711-2716.
    [130]. Costerton, J. W.,Lewandowski, Z.,Caldwell, D. E., etc. Microbial biofilms[J]. AnnualReviews in Microbiology,1995,49(1):711-745.
    [131]. Siegrist, H.,Gujer, W. Mass transfer mechanisms in a heterotrophic biofilm[J]. WaterResearch,1985,19(11):1369-1378.
    [132]. Humphries, K. M.,Szweda, L. I. Selective inactivation of α-ketoglutarate dehydrogenaseand pyruvate dehydrogenase: reaction of lipoic acid with4-hydroxy-2-nonenal[J]. Biochemistry,1998,37(45):15835-15841.
    [133]. Sies, H.,Menck, C. F. M. Singlet oxygen induced DNA damage[J]. MutationResearch/DNAging,1992,275(3):367-375.
    [134]. Lushchak, V. Oxidative stress and mechanisms of protection against it in bacteria[J].Biochemistry (Moscow),2001,66(5):476-489.
    [135]. Vasconcelos, J.,Deneer, H. G. Expression of superoxide dismutase in Listeriamonocytogenes[J]. Applied and Environmental Microbiology,1994,60(7):2360-2366.
    [136]. Clements, M. O.,Watson, S. P.,Foster, S. J. Characterization of the major superoxidedismutase of Staphylococcus aureus and its role in starvation survival, stress resistance, andpathogenicity[J]. Journal of Bacteriology,1999,181(13):3898-3903.
    [137]. Bollinger, N.,Hassett, D. J.,Iglewski, B. H., etc. Gene expression in Pseudomonasaeruginosa: evidence of iron override effects on quorum sensing and biofilm-specific generegulation[J]. Journal of Bacteriology,2001,183(6):1990-1996.
    [138]. Kirisits, M. J.,Prost, L.,Starkey, M., etc. Characterization of colony morphology variantsisolated from Pseudomonas aeruginosa biofilms[J]. Applied and Environmental Microbiology,2005,71(8):4809-4821.
    [139]. Boles, B. R.,Thoendel, M.,Singh, P. K. Self-generated diversity produces “insuranceeffects” in biofilm communities[J]. Proceedings of the National Academy of Sciences of theUnited States of America,2004,101(47):16630-16635.
    [140]. Yarwood, J. M.,Paquette, K. M.,Tikh, I. B., etc. Generation of virulence factor variantsin Staphylococcus aureus biofilms[J]. Journal of Bacteriology,2007,189(22):7961-7967.
    [141]. Park, S.,You, X.,Imlay, J. A. Substantial DNA damage from submicromolar intracellularhydrogen peroxide detected in Hpx-mutants of Escherichia coli[J]. Proceedings of the NationalAcademy of Sciences of the United States of America,2005,102(26):9317-9322.
    [142]. Arce Miranda, J. E.,Sotomayor, C. E.,Albesa, I., etc. Oxidative and nitrosative stress inStaphylococcus aureus biofilm[J]. FEMS Microbiology Letters,2011,315(1):23-29.
    [143]. Geier, H.,Mostowy, S.,Cangelosi, G. A., etc. Autoinducer-2triggers the oxidative stressresponse in Mycobacterium avium, leading to biofilm formation[J]. Applied and EnvironmentalMicrobiology,2008,74(6):1798.
    [144]. Schembri, M. A.,Kj rgaard, K.,Klemm, P. Global gene expression in Escherichia colibiofilms[J]. Molecular Microbiology,2003,48(1):253-267.
    [145]. Bitoun, J. P.,Nguyen, A. H.,Fan, Y., etc. Transcriptional repressor Rex is involved inregulation of oxidative stress response and biofilm formation by Streptococcus mutans[J]. FEMSMicrobiology Letters,2011,320(2):110-117.
    [146]. Ferreira, A.,O'Byrne, C. P.,Boor, K. J. Role of SigB in heat, ethanol, acid, and oxidativestress resistance and during carbon starvation in Listeria monocytogenes[J]. Applied andEnvironmental Microbiology,2001,67(10):4454-4457.
    [147]. van der Veen, S.,Abee, T. Importance of SigB for Listeria monocytogenes static andcontinuous-flow biofilm formation and disinfectant resistance[J]. Applied and EnvironmentalMicrobiology,2010,76(23):7854-7860.
    [148]. Zhu, X.,Liu, W.,Lametsch, R., etc. Phenotypic, proteomic, and genomic characterizationof a putative ABC transporter permease involved in Listeria monocytogenes biofilm formation[J].Foodborne Pathogens and Disease,2011,8(4):495-501.
    [149]. Gort, A. S.,Ferber, D. M.,Imlay, J. A. The regulation and role of the periplasmic copper,zinc superoxide dismutase of Escherichia coli[J]. Molecular Microbiology,2002,32(1):179-191.
    [150].朱欣娜.单核细胞增生李斯特菌菌膜形成相关基因的鉴定及功能分析[博士论文].上海:上海交通大学.2011.
    [151]. Sambrook, J.,Russell, D. W. Molecular cloning: a laboratory manual. USA: CSHL press.2001.
    [152].王镜岩,朱圣康,徐长法.生物化学(第三版).北京:高等教育出版社.2002:438
    [153]. Scott, P. T.,Rood, J. I. Electroporation-mediated transformation of lysostaphin-treatedClostridium perfringens[J]. Gene,1989,82(2):327-333.
    [154]. Holo, H.,Nes, I. F. High-frequency transformation, by electroporation, of Lactococcuslactis subsp. cremoris grown with glycine in osmotically stabilized media[J]. Applied andEnvironmental Microbiology,1989,55(12):3119-3123.
    [155]. Park, S. F.,Stewart, G. S. A. B. High-efficiency transformation of Listeriamonocytogenes by electroporation of penicillin-treated cells[J]. Gene,1990,94(1):129-132.
    [156]. Smith, K.,Youngman, P. Use of a new integrational vector to investigatecompartment-specific expression of the Bacillus subtilis spollM gene[J]. Biochimie,1992,74(7):705-711.
    [157]. Resch, A.,Rosenstein, R.,Nerz, C., etc. Differential gene expression profiling ofStaphylococcus aureus cultivated under biofilm and planktonic conditions[J]. Applied andEnvironmental Microbiology,2005,71(5):2663-2676.
    [158]. Aiassa, V.,Barnes, A. I.,Albesa, I. Resistance to ciprofloxacin by enhancement ofantioxidant defenses in biofilm and planktonic Proteus mirabilis[J]. Biochemical and BiophysicalResearch Communications,2010,393(1):84-88.
    [159]. Páez, P. L.,Becerra, M. C.,Albesa, I. Effect of the association of reduced glutathione andciprofloxacin on the antimicrobial activity in Staphylococcus aureus[J]. FEMS MicrobiologyLetters,2010,303(1):101-105.
    [160]. Bus, J. S.,Aust, S. D.,Gibson, J. E. Paraquat toxicity: proposed mechanism of actioninvolving lipid peroxidation[J]. Environmental Health Perspectives,1976,16139-146.
    [161]. Ueda, A.,Attila, C.,Whiteley, M., etc. Uracil influences quorum sensing and biofilmformation in Pseudomonas aeruginosa and fluorouracil is an antagonist[J]. MicrobialBiotechnology,2008,2(1):62-74.
    [162]. Hanawa, T.,Yamanishi, S.,Murayama, S., etc. Participation of DnaK in expression ofgenes involved in virulence of Listeria monocytogenes[J]. FEMS Microbiology Letters,2006,214(1):69-75.
    [163]. Hanawa, T.,Fukuda, M.,Kawakamis, H., etc. The Listeria monocytogenes DnaKchaperone is required for stress tolerance and efficient phagocytosis with macrophages[J]. Cellstress&Chaperones,1999,4(2):118.
    [164]. van der Veen, S.,Abee, T. HrcA and DnaK are important for static and continuous-flowbiofilm formation and disinfectant resistance in Listeria monocytogenes[J]. Microbiology,2010,156(12):3782-3790.
    [165]. Bukau, B.,Walker, G. C. Cellular defects caused by deletion of the Escherichia colidnaK gene indicate roles for heat shock protein in normal metabolism[J]. Journal of Bacteriology,1989,171(5):2337-2346.
    [166]. Singh, V. K.,Utaida, S.,Jackson, L. S., etc. Role for dnaK locus in tolerance of multiplestresses in Staphylococcus aureus[J]. Microbiology,2007,153(9):3162-3173.
    [167]. Singh, V. K.,Syring, M.,Singh, A., etc. An insight into the significance of the DnaK heatshock system in Staphylococcus aureus[J]. International Journal of Medical Microbiology,2012.
    [168]. Chaturongakul, S.,Boor, K. J. RsbT and RsbV contribute to σB-dependent survivalunder environmental, energy, and intracellular stress conditions in Listeria monocytogenes[J].Applied and Environmental Microbiology,2004,70(9):5349-5356.
    [169]. Benson, A. K.,Haldenwang, W. G. Bacillus subtilis sigma B is regulated by a bindingprotein (RsbW) that blocks its association with core RNA polymerase[J]. Proceedings of theNational Academy of Sciences,1993,90(6):2330-2334.
    [170]. Schulthess, B.,Bloes, D. A.,Fran ois, P., etc. The σB-dependent yabJ-spoVG operon isinvolved in the regulation of extracellular nuclease, lipase, and protease expression inStaphylococcus aureus[J]. Journal of Bacteriology,2011,193(18):4954-4962.
    [171]. Schulthess, B.,Meier, S.,Homerova, D., etc. Functional characterization of theσB-dependent yabJ-spoVG operon in Staphylococcus aureus: role in methicillin and glycopeptideresistance[J]. Antimicrobial Agents and Chemotherapy,2009,53(5):1832-1839.
    [172]. Elhanafi, D.,Dutta, V.,Kathariou, S. Genetic characterization of plasmid-associatedbenzalkonium chloride resistance determinants in a Listeria monocytogenes strain from the1998-1999outbreak[J]. Applied and Environmental Microbiology,2010,76(24):8231-8238.
    [173]. Mitchell, W. J.,Reizer, J.,Herring, C., etc. Identification of a phosphoenolpyruvate:fructose phosphotransferase system (fructose-1-phosphate forming) in Listeria monocytogenes[J].Journal of Bacteriology,1993,175(9):2758-2761.
    [174]. Saier Jr, M. H. Bacterial phosphoenolpyruvate: sugar phosphotransferase systems:structural, functional, and evolutionary interrelationships[J]. Bacteriological Reviews,1977,41(4):856.
    [175]. van de Velde, S.,Delaive, E.,Dieu, M., etc. Isolation and2-D-DIGE proteomic analysisof intracellular and extracellular forms of Listeria monocytogenes[J]. Proteomics,2009,9(24):5484-5496.
    [176]. Ramnath, M.,Beukes, M.,Tamura, K., etc. Absence of a putative mannose-specificphosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeriamonocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gelelectrophoresis[J]. Applied and Environmental Microbiology,2000,66(7):3098-3101.
    [177]. Atichartpongkul, S.,Loprasert, S.,Vattanaviboon, P., etc. Bacterial Ohr and OsmCparalogues define two protein families with distinct functions and patterns of expression[J].Microbiology,2001,147(7):1775-1782.
    [178]. Saikolappan, S.,Das, K.,Sasindran, S. J., etc. OsmC proteins of Mycobacteriumtuberculosis and Mycobacterium smegmatis protect against organic hydroperoxide stress[J].Tuberculosis,2011.
    [179]. Pfeifer, F. Distribution, formation and regulation of gas vesicles[J]. Nature ReviewsMicrobiology,2012.
    [180]. Mainguet, S. E.,Gakière, B.,Majira, A., etc. Uracil salvage is necessary for earlyArabidopsis development[J]. The Plant Journal,2009,60(2):280-291.
    [181]. Trotta, P. P.,Platzer, K. E. B.,Haschemeyer, R. H., etc. Glutamine-binding subunit ofglutamate synthase and partial reactions catalyzed by this glutamine amidotransferase[J].Proceedings of the National Academy of Sciences,1974,71(11):4607-4611.
    [182]. Meers, J.,Tempest, D.,Brown, C.‘Glutamine (amide):2-oxoglutarate amino transferaseoxido-reductase (NADP)’, an enzyme involved in the synthesis of glutamate by some bacteria[J].Journal of General Microbiology,1970,64(2):187-194.
    [183]. Hein, I.,Klinger, S.,Dooms, M., etc. Stress Survival Islet1(SSI-1) Survey in Listeriamonocytogenes Reveals an Insert Common to Listeria innocua in Sequence Type121L.monocytogenes Strains[J]. Applied and Environmental Microbiology,2011,77(6):2169-2173.
    [184]. Scapin, G.,Blanchard, J. S.,Sacchettini, J. C. Three-dimensional structure of Escherichiacoli dihydrodipicolinate reductase[J]. Biochemistry,1995,34(11):3502-3512.
    [185]. Lo Leggio, L.,Dal Degan, F.,Poulsen, P., etc. Crystallization and preliminary X-rayanalysis of maltose O-acetyltransferase[J]. Acta Crystallographica Section D: BiologicalCrystallography,2001,57(12):1915-1918.
    [186]. Rae, C. S.,Geissler, A.,Adamson, P. C., etc. Mutations of the Listeria monocytogenespeptidoglycan N-deacetylase and O-acetylase result in enhanced lysozyme sensitivity,bacteriolysis, and hyperinduction of innate immune pathways[J]. Infection and Immunity,2011,79(9):3596-3606.
    [187]. Chandu, D.,Nandi, D. Comparative genomics and functional roles of the ATP-dependentproteases Lon and Clp during cytosolic protein degradation[J]. Research in Microbiology,2004,155(9):710-719.
    [188]. Gaillot, O.,Pellegrini, E.,Bregenholt, S., etc. The ClpP serine protease is essential for theintracellular parasitism and virulence of Listeria monocytogenes[J]. Molecular Microbiology,2002,35(6):1286-1294.
    [189]. Frees, D.,Chastanet, A.,Qazi, S., etc. Clp ATPases are required for stress tolerance,intracellular replication and biofilm formation in Staphylococcus aureus[J]. MolecularMicrobiology,2004,54(5):1445-1462.
    [190]. Kajfasz, J. K.,Martinez, A. R.,Rivera-Ramos, I., etc. Role of Clp proteins in expressionof virulence properties of Streptococcus mutans[J]. Journal of Bacteriology,2009,191(7):2060-2068.
    [191]. Du, X.,Choi, I. G.,Kim, R., etc. Crystal structure of an intracellular protease fromPyrococcus horikoshii at2-resolution[J]. Proceedings of the National Academy of Sciences,2000,97(26):14079-14084.
    [192]. Abdallah, J.,Caldas, T.,Kthiri, F., etc. YhbO protects cells against multiple stresses[J].Journal of Bacteriology,2007,189(24):9140-9144.
    [193]. Rodríguez-Rojas, A.,Blázquez, J. The Pseudomonas aeruginosa pfpI gene plays anantimutator role and provides general stress protection[J]. Journal of Bacteriology,2009,191(3):844-850.
    [194]. Wemekamp-Kamphuis, H. H.,Wouters, J. A.,de Leeuw, P. P. L. A., etc. Identification ofsigma factor σB-controlled genes and their impact on acid stress, high hydrostatic pressure, andfreeze survival in Listeria monocytogenes EGD-e[J]. Applied and Environmental Microbiology,2004,70(6):3457-3466.
    [195]. Kazmierczak, M. J.,Mithoe, S. C.,Boor, K. J., etc. Listeria monocytogenes σB regulatesstress response and virulence functions[J]. Journal of Bacteriology,2003,185(19):5722-5734.
    [196]. Frederick, J. R.,Elkins, J. G.,Bollinger, N., etc. Factors affecting catalase expression inPseudomonas aeruginosa biofilms and planktonic cells[J]. Applied and EnvironmentalMicrobiology,2001,67(3):1375-1379.
    [197]. Hassett, D.,Charniga, L.,Bean, K., etc. Antioxidant defense mechanisms inPseudomonas aeruginosa: resistance to the redox-active antibiotic pyocyanin and demonstrationof a manganese-cofactored superoxide dismutase[J]. Infection and Immunity,1992,60328-336.
    [198]. Ma, J. F.,Ochsner, U. A.,Klotz, M. G., etc. Bacterioferritin A modulates catalase A (KatA)activity and resistance to hydrogen peroxide in Pseudomonas aeruginosa[J]. Journal ofBacteriology,1999,181(12):3730-3742.
    [199]. Martinez, A.,Kolter, R. Protection of DNA during oxidative stress by the nonspecificDNA-binding protein Dps[J]. Journal of Bacteriology,1997,179(16):5188-5194.
    [200]. Wolf, S. G.,Frenkiel, D.,Arad, T., etc. DNA protection by stress-inducedbiocrystallization[J]. Nature,1999,400(6739):83-85.
    [201]. Hébraud, M.,Guzzo, J. The main cold shock protein of Listeria monocytogenes belongsto the family of ferritin‐like proteins[J]. FEMS Microbiology Letters,2000,190(1):29-34.
    [202]. Liu, S.,Graham, J. E.,Bigelow, L., etc. Identification of Listeria monocytogenes genesexpressed in response to growth at low temperature[J]. Applied and Environmental Microbiology,2002,68(4):1697-1705.
    [203]. Phan‐Thanh, L.,Gormon, T. Analysis of heat and cold shock proteins in Listeria bytwo-dimensional electrophoresis[J]. Electrophoresis,1995,16(1):444-450.
    [204]. Polidoro, M.,De Biase, D.,Montagnini, B., etc. The expression of the dodecamericferritin in Listeria spp. is induced by iron limitation and stationary growth phase[J]. Gene,2002,296(1):121-128.
    [205]. Holmes, K.,Mulholland, F.,Pearson, B. M., etc. Campylobacter jejuni gene expression inresponse to iron limitation and the role of Fur[J]. Microbiology,2005,151(1):243-257.
    [206]. Sampathkumar, B.,Napper, S.,Carrillo, C. D., etc. Transcriptional and translationalexpression patterns associated with immobilized growth of Campylobacter jejuni[J]. Microbiology,2006,152(2):567-577.
    [207]. Messner, K. R.,Imlay, J. A. Mechanism of superoxide and hydrogen peroxide formationby fumarate reductase, succinate dehydrogenase, and aspartate oxidase[J]. Journal of BiologicalChemistry,2002,277(45):42563-42571.
    [208]. Fiorini, F.,Stefanini, S.,Valenti, P., etc. Transcription of the Listeria monocytogenes frigene is growth-phase dependent and is repressed directly by Fur, the ferric uptake regulator[J].Gene,2008,410(1):113-121.
    [209]. Mongkolsuk, S.,Helmann, J. D. Regulation of inducible peroxide stress responses[J].Molecular Microbiology,2002,45(1):9-15.
    [210]. Demple, B. Regulation of bacterial oxidative stress genes[J]. Annual Review of Genetics,1991,25(1):315-337.
    [211]. Fuangthong, M.,Herbig, A. F.,Bsat, N., etc. Regulation of the Bacillus subtilis fur andperR genes by PerR: not all members of the PerR regulon are peroxide inducible[J]. Journal ofBacteriology,2002,184(12):3276-3286.
    [212]. Helmann, J. D.,Wu, M. F. W.,Gaballa, A., etc. The global transcriptional response ofBacillus subtilis to peroxide stress is coordinated by three transcription factors[J]. Journal ofBacteriology,2003,185(1):243-253.
    [213]. Horsburgh, M. J.,Clements, M. O.,Crossley, H., etc. PerR controls oxidative stressresistance and iron storage proteins and is required for virulence in Staphylococcus aureus[J].Infection and Immunity,2001,69(6):3744-3754.
    [214]. Rea, R.,Hill, C.,Gahan, C. G. M. Listeria monocytogenes PerR mutants display asmall-colony phenotype, increased sensitivity to hydrogen peroxide, and significantly reducedmurine virulence[J]. Applied and Environmental Microbiology,2005,71(12):8314-8322.
    [215]. Rea, R. B.,Gahan, C. G. M.,Hill, C. Disruption of putative regulatory loci in Listeriamonocytogenes demonstrates a significant role for fur and perR in virulence[J]. Infection andImmunity, February,2004,72(2):717-727.
    [216]. Abram, F.,Starr, E.,Karatzas, K., etc. Identification of components of the sigma Bregulon in Listeria monocytogenes that contribute to acid and salt tolerance[J]. Applied andEnvironmental Microbiology,2008,74(22):6848.
    [217]. Ferreira, A.,O'Byrne, C. P.,Boor, K. J. Role of sigmaB in heat, ethanol, acid, andoxidative stress resistance and during carbon starvation in Listeria monocytogenes[J]. Applied andEnvironmental Microbiology, October,2001,67(10):4454-4457.
    [218]. Mostertz, J.,Hecker, M. Patterns of protein carbonylation following oxidative stress inwild-type and sigB Bacillus subtilis cells[J]. MGG Molecular Genetics and Genomics, August,2003,269(5):640-648.
    [219]. Olsen, K. N.,Larsen, M. H.,Gahan, C. G. M., etc. The Dps-like protein Fri of Listeriamonocytogenes promotes stress tolerance and intracellular multiplication in macrophage-likecells[J]. Microbiology, Mar,2005,151(Part3):925-933.
    [220]. Moorhead, S. M.,Dykes, G. A. The role of the sigB gene in the general stress response ofListeria monocytogenes varies between a strain of serotype1/2a and a strain of serotype4c[J].Current Microbiology, June,2003,46(6):461-466.
    [221]. Kuzminov, A. Unraveling the late stages of recombinational repair: metabolism of DNAjunctions in Escherichia coli[J]. BioEssays,1996,18(9):757-765.
    [222]. Schlacher, K.,Cox, M. M.,Woodgate, R., etc. RecA acts in trans to allow replication ofdamaged DNA by DNA polymerase V[J]. Nature,2006,442(7105):883-887.
    [223]. van der Veen, S.,Abee, T. Dependence of Continuous-Flow Biofilm Formation byListeria monocytogenes EGD-e on SOS Response Factor YneA[J]. Applied and EnvironmentalMicrobiology, Mar,2010,76(6):1992-1995.
    [224]. Farr, S. B.,D'Ari, R.,Touati, D. Oxygen-dependent mutagenesis in Escherichia colilacking superoxide dismutase[J]. Proceedings of the National Academy of Sciences,1986,83(21):8268-8272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700