基于像散原理的并行共焦微结构形貌检测系统及信息处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
并行共聚焦检测技术以其非接触、高精度、高分辨率、三维层析能力、非扫描的快速检测能力以及易于实现三维可视化测量的独特优势,使其能够在微结构表面形貌检测中发挥重要作用。近年来报道有多种形式的并行共聚焦检测系统,以实现非扫描的快速共焦测量,但多数应用领域仍局限于生物切片的观测,应用于微结构表面形貌检测的并行共焦检测系统的研究和开发都还处于基础理论与方法研究阶段,实现的测量精度离微结构形貌和轮廓要素检测的要求还有较大差距,仍未见应用于微结构表面形貌和轮廓要素检测的商品化仪器。
     学位论文选题“基于像散原理的并行共焦微结构形貌检测系统及信息处理技术研究”,来源于国家自然科学基金项目“基于并行像散共焦探测的微结构三维形貌测量技术基础研究(50775063)”。论文的研究重点是:①基于像散原理的并行共焦光学系统的三维光学衍射成像理论研究;②构建实验系统,通过仿真与实验验证理论研究结论的正确性;③研究开发被测微结构表面形貌三维信息萃取方法,实验评估系统的特性;④研究基于表面三维重构的微结构形貌可视化测量方法。研究工作对促进并行共焦检测技术的实用化具有理论意义和应用价值。
     本论文主要研究工作和取得的创新性成果如下:
     1.从光学三维相干成像理论出发,推导了基于像散原理的并行共焦系统相干衍射成像的数学模型,提出了基于远心光路的并行像散共焦检测系统的设计思路;证明了提高系统的放大倍率并选择两片相同的薄柱面镜组成像散镜组,并优化像散镜组参数,将有利于提高全场检测灵敏度和对称性、有利于确保全场检测特性的一致性;通过理论分析和仿真指出在基于像散原理的并行共焦检测系统中应避免对并行光束设置共同的光学限制,否则物面倾斜将严重干扰像散效应的正常发挥,引起检测特性畸变。
     2.基于实用性和可靠性的考量,确定了20倍系统放大:对系统进行了Zemax仿真,考察了系统横向和轴向特性,确定了系统的结构参数,证明了通过优化配置两柱面镜之间的距离,能够优化系统全场检测曲线灵敏度。
     3.设计并研制了实现全场并行测点正焦位置信息萃取的信息处理模块。提出采用先创建模板实现光场横向定位分割,再根据模板提供的光场横向位置等相关信息实现四象限差动光能统计的两步走策略;研究了“定点萃取”与“浮点萃取”两种正焦信息萃取算法,克服了被测物面几何特性造成的光场横向漂移,保证了测点正焦信息萃取的可靠性。
     4.进行了若干实验研究:①证实了当两柱面镜之间的距离为3.4mm时,全场检测曲线平均灵敏度得到优化(0.292/μm)、线性范围±2μm;②研究了图像预处理对全场检测曲线的改进作用:图像进行“暗化”处理,检测曲线过“零”灵敏度能够提高100%;图像的“非线性增强”处理对“零”点辨识精度有改进作用,实验获得的最佳效果是将测点正焦位置辨识精度提高了17%;③进行重复测量评估了检测曲线的稳定性,四象限差动光强统计值变动的全场平均标准差值在0.0030~0.0044之间,全场测点正焦位置辨识精度达到50nm。
     5.考虑到运算的便捷和曲面重构的高精度,选择双三次插值样条函数曲面作为三维重构的数学模型;建立了被测表面形貌、测点密度和重构精度的关系模型,即可根据要求的重构精度确定合理细分倍率,也可计算特定测量任务的重构误差;研究了“点拾取”和“要素拾取”两种鼠标拾取方式以满足不同测量任务的需求。
     论文的研究成果为并行像散共焦检测系统商品化提供了一些有价值的设计理念和设计方法,并在改善并行共焦检测系统性能、提高其分辨力和测量精度、增强系统适应性等方面做了一些有价值的探索,取得了一些宝贵的经验。
The technology of the parallel confocal detection has played an important role in the measurement the3-D profile of the micro-structure due to its good features, e.g. non-contact measurement, high accuracy and high resolution,3-D sectioning strength, rapid detection as well as easy to implement3-D visualization measurement. In recent years, reports indicate that various types of parallel confocal detecting systems which can execute the non-scanning confocal detecting have been emerging. But most of them have been restricted to inspection biological slices. The parallel confocal detecting systems which can be used to detecting the3-D profile of micro-structure still have been theoretical exploratory. There are still great gaps between the existing measurement accuracy for the3-D profile of micro-structure and claimed. And the corresponding commercial instruments still has not come out.
     The title of this dissertation is "Research on the Parallel Astigmatic Confocal Detecting System and its Information Processing Technology for Measurement the3-D Profile of Micro-structure", and comes from the People's Republic of China natural science fund project (Fundamental Research on Measurement the3D Profile of Micro-structure Based on the Detecting Principle of Parallel Astigmatic Confocal,50775063). The main points of the dissertation includes modeling on the3-D diffraction coherent imaging of the parallel confocal detecting system based on the astigmatic principle, building the experimental system and with which verifying the theoretical research results, researching the measured profile's3-D information extraction methods and by which the performances of the system are estimated, researching visualization method to measure the profile of microstructure based on3-D reconstruction, et al. The research work is significant and substantial in the theory and application to promote the practical application of parallel confocal detecting technologies.
     The main work and the originalities of the dissertation are as follows:
     1. According to3-D diffraction coherent imaging theory, the3-D diffraction coherent imaging mathematical models of the parallel confocal detecting system based on the astigmatic principle are derived. The dissertation proposes that the essential light path of the parallel confocal detecting system based on the astigmatic principle should conform to the telecentric light path, and proves that increasing system's magnification, selecting two exact uniform cylindrical thin lenses to form the astigmatic unit, optimizing the unit's parameters are good for raising the whole field detecting curves' sensitivity, symmetry, consistency and stability. Through theoretical analysis and simulation, the dissertation points out that a common optical limitation should not be set in the parallel confocal detecting system based on the astigmatic principle, otherwise the slope of the measured surface could disturb seriously astigmatic effect and result in obvious distortion of the detecting curves.
     2. In view of usability and reliability, the system's magnifying power is set20. Through the Zemax simulation, the system's transverse and axial performances are investigated and the system's structural parameters are determined. It is also proved that optimizing the distance between two cylindrical lenses can optimized the sensitivity of whole field detecting curves.
     3. Several primary algorithms that deal with extracting whole field parallel probing points' in-focus information have been designed and implemented. An effective in-focus information extraction strategy, first to create a data template and than to calculate whole field four-quadrant differential light statistics based on the template, has been proposed and executed. Two algorithms, i.e."fixed-point extracting" and "floating-point extracting" are proposed in order to remove the effect coming from parallel faculae's transverse drift and ensure whole field parallel probing points' in-focus position identification accuracy.
     4. Several experimental studies have been executed. The experiments prove that when the distance between the two cylindrical lenses is3.4mm, the average sensitivity of whole field detecting curves can reach0.292/μm, linearity range has been±2μm. Several image preprocessing methods are investigated to improve whole field detecting curves. The experiments also prove that "darkening" images can raise the sensitivity of detecting curves'100%and "nonlinear strengthening" images can decrease17%distinguishing errors of whole field probing points' in-focus position. By iterative measurements, the stability of whole field detecting curves is estimated, The standard deviations of the whole field four-quadrant differential light statistic are within0.0030-0.0044, which implies that the identification accuracy of whole field probing points'in-focus position can reach50nm.
     5. Taking the uncomplicated calculation and reconstruction accuracy into account, bi-cubic-spline interpolation curve surface fitting method is selected to reconstruct the measured profile of micro-structure. A model about the error between the triangular plane and local bi-cubic-spline interpolation curve surface is derived, which can be used to not only assess reconstruction accuracy for measured micro-structure but also estimate necessary subdivision rate to a specific micro-structure according to a given reconstruction accuracy. Two mouse pickup modes,"the point pickup" and "the feature pickup", are designed to make the system adapt easily different measurement tasks.
     The research results could have provided some valuable design ideas and methods for commercializing the parallel confocal detecting system. The author has accomplished several significant explorations within improving the performance, raising the resolving power and measurement accuracy as will as strengthening adaptability of the parallel confocal detecting system, and accumulated some rewarding experiences.
引文
[1]石庚辰,郝一龙.微机电系统技术基础[M].北京:中国电力出版社,2006.8
    [2]蒋建飞编著.纳米芯片学[M].上海交通大学出版社,2007.12
    [3]庞滔,郭大春,庞楠编.超精加工技术[M].北京:国防工业出版社,2000.8
    [4]黄向东,谭久彬.阵列式共焦显微系统超分辨特性的研究[J].光电子·激光,2006,17(1):28-31
    [5]王永红.基于全场并行共焦的检测技术与系统研究[D].合肥工业大学博士论文,2003.12
    [6]M. Naruse and M. Ishikawa. Parallel Confocal Laser Microscope System using Smart Pixel Arrays[A], Proc of SPIE[C],2000,4092:94-101
    [7]H. J. Tiziani, R. Achi, R. N. Krmen, et al. Theoretical analysis of confocal microscopy with microlenses[J]. Appl. Opt.1996,35(1):120-125
    [8]W. J. Tian, J. W. Yang, et al. New method for measuring the properties of optical systems with microoptic components[J]. Proc SPIE,1996,2899:263-268
    [9]M. Ishihara. High-speed 3-D shape measurement using a nonscanning multibeam confocal imaging system[A]. SII'97[C], Japanese,1997:315-318
    [10]张国雄.坐标测量技术发展方向[J].红外与激光工程,2008,37(增刊):1-5
    [11]陈治,高思田,卢明臻等.利用计量型原子力显微镜进行纳米台阶高度测量[J].纳米技术与精密工程,2008,6(4):288-292
    [12]高思田,叶孝佑,邵宏伟等.用于纳米级三维表面形貌及微小尺寸测量的原子力显微镜[J].制造技术与机床,2004(8):34-39
    [13]张红霞,张以谟,井文才.检测微表面形貌的Mirau相移干涉轮廓仪[J].天津大学学报,2005,35(5):377-380
    [14]James C Wyant. Advances in interferometric metrology[A]. SPIE[C].2002,4927:154-162
    [15]James C Wyant. White Light Interferometry[A]. SPIE[C].2002,4737:98-107
    [16]http://zygo.com.cn/products
    [17]刘卿卿,李海燕,浦昭邦.光学法表面形貌测量技术[J].光电技术应用,2008,23(2):33-40
    [18]杨春兰,浦昭邦,赵辉.几何光探针在表面形貌测量中的应用[J].激光杂志,2000,211(6):1-4
    [19]Kuang-Chao Fan, Yejin Chen, Weili Wang. Probe Technologies for Micro/Nano Measurements[A]. In Proc. Of the 7th IEEE International Conference on Nanotechnology[C], August 2-5,2007, HK,988-993
    [20][澳]顾M著,王桂英译.共焦扫描显微术的三维成像原理[M].北京:新时代出版社,2000
    [21]http://www.micro-epsilon.com.cn
    [22]http://www.keyence.com/
    [23]G.Jager, T.Hausotte, E.Manske, H.-J.Buchner, R.Mastylo, N.Dorozhovets, N.Hofmann. Nano measuring and nano positioning engineering[J]. Measurement,2010,43:1099-1105
    [24]JAGER Gerd, GRUNWALD Rainer, MANSKE Eberhard等.纳米定位测量机操作-测量结果[J].纳米技术与精密工程,2004,2(2):81-84
    [25]李海燕,张琢,浦昭邦等.共焦显微扫描探测技术的发展[J].光学技术,2008,34(1):94-97
    [26]Takashi S, YoshihikoW, Seiji Y, et al. Slit-scanning microscope with a high NA objective lens for analysis of synaptic function[A]. Proc SPIE IntSoc OptEng[C],2004,5322:108-113.
    [27]H. J. Tiziani, M. Wengner, D. Steudie. Confocal Principle for macro- and microscopic surface and defect analysis[J]. Optical Engineering,2000,39 (1):32-39
    [28]孔兵,王昭,谭玉山等.基于针孔阵列的多光束共焦三维测量系统[J].中国激光,2002,A29(3):263-266.
    [29]王永红,余晓芬,俞建卫等.基于像散的并行全场三维检测新方法[J].上海交通大学学报,2003,37(10):1548-1551
    [30]Minsky M, Microscopy apparatus, US Patent:3013467,1961.
    [31]Montgometry. the flying-spot monochromatic ultra-violet television microscope[J], Nature, 1956,177:172-176
    [32]C. J. R. Sheppard, T. Wilson. Depth of Field in the Scanning Microscopy[J]. Opt. Lett.1978, 3(3):11-117
    [33]T. Wilson. Confocal Microscopy[M]. London. Academic Press.1990:123-156
    [34]Koerter. C. J. scanning mirror microscope with optical sectioning characteristic. Appl Opt, 1980,19:1749-1757
    [35]宋登元.共焦激光扫描显微镜与应用[J].激光与红外,1998,28(1):19-22
    [36]英国Bio-Rad, http://cellscience.bio-rad.com/
    [37]日本Nikon, http://www.nikon-instruments.com/
    [38]日本Olympus, http://microscope.olympus.com/
    [39]德国Zeiss, http://www.zeiss.de/de/micro/home e.nsf
    [40]德国leica, http://www.confocal-microscopy.com/website/sc_llt.nsf
    [41]德国MICRO-EPSILON, http://www.micro-epsilon.com.cn
    [42]闫聚群,柳忠尧,林德教等.大台阶高度测量的外差共焦方法[J].中国激光,2005,32(3):389-393
    [43]Seung Woo Lee, Hongki Yoo, Byung Seon Chun, et al. Improvement of axial resolution in confocal microscopy using heterodyne illumination[A]. Proc. of SPIE-OSA Biomedical Optics[C], SPIE Vol.6630,663012
    [44]LEV I K, WAYNANT R W, Gorman.E. A noncontact laser refractometer and caliper based on a simple dual-confocal fiber-optic sensor technique[J]. Laers and Electro-Optics, CLEO"03. Conference on 1-6 June 2003.1923-1924.
    [45]Young chun Youk, Dug Young Kim. A simple reflection-type two-dimensional refractive index profile measurement techn ique for optical waveguides[J]. Optics Communications,2006, 262:206-210.
    [46]邹丽敏,李溪,丁雪梅.光纤共焦系统中影响轴向分辨特性的因素分析[J].红外与激光工程,2008,37(增刊):79-83
    [47]R Juskaitis, T Wilson. Surface profiling with scanning optical microscopes using two-mode optical fibers[J]. Applied Optics,1992,31(22):4569-4574
    [48]Jiubin Tan, Jie Zhang. Anoptical system in corporating gradient-index Lens for confocal inspection[J]. Optics and Lasers in Engineering,2004,42:233-240
    [49]王振华,李劲松.径向偏振光的产生及在现代光学中的应用[J].激光杂志.2009,30(1):8-10
    [50]R.Dorn, S.Quabis, G.Leuchs. Sharper Focus for a Radially Polarized Light Beam[J]. PHYSICAL REVIEW LETTERS,2003,91(23):233901
    [51]Colin J. R. Sheppard, Amarjyoti Choudhury. Sharper Focus for a Radially Polarized Light Beam[J]. APPLIED OPTICS,2004,43(22):4322-4327
    [52]阎杰,鲁拥华,王沛等.径向偏振光聚焦光斑研究[J].光学学报,2010,30(12):3597-3603
    [53]Han Lin, Baohua Jia, Min Gu. Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam[J]. OPTICS LETTERS,2011, 36(13):2471-2474
    [54]Dae-Chul Kiml, Hyun-Jun Kiml, Seng-Hun Backl, et al. A simple laser confocal microscope with improved spatial resolution[A].2007 Conference on Lasers and Electro-Optics-Pacific Rim, CLEO/PACIFIC RIM[C]:4301109
    [55]尤政,任大海.反射式微光机电系统(MOEMS)的研究现状与展望[J].光学技术,2004,30(2):189-192
    [56]Paul M. Lundquist, ChengF. Zhong, Peiqian Zhao, et al. Parallel confocal detection of single molecules in realtime[J]. OPTICSLETTERS,2008,33(9):1026-1028
    [57]G.Q. Xiao, T. R. Corel. Real-time confocal scanning optical microscope[J]. Appl. Phys. Lett, 1998,53:716-718
    [58]Shihong Jiang, John Walker. Differential high-speed digital micromirror device based fluorescence speckle confocal microscopy[J]. APPLIED OPTICS,2010,49(3):497-504
    [59]Tanaami Takeo, Otsuki Shinya, Tomosada Nobuhiro, et al. High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks[J], Applied Optics,2002,41(22): 4704-4708
    [60]王昭,朱升成,谭玉山等.集成光纤束并行共焦测量[J].中国激光,2005,32(1):105-109
    [61]H-J Jordany, M wegner, H Tiziani. Highly accurate non-contact characterization of engineering surfaces using confocal microscopy[J]. Meas. Sci. Technol,1998,9:1142-1151
    [62]H. J. TIZIANI, R. ACHI, R. N. KRAMER, et al. Microlens arrays for confocal microscopy[J]. Optics & Laser Technology,1997,29(2):85-91
    [63]H. J. Tiziani, T. Haist, S. Reuter. Optical inspection and characterization of microoptics using confocal microscopy[J]. Optics and Lasers in Engineering,36(2001):403-415
    [64]Mitsuhino Ishihara, Hiromi Sasaki. High-speed surface measurement using a nonscanning multiple-beam confocal microscope[J]. Opt Eng.1999,38(6):1035-1040
    [65]Shihong Jiang, John Walker. Differential high-speed digital micromirror device based fluorescence speckle confocal microscopy[J]. APPLIED OPTICS,2010,49(3):497-504
    [66]M. H. Liang, R. L. Stehr, A. W. Krause. Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination[J]. Opt.Lett,1997,22:751-753
    [67]P. J. Verveer, Q. S. Hanley, P. W. Verbeek, et al.Theory of confocal fluorescence imaging in the programmable array microscope(PAM)[J], J.Microsc.(Oxford),1998,189:192-198
    [68]T. Fukano, A. Miyawaki. Whole-field fluorescence microscope with digital micromirror device: imaging of biologicalsamples[J]. Appl.Opt.2003,42:4119-4124
    [69]Liang-Chia Chen, Wei-Chieh Kao, Yao-Ting Huang. Automatic Full-Field 3-D Profilometry Using White Light Confocal Microscopy with DMD-based Fringe Projection[J]. Materials Science Forum Vols.505-507,2006,361-366
    [70]Nayar S. K., Nakagawa Y. Shape from focus:an effective approach for rough surfaces[A]. Proc. IEEE Int. Conf. on robotics and automation[C],1990:218
    [71]Ye P., Paredes J. L., Arce G.R., et al. COMPRESSIVE CONFOCAL MICROSCOPY[A]. ICASSP(2009), IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings[C],429-432
    [72]Ye, P., Paredes, J. L., Wu, Y., et al. Compressive Confocal Microscopy:3D reconstruction algorithms._Proceedings of SPIE(2009)-The International Society for Optical Engineering, 7210
    [73]Filipe Magalhaes, Francisco M. Araujo, Miguel V. Correia, et al. Active illumination single-pixel camera based on compressive sensing[J]. APPLIED OPTICS.2011,50(4),405-414
    [74]http://www.microscopyu.com/articles/optics/cfintro.html
    [75]苏显渝,李继陶编著.信息光学[M].北京:科学出版社,1999
    [76]Sheppard C J R, Marthews H J. The extended-focus, auto-focus and surface-Profiling techniques of confocal microscope[J]. J Mod Opt,1988,35:145-154
    [77]丁志华,包正康,刘昱等.共焦扫描显微术中影响轴向分辨率的因素分析[J]. CHINESE JOURNAL OF LASERS,2000, A 27(6):531-536
    [78]Ge Huayong, Wang Baohua, Ren Qiushi. Influence of Detector on Resolution in Confocal Imaging System[J]. ACTA PHOTONICA SINICA,2006,35(4):587-590
    [79]张为国,董小春,高洪涛等.微透镜列阵衍射效应所致的串扰[J].光电工程,2010,37(5):80-84
    [80]马建设,方南,周晖等.DVD光学头误差探测器性能参数检测与评价[J].光电子·激光,2002,13(3):237-239
    [81]钟芹.DVD光学头的基本原理[J].记录媒体技术,2006(3):59-64
    [82]赵海涛,王振华,韦承甫等.基于光学调制的离焦探测技术[J].强激光与粒子束,2010,22(8):1839-1842
    [83]张建寰,谭久彬.表面倾斜对共焦显微测量轴向响应的影响[J].光电子·激光,2002,13(12):1272-1275
    [84]张建寰,周军现.测量表面倾角对差动共焦瞄准信号影响分析[J].光学学报,2006,26(9):1363-1366
    [85]高兴宇,萧泽新,伍世荣.基于OSLO的无限远像距消色差显微物镜的设计[J].光学与光 电技术,2006,4(4):4-8
    [86]杨春兰.基于差动像散技术的多功能光探针测量系统研究[D].哈尔滨工业大学博士论文,2001:5-14
    [87]D.J.Whitehouse. Stylus Contact Method for Surface Metrology in the Ascendancy[J]. Measurement and Control.1998,31(2):48-50
    [88]余卿,余晓芬,程伶俐等.泰伯效应对激光并行共焦显微系统成像影响的研究[J].仪器仪表学报,2009,30(6):1271-1274
    [89]徐钟济.蒙特卡洛方法[M].上海科学技术出版社,1985.6
    [90]王永红,余晓芬,俞建卫等.非扫描并行三维共焦检测技术综述[J].仪器仪表学报,2003,24(4):8-11
    [91]田岩,彭复员编著.数字图像处理于分析[M].武汉:华中理工大学出版社,2009.6
    [92]章毓晋编著.图像处理[M].北京;清华大学出版社,2006.3
    [93]孙宇臣,葛宝臻,张以谟.物体三维信息测量技术综述.光电子·激光,2004,15(2):248-253
    [94]Gabriella Tognola, Marta Parazzini, et al. A fast and reliable system for 3D surface acquisition and reconstruction[J]. Image and Vision Computing,2003,21:295-305
    [95]刘玉君,朱秀莉.复杂船体外板曲面拟合研究[J].大连理工大学学报,2005,45(2):226-229
    [96]Jianhua Fan, and Jorg Peters. Smooth Bi-3 spline surfaces with fewest k.nots[J], Computer-Aided Design,2011,43(2),180-187
    [97]张永曙,刘克轩,蒋大为编著.计算机辅助几何设计的数学方法[M],西北工业大学出版社.1986
    [98]黄友谦.曲线曲面的数值表示和逼近[M].上海科学技术出版社,1981.10
    [99]葛俊杰,王钰.基于三次样条的离散点曲面构建算法[J].海军航空工程学院学报,2004,19(5):591-594
    [100]朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2000
    [101]王会峰,刘上乾,汪大宝等.三次样条插值在变径内腔重建中的应用[J].中北大学学报(自然科学版),2010,31(1):65-70
    [102]苏步青,刘鼎元.计算几何[M].上海:科学技术出版社,1980
    [103]杨大地,王开荣.数值分析[M].北京:科学出版社,2006
    [104]何援军编著.计算机图形学[M].机械工业出版社,2006
    [105]王承钢.量块计量技术[M].北京计量出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700