高压静电技术制备微纳米结构材料及对水中重金属吸附的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属污染是世界上环境污染最严重问题之一。由于重金属污染物无法被生物降解,因此,一旦排入环境将会成为永久的污染,特别是这些重金属离子通过饮用水,食物链,进入包括人体在内的生物体内,对人类及其他生物的生存造成严重危害。因此,去除水中的重金属离子对于保护人类健康及生存环境是十分重要的。
     微/纳米材料是近年发展起来的一种新型功能材料,在重金属离子吸附方面展现了优异的性能。许多方法被用来开发、制备不同形貌和结构的微/纳米材料,其中电喷与电纺目前被认为是最简单和通用的制备微/纳米材料的方法。利用这两种方法制备的微/纳米材料由于其特殊的结构性质表现出了许多优于传统材料的性能,例如,较高的表面积、多孔表面结构、较高化学强度、良好的机械性能、便于回收再利用等。
     本论文主要是通过电喷和电纺丝方法制备一系列的不同形貌和结构组成的微/纳米材料,并进一步研究这些材料对水中的重金属离子吸附性能。主要包括以下四个方面的工作:
     1.通过电纺丝方法和高温煅烧技术制备了介孔锐钛矿二氧化钛纳米纤维,考察了介孔锐钛矿纳米纤维对Cu(II)离子的吸附性能,研究了pH值的影响、吸附动力学和吸附等温线等。结果表明,介孔锐钛矿纳米纤维在pH值6时对Cu(II)离子的吸附含量最高,介孔锐钛矿纳米纤维对Cu(II)离子的吸附动力学符合准二级动力学模型,纳米纤维等对铜(II)离子的吸附符合Freundlich等温线。与普通锐钛矿纳米纤维相比,在同样的实验条件下,介孔锐钛矿纳米纤维具有更高的比表面积,对Cu(II)离子表现出了更强的吸附能力。
     2.通过电纺丝方法结合高温煅烧或酸性溶解方法制备了不同形貌和晶型结构的二氧化钛纳米纤维,如无定形,锐钛矿,锐钛矿/金红石混合以及金红石型二氧化钛纳米纤维,研究了不同形貌和晶型结构的二氧化钛纤维对As(III)离子的吸附性能。结果表明,二氧化钛纳米纤维的晶型结构对As(III)离子的吸附速率和能力有较大影响,由于无定形结构的二氧化钛纳米纤维具有更高的表面积和孔体积,因此对As(III)离子表现出了更好的吸附能力。
     3.利用电纺丝方法和表面改性技术相结合制备了氨化聚丙烯腈(PAEA)纳米纤维膜,研究了此种纤维对水中的As(V)离子的吸附性能。实验数据符合Langmuir等温线和准二级动力学模型,PAEA纳米纤维在pH值3时对As(V)离子的吸附含量最高,PAEA纳米纤维对As(Ⅴ)离子的最大吸附容量为76.92±1.03mg.g~(-1),远高于相同条件下制备的的PAEA微米纤维(27.62±0.50mg.g1),PAEA纳米纤维对As(V)离子具有较高的吸附容量和较快的吸附速度,可以作为去除水溶液中砷的有效吸附剂。
     4.利用电喷方法制备了新型的多孔壳聚糖(CS)/四氧化三铁(Fe_3O_4)/氢氧化铁(Fe(OH)_3)复合微球,对复合微球吸附As(III)离子的吸附动力学和平衡等温线进行研究。实验数据符合Langmuir,Freundlich等温线和准二级动力学模型,CS/Fe_3O_4/Fe(OH)_3复合微球对As(III)离子具有较快的吸附速度,约45分钟后即达到吸附平衡,最高吸附容量为8.47±0.18mg.g~((-1),比用传统方法制备的CS/Fe_3O_4/Fe(OH)_3微球高(4.72±0.04mg.g~(-1)),CS/Fe_3O_4/Fe(OH)_3复合微球有超顺磁性特性,因此便于回收,有利于去除水溶液中的As(III)离子。
Heavy metal contaminations in water systems are one of the serious environmentalproblems throughout the world. Most of heavy metal ions are highly toxic, even at very lowconcentrations. These metal ions are non-degradable and can accumulate in living organisms,causing several disorders and diseases. Therefore, the removal of heavy metal ions fromaqueous solutions is very important to protect the environment and public health.
     Recently, micro/nano-materials are of great interest to be developed as efficientadsorbents for heavy metal ions in water. A large number of advanced techniques have beendeveloped to fabricate micro/nano-materials with well-controlled morphology and chemicalcomposition. Among these techniques, electrospraying and electrospinning seem to be thesimplest and most versatile techniques capable of generating micro/nano-materials, andhave attracted a great deal of attention in recent years.
     Micro/nano-materials produced by electrospraying and electrospinning methods haveinteresting properties, such as high specific surface area, porous surface structure, highchemical strength, good mechanical properties, and favorable morphology for recoveryand recycling. So electrospun micro/nano-materials could be used as effective adsorptivematerials.
     In this thesis, a series of micro/nano-materials with different structures and functionshave been prepared by combining the electrospraying and electrospinning techniques withthe subsequent process of heat treatment, acidic-dissolution, and chemical modification. Then,these electrospun micro/nano-materials are used for adsorption of heavy metals such ascopper, arsenic from aqueous solution. Detailed research results are listed as follows:
     1. Anatase mesoporous titanium nanofibers (m-TiO_2NFs) have been synthesizedfrom calcination of the as-spun TiO_2/Polyvinyl pyrrolidone (PVP)/Pluronic123(P123)composite nanofibers at450oC in air for3h. An investigation of Cu(II) adsorption ontom-TiO_2NFs has been demonstrated. The pH effect, adsorption kinetics, and adsorption isothermsare examined in batch experiments. Experimental data were analyzed using pseudo-firstorder and pseudo-second order kinetic models. It was found that adsorption kinetics were thebest fitting by a pseudo-second order kinetic model. The optimum pH for Cu(II)adsorption was found to be6.0. The adsorption equilibrium data were analyzed by theLangmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models, whichrevealed that the Freundlich isotherm is the best-fit isotherm for the adsorption of Cu(II).Compared to the TiO_2NFs (regular anatase titanium nanofibers) in the same experimentalconditions to elucidate the role of the mesoporous structure of m-TiO_2NFs, experimentalresults showed that the m-TiO_2NFs had a better adsorption capacity for Cu(II) ions. Thisstudy may lead to a simple and effective method for fabricating porous materials andm-TiO_2NFs can be a very promising material for removing Cu(II) ions from aqueoussolution.
     2. TiO_2nanofibers (NFs) with different phases such as amorphous, anatase, mixedanatase rutile, and rutile have been prepared by combining the electrospinning techniquewith the subsequent process of heat treatment or acidic-dissolution method. The obtainedTiO_2nanofibers are characterized by a Fourier transform infrared spectrometer (FT-IR),X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electronmicroscopy (SEM), transmission electron microscopy (TEM), and N2adsorption desorptionisotherm measurements. Phase-structure effects of the electrospun TiO_2NFs on As(III)adsorption behaviors have been investigated. The results showed a significant effect ofthe phase structures of TiO_2NFs on As(III) adsorption rates and capacities. AmorphousTiO_2NFs have the highest As(III) adsorption rate and capacity in the investigated samples,which can be attributed to higher surface area and porous volume. This research providesa simple and low-cost method for phase-controlled fabrication of TiO_2NFs and applicationfor the effective removal of arsenic from aqueous solution.
     3. Poly(acrylo-amidino ethylene amine)(PAEA) nanofiber membranes have beensynthesized by combining the electrospinning technique and subsequent chemicalmodification. The membranes were used to remove As(V) from aqueous solution. Theadsorption followed pseudo second-order kinetic models well and Langmuir isotherm model could be well-described the experimental equilibrium data. The PAEA nanofibersare effective for As(V) adsorption at pH3. The maximum Langmuir adsorption capacityof the PAEA nanofibers with As(V) is76.92±1.03mg.g~(-1), which is much higher thanthat of the PAEA microfibers (27.62±0.50mg.g~(-1)) in the same experimental conditions.The adsorption rate of the PAEA nanofibers is faster than that of PAEA microfibers due toits higher specifc surface area. The PAEAnanofibers can be used as an effective adsorbentfor the removal of As(V) in aqueous solution due to high adsorption capacity and shortadsorption time to achieve equilibrium.
     4. Porous chitosan(CS)/magnetite(Fe_3O_4)/ferric hydroxide(Fe(OH)_3) microsphere asnovel and low-cost adsorbents for the removal of As(III) have been synthesized via theelectrospraying technology by a simple process of two steps. The adsorption kinetics andequilibrium isotherms were investigated in batch experiments. The Langmuir, Freundlichisotherm, and pseudo-second order kinetic models agree well with the experimental data.The adsorption of As(III) onto the CS/Fe_3O_4/Fe(OH)_3microspheres occurred rapidly andreached adsorption equilibrium after about45min. The maximum adsorption capacity of theCS/Fe_3O_4/Fe(OH)_3microspheres, calculated by the Langmuir isotherm model, was8.47±0.18mg.g~(-1), which is higher than that of the CS/Fe_3O_4/Fe(OH)_3prepared by theconventional method (4.72±0.04mg.g~(-1)). The results showed that the CS/Fe_3O_4/Fe(OH)_3microspheres had a high adsorption capacity for As(III) and a high separation efficiencydue to their microporous structure and superparamagnetic characteristics. The compositematerials, therefore, are significant for water purification.
引文
[1] BERG H C, TRAN T C, NGUYEN H V, et al. Arsenic Contamination of Groundwater andDrinking Water in Vietnam: A Human Health Threat [J]. Environmental Science andTechnology,2001,35:26212626.
    [2] XIA Y, LIU J. An Overview on Chronic Arsenism via Drinking Water in PR China [J].Toxicology,2004,198:2529.
    [3] ZHANG F, LAN J, ZHAO Z S, et al. Removal of Heavy Metal Ions from AqueousSolution Using Fe3O4–SiO2-Poly(1,2-diaminobenzene) Core–Shell Sub-micron Particles[J]. Journal of Colloid and Interface Science,2012,387:205212.
    [4] SMEDLEY P L, KINNIBURGH D G. Review of the Source, Behavior and Distribution ofArsenic in Natural Waters [J]. Appl. Geochem.,2002,17:517–568.
    [5] AGUADO J, ARSUAGA J M, ARENCIBIA A, et al. Aqueous Heavy Metals Removalby Adsorption on Amine-Functionalized Mesoporous Silica [J]. Journal of HazardousMaterials,2009,163:213221.
    [6] GE F, LI M M, YE H, et al. Effective Removal of Heavy Metal Ions Cd2+, Zn2+, Pb2+,Cu2+from Aqueous Solution by Polymer-Modifed Magnetic Nanoparticles [J]. Journal ofHazardous Materials,2012,211212:366372.
    [7] HUA M, ZHANG S J, PAN B C, et al. Heavy Metal Removal from Water/wastewaterby Nanosized Metal Oxides: A Review [J]. J. Hazard. Mater.,2012,211212:317331.
    [8] FU F L, WANG Q. Removal of Heavy Metal Ions from Wastewaters: A Review [J].Journal of Environmental Management,2011,92:407418.
    [9] HUANG J, YE M, QU Y, et al. Pb (II) Removal from Aqueous Media by EDTA-ModifedMesoporous Silica SBA-15[J]. J Colloid Interface Sci.,2012,385:137146.
    [10] STAFIEJ A, PYRZYNSKA K. Adsorption of Heavy Metal Ions with Carbon Nanotubes[J]. Sep. Purif. Technol.,2008,58:49–52.
    [11] CHEN Q Y, LUO Z, HILLS C, et al. Precipitation of Heavy Metals from WastewaterUsing Simulated Flue Gas: Sequent Additions of Fly Ash, Lime and Carbon Dioxide [J].Water Research,2009,43:26052614.
    [12] ZVERDI A, ERDEM M, et al. Cu2+, Cd2+and Pb2+Adsorption from AqueousSolutions by Pyrite and Synthetic Iron Sulphide [J]. J. Hazard. Mater.,2006,137:626632.
    [13] ALYUZ B, VELI S. Kinetics and Equilibrium Studies for the Removal of Nickeland Zinc from Aqueous Solutions by Ion Exchange Resins [J]. J. Hazard. Mater.,2006167:482488.
    [14] OSTROSKI I C, BARROS M A S, SILVAB E A, et al. A Comparative Study for theIon Exchange of Fe(III) and Zn(II) on Zeolite NaY [J]. J. Hazard. Mater.,2009,161:14041412.
    [15] OZAKI H, SHARMA K, SAKTAYWIRF W. Performance of an Ultra-Low-PressureReverse Osmosis Membrane (ULPROM) for Separating Heavy Metal: Effects of InterferenceParameters [J]. Desalination,2002,144:287–294.
    [16] DIALYNAS E, DIAMADOPOULOS E. Integration of a Membrane Bioreactor Coupledwith Reverse Osmosis for Advanced Treatment of Municipal Wastewater [J]. Desalination,2009:238,302311.
    [17] NGUYEN C M, BANG S, CHO J, et al. Performance and Mechanism of ArsenicRemoval from Water by a Nanofltration Membrane [J]. Desalination,2009,245:8294.
    [18] DRIOLI E. Influence of Operating Parameters on the Arsenic Removal by Nanofltration[J]. Water Res.,2010,44:97104.
    [19] AHMAD A L, OOI B S. A Study on Acid Reclamation and Copper Recovery UsingLow Pressure Nanofltration Membrane [J]. Chem. Eng. J.,2010,56:257263.
    [20] PARGA J, COCKE D, VALENZUELA J, et al. Arsenic Removal via Electrocoagulationfrom Heavy Metal Contaminated Groundwater in La Comarca Lagunera Mexico [J]. J.Hazard. Mater.,2005,124:247254.
    [21] HEIDMANN I, CALMANO W. Removal of Zn(II), Cu(II), Ni(II), Ag(I) and Cr(VI)Present in Aqueous Solutions by Aluminium Electrocoagulation [J]. J. Hazard. Mater.,2008,152:934941.
    [22] ATAR N, OLGUN A, WANG S B. Adsorption of Cadmium (II) and Zinc (II)on Boron Enrichment Orocess Waste in Aqueous Solutions: Batch and Fixed-BedSystem Studies [J]. Chem. Eng. J.,2012,192:17.
    [23] JI F, LI C L, Tang B, et al. Preparation of Cellulose Acetate/Zeolite CompositeFiber and Its Adsorption Behavior for Heavy Metal Ions in Aqueous Solution [J].Chem. Eng. J.,2012,209:325333.
    [24] ZUO J C, TONG S R, YUA X L. Fe3+and Amino Functioned Mesoporous Silica:Preparation, Structural Analysis and Arsenic Adsorption [J]. J. Hazard. Mater.,2012,235236:934941.
    [25] ZHUA Y H, HUA J, WANG J L. Competitive Adsorption of Pb(II), Cu(II) andZn(II) onto Xanthate-Modifed Magnetic Chitosan [J]. J. Hazard. Mater.,2012,221222:155161.
    [26] PARIDA K, MISHRA K G, DASH S K. Adsorption of Toxic Metal Ion Cr(VI)from Aqueous State by TiO2-MCM-41: Equilibrium and Kinetic Studies [J]. J. Hazard.Mater.,2012,241242:395403.
    [27] MACHIDA M, FOTOOHIA B, AMAMO Y. Cadmium(II) Adsorption Using FunctionalMesoporous Silica and Activated Carbon [J]. J. Hazard. Mater.,2012,221222:220227.
    [28] HAO L Y, SONG H J, ZHANG L C, et al. SiO2/Graphene Composite for HighlySelective Adsorption of Pb(II) ion [J]. J Colloid Interface Sci.,2012,369:381387.
    [29] AWUAL M R, SHENASHEN M A, YAITA T, et al. Effcient Arsenic(V) Removalfrom Water by Ligand Exchange Fibrous Adsorbent [J]. Water Res.,2012,55415550.
    [30] PAN S, ZHANG Y, SHEN H, et al. An Intensive Study on the Magnetic Effectof Mercapto-Functionalized Nano-Magnetic Fe3O4Polymers and their AdsorptionMechanism for the Removal of Hg(II) from Aqueous Solution [J]. Chem. Eng. J.,2012,210:564574.
    [31] LI W, TANG Y, ZENG Y. Adsorption Behavior of Cr(VI) Ions on Tannin-immobilizedActivated Clay [J]. Chemical Engineering Journal,2012,193194:8895.
    [32] WENG C, TSAI C, CHU S, et al. Adsorption Characteristics of Copper(II) ontoSpent Activated Clay [J]. Separation and Purifcation Technology,2007,54:187–197.
    [33] AL-QUNAIBIT M, MEKHEMER W, ZAGHLOUL A. The Adsorption of Cu(II)Ions on Bentonite-A Kinetic Study [J]. J. Colloid Interface Sci.,2005,283:316–321.
    [34] JONSSON J, SHERMAN D. Sorption of As(III) and As(V) to Siderite, GreenRust and Magnetite: Implications for Arsenic Release in Anoxic Groundwaters [J].Chem. Geol.,2008,255:173181.
    [35] WU P, WU W, LI S. Removal of Cd2+from Aqueous Solution by AdsorptionUsing Fe-montmorillonite [J]. J. Hazard. Matter.,2009,169:824830.
    [36] CHRISTIDIS G E, SCOTT P W, DUNHAM A C. Acid Activation and BleachingCapacity of Bentonites from the Islands of Milos and Chios, Aegean, Greece [J].Appl. Clay. Sci.,1997,12:329347.
    [37] DINATALE F, ERRTO A, LANCIA A, et al. Experimental and ModelingAnalysis of As(V) Ions Adsorption on Granular Activated Carbon [J], Water. Res.,2008,42:20072016.
    [38] CHUNAG C L, FAN M, XU M, et al. Adsorption of Arsenic(V) by ActivatedCarbon Prepared from Oat Hulls [J]. Chemosphere,2005,61:478–483.
    [39] PATNUKAO P, KONGSUWAN A, PAVASANT P. Batch Studies of Adsorption ofCopper and Lead on Activated Carbon from Eucalyptus Camaldulensis Dehn. Bark[J]. J. Environ. Sci.,2008,20:10281034.
    [40] WANG X J, LIANG X, WANG Y, et al. Adsorption of Copper (II) ontoActivated Carbons from Sewage Sludge by Microwave-Induced Phosphoric Acidand Zinc Chloride Activation [J]. Desalination,2011,278:231237.
    [41] CASTILLA C, ALVAREZ M, PASTRANA L, et al. Adsorption Mechanisms ofMetal Cations from Water on an Oxidized Carbon Surface [J]. Journal of Colloidand Interface Science,2010,345:461–466.
    [42] DEMIRBAS E, DIZGE N, SULAK, et al. Adsorption Kinetics and Equilibrium ofCopper from Aqueous Solutions Using Hazelnut Shell Activated Carbon [J]. Chem. Eng. J.,2009,148:480–487.
    [43] EWECHAROEN A, THIRAVETYAN P, WENDEL E, et al. Nickel Adsorption bySodium Polyacrylate-Grafted Activated Carbon [J]. J. Hazard. Matter.,2009,171:335339.
    [44] TOFIGHY M A, MOHAMMADI T. Adsorption of Divalent Heavy Metal Ions fromWater Using Carbon Nanotube Sheets [J]. J. Hazard. Matter.,2011,185:140147.
    [45] PYRZYNSKA K, BYSTRZEJEWSKI M. Comparative Study of Heavy MetalIons Adsorption onto Activated Carbon, Carbon Nanotubes, and Carbon-EncapsulatedMagnetic Nanoparticles [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects.,2010,362:102–109
    [46] LI Y H, LIU F Q, XIA B, et al. Removal of Copper from Aqueous Solution byCarbon Nanotube/Calcium Alginate Composites [J]. J. Hazard. Mater.,2010,177:876880.
    [47] DIAZ F P, LOPEZ U F, TERRONES M, et al. Simultaneous Adsorption of Cd2+andPhenol on Modified N-Doped Carbon Nanotubes: Experimental and DFT Studies [J].Journal of Colloid and Interface Science,2009,334:124131.
    [48] CHUTIA P, KATO S, KOJIMA T, et al. Arsenic Adsorption from Aqueous Solution onSynthetic Zeolites [J]. J. Hazard. Matter.,2009,162:440447.
    [49] CHUTIA P, KATO S, KOJIMA T, et al. Adsorption of As(V) on Surfactant-ModifiedNatural Zeolites [J]. J. Hazard. Matter.,2009,162:204211.
    [50] CHEN Q Q, YIN D Q, ZHU S J, et al. Adsorption of Cadmium(II) on Humic AcidCoated Titanium Dioxide [J]. J. Colloid Interface. Sci.,2012,367:241248.
    [51] HUA M, ZHANG S J, PAN B C. Heavy Metal Removal from Water/Wastewater byNanosized Metal Oxides: A Review [J]. J. Hazard. Matter.,2012,211212:317331.
    [52] REN Y M, LI N, FENG J, et al. Adsorption of Pb(II) and Cu(II) from AqueousSolution on Magnetic Porous Ferrospinel MnFe2O4[J]. Journal of Colloid and InterfaceScience,2012,367:415421.
    [53] BABEL S, KURNIAWAN T A. Low-Cost Adsorbents for Heavy Metals Uptake fromContaminated Water: A Review. Journal of Hazardous Materials,2003, B97:219–243.
    [54] NGAH W S W, TEONGA L C, HANAFIAH M A K M. Adsorption of Dyes andHeavy Metal Ions by Chitosan Composites: A Review [J]. Carbohydrate Polymers,2011,83:14461456.
    [55] MOHAN D, CHARLES U, PITTMAN J. Arsenic Removal from Water/WastewaterUsing Adsorbents-A Critical Review [J]. Journal of Hazardous Materials,2007,142:1–53.
    [56] XIA Y N, YANG P D, SUN Y G, et al. One-Dimensional Nanostructures: Synthesis,Characterization, and Applications [J]. Adv. Mater.,2003,15:353389.
    [57] WANG Z L. Characterizing the Structure and Properties of Individual Wire-LikeNanoentities [J]. Adv. Mater.,2000,12:12951298.
    [58] HU J T, ODOM T W, LIEBER C M. Chemistry and Physics in one Dimension:Synthesis and Properties of Nanowires and Nanotubes [J]. Acc. Chem. Res.,1999,32:435445.
    [59] MATSUI S, OCHIAI Y. Focused Ion Beam Applications to Solid State Devices [J].Nanotechnology,1996,7:247258.
    [60] Special Issue on Carbon Nanotubes [J]. Acc. Chem. Res.,2002,35:997.
    [61] GATES B, YIN Y D, XIA Y N. A Solution-Phase Approach to the Synthesis ofUniform Nanowires of Crystalline Selenium with Lateral Dimensions in the Range of10-30nm [J]. J. Am. Chem. Soc.,2000,122:1258212583.
    [62] HE R R, LAW M, FAN R, et al. Functional Bimorph Composite Nanotapes [J]. NanoLett.,2002,2:11091112.
    [63] SUN Y, MAYERS B, XIA Y. Template-Engaged Replacement Reaction: A One-stepApproach to the Large-Scale Synthesis of Metal Nanostructures with Hollow Interiors [J].Nano Lett.,2002,2:481485.
    [64] ZHANG Y J, WANG N L, GAO S P, et al. A Simple Method to SynthesizeNanowires [J]. Chem. Mater.,2002,14:35643568.
    [65] KRIHA O, BECKER M, LEHMANN M, et al. Connection of Hippocampal Neuronsby Magnetically Controlled Movement of Short Electrospun Polymer Fibers–A Route toMagnetic Micromanipulators [J]. Adv. Mater.,2007,19:24832485.
    [66] STOILJKOVIC A, AGARWAL S. Short Electrospun Fibers by UV Cutting Method[J]. Macromol. Mater. Eng.,2008,293:895899.
    [67] HUANG Z M, ZHANG Y Z, KOTAKI M, et al. A Review on Polymer Nanofbers byElectrospinning and their Applications in Nanocomposites [J]. Composites. Sci. Technol.,2003,63:22232253.
    [68] LU X, ZHANG W, WANG C. One-Dimensional Conducting Polymer Nanocomposites:Synthesis, Properties and Applications [J]. Progress in Polymer Science,2011,36:671712.
    [69] GREINER A, WENDORFF J H. Electrospinning: A Fascinating Method for thePreparation of Ultrathin Fibers [J]. Angew. Chem. Int. Ed.,2007,46:56705703.
    [70] BURGER C, HSIAO B S, CHU B. Nanofibrous Materials and their Applications [J].Annu. Rev. Mater. Res.,2006,36:333368.
    [71] BARNES C P, SELL S A, BOLAND E D, et al. Nanofiber Technology: Designingthe Next Generation of Tissue Engineering Scaffolds [J]. Adv. Drug Delivery Rev.,2007,59:14131433.
    [72] LIANG D, HSIAO B S, CHU B. Functional Electrospun Nanofibrous Scaffolds forBiomedical Applications [J]. Adv. Drug Delivery Rev.,2007,59:13921412.
    [73] XIE J W, LI X R, XIA Y N. Putting Electrospun Nanofbers to Work for BiomedicalResearch [J]. Macromol. Rapid Commun.,2008,29:17751792.
    [74] FORMHALS. Process and Apparatus for Preparing Artificial Threads. U.S. Patent1975504,1934.
    [75] LANG W. Silicon Microstructuring Technology [J]. Mater. Sci. Eng.,1996,17:155.
    [76] TAYLOR G I. Electrically Driven Jets [J]. Proc. R. Soc. Lond.,1969, A313:453–475.
    [77] LI T, HERRICKS, XIA Y N. Magnetic Nanofibers of Nickel Ferrite Prepared byElectrospinning [J]. Appl. Phys. Lett.,2003,83:45864588.
    [78] WANG A, SINGH H, HATTON T A, et al. Field-Responsive SuperparamagneticComposite Nanofbers by Electrospinning [J]. Polymer,2004,45:55055514.
    [79] WANG Y, SANTIAGO J J. Synthesis of Lead Zirconate Titanate Nanofibres and theFourier-Transform Infrared Characterization of their Metallo-Organic DecompositionProcess [J]. Nanotechnology,2004,15:3236.
    [80] RENEKER D H, CHUN I. Nanometre Diameter Fibres of Polymer, Produced byElectrospinning [J]. Nanotechnology,1996,7:216223.
    [81] FONG H, RENEKER D H. Elastometric Nanofibers of Styrene–Butadiene–StyreneTriblock Copolymer [J]. J. Polym. Sci. Part B: Polym. Phys.,1999,37:34883493.
    [82] FONG H, CHUN I, RENEKER D. Beaded Nanofbers Formed During Electrospinning[J]. Polymer,1999,40:45854592.
    [83] YARIN A L, KOOMBHONGSE S, RENEKER D H. Taylor Cone and Jetting fromLiquid Droplets in Electrospinning of Nanofibers [J]. J. Appl. Phys.,2001,90:48364846.
    [84] YARIN A, KOOMBHONGSE, RENEKER D. Bending Instability in Electrospinningof Nanofibers [J]. J. Appl. Phys.,2001,89:30183026.
    [85] DAI H Q, GONG J, KIM H, et al. A Novel Method for Preparing Ultra-fineAlumina-Borate Oxide Fibres via an Electrospinning Technique [J]. Nanotechnology,2002,13:674677.
    [86] WANG W, HUANG H M, Li Z Y, et al. Zinc oxide Nanofiber Gas Sensors viaElectrospinning [J]. The American Ceramic Society,2008,91:38173819.
    [87] ZHANG H N, LI Z Y, WANG W, et al. Na+-Doped Zinc Oxide Nanofiber Membranefor High Speed Humidity Sensor [J]. J. Am.Ceram.Soc.,2010,93:142146.
    [88] WANG Z J, LI Z Y, LIU L, et al. A Novel Alcohol Detector based on ZrO2-DopedSnO2Electrospun Nanofibers [J]. J. Am. Ceram. Soc.,2010,93:634637.
    [89] LU X, ZHAO Y Y, WANG C. Fabrication of PbS Nanoparticles in Polymer-FiberMatrices by Electrospining [J]. Adv. Mater.,2005,17:24852488.
    [90] RENEKER D H and CHUN I. Nanometre Siameter Fibres of Polymer, Produced byElectrospinning. Nanotechnology,1996,7:216–23.
    [91] RAMASESHAN R, SUNDARRAJAN S, JOSE R, et al. Nanostructured Ceramicsby Electrospinning [J]. J. Appl. Phys.,2007,102:111101111116.
    [92] SIGMUND W, YUH J, PARK H, et al. Processing and Structure Relationships inElectrospinning of Ceramic Fiber Systems [J]. J. Am. Cream. Soc.,2006,89:395407.
    [93] CHRONAKIS I S. Novel Nanocomposites and Nanoceramics Based on PolymerNanofbers Using Electrospinning Process A Review [J]. J. Mater. Process. Technol.,2005,167:283293.
    [94] ZHENG W, LU X F, WANG W, et al. A Highly Sensitive and Fast-RespondingSensor Based on Electrospun In2O3Nanofibers [J]. Sensors and Actuators B: Chemical,2009,142:6165.
    [95] GUAN H, SHAO C, WEN S. Preparation and Characterization of NiO Nanofbres viaan Electrospinning Technique [J]. Inorg. Chem. Commun.,2003,6:13021303.
    [96] LU X, ZHANG D L, ZHAO Q D, et al. Large-Scale Synthesis of Necklace-LikeSingle-Crystalline PbTiO3Nanowires Macromol [J]. Rapid. commun.,2006,27:7680.
    [97] LU X F, LIU X C, ZHANG W J, et al. Large-Scale Synthesis of Tungsten OxideNanofbers by Electrospinning [J]. J. Colloid Interf. Sci.,2006,298:996999.
    [98] LI D, XIA Y N. Fabrication of Titania Nanofibers by Electrospinning [J]. Nano Lett.,2003,3:555560.
    [99] DHARMARAJ N, PARK H C, KIM C K, et al. Materials Science CommunicationNickel Titanate Nanofbers by Electrospinning [J]. Mater. Chem. Phys.,2004,87:59.
    [100] YANG X H, SHAO C L, GUAN H Y, et al. Preparation and Characterization ofZnO Nanofbers by Using Electrospun PVA/Zinc Acetate Composite Fiber as Precursor[J]. Inorg. Chem. Commun.,2004,7:176178.
    [101] WANG M, SINGH H, HATTON T A, et al. Field-Responsive SuperparamagneticComposite Nanofbers by Electrospinning [J]. Polymer,2004,45:55055514.
    [102] YANG X G, SHAO C L, LIU Y C, et al. Nanofibers of CeO2via an ElectrospinningTechnique. Thin Solid Films [J].2005,478:228231.
    [103] FU Z W, MA J, QIN Q Z. Nanostructured LiCoO2and LiMn2O4Fibers Fabricatedby a High Frequency Electrospinning [J]. Solid State Ionics.2005,176:16351640.
    [104] WU H, LIN D, PAN W. Fabrication, Assembly, and Electrical Characterization ofCuO Nanofibers [J]. Appl. Phys. Lett.,2006,89:133125133133.
    [105] BENDER E, KATTA P, LOTUS A. Identifcation of CO2Sequestered in ElectrospunMetal Oxide Nanofbers [J]. Chem. Phys. Lett.,2006,423:302305.
    [106] ZHANG Y F, LI J Y, LI Q, et al. Preparation of In2O3Ceramic Nanofbers byElectrospinning and their Optical Properties [J]. Scr. Mater.,2007,56:409412.
    [107] KENAWY E R, BOWLIN G L, MANSFIELD K, et al. Release of TetracyclineHydrochloride from Electrospun Poly(ethylene-co-vinylacetate), Poly(lactic acid), and aBlend [J]. J. Controlled Release.,2002,81:5764.
    [108] BUCHKO C, CHEN L, SHEN Y. Processing and Microstructural Characterizationof Porous Biocompatible Protein Polymer Thin Films [J]. Polymer,1999,40:73977407.
    [109] GIBSON P, SCHREUDER G H, RIVIN D. Electrospun Fiber Mats: TransportProperties [J]. AIChE J,1999,45:190-195.
    [110] GIBSON P, SCHREUDER-GIBSON H, RIVIN D. Transport Properties of PorousMembranes based on Electrospun Nanofibers [J]. Colloids Surface A,2001,187188:469481.
    [111] AUSSAWASATHIEN D, DONG J H, DAI L. Electrospun Polymer NanofiberSensors [J]. Synth. Met.,2005,154:3740.
    [112] VERRECK G, CHUN I, ROSENBLATT J. Incorporation of Drugs in an AmorphousState into Electrospun Nanofibers Composed of a Water-Insoluble, Nonbiodegradable Polymer[J]. J. Controlled Release.,2003,92:349360.
    [113] KHIL M S, CHA D I, KIM H Y. Electrospun Nanofibrous Polyurethane Membrane asWound Dressing [J]. J. Biomed. Mater. Res. B.,2003,67B:675679.
    [114] LU X, WANG C, WEI Y. One-Dimensional Composite Nanomaterials: Synthesis byElectrospinning and their Applications [J]. Small,2009,5:2349–2370.
    [115] LI D, XIA Y N. Electrospinning of Nanofibers: Reinventing the Wheel [J]. Adv.Mater.,2004,16:11511170.
    [116] LI D, MCCANN J T, XIA Y N. Electrospinning: A simple and Versatile Technique forProducing Ceramic Nanofibers and Nanotubes [J]. J. Am. Ceram. Soc.,2006,89:18611869.
    [117] WU Y, FANG R, YANG P. Block-by-Block Growth of Single-Crystalline Si/SiGeSuperlattice Nanowires [J]. Nano Lett.,2002,2:8386.
    [118] LU X, HANRATH T, JOHNSTON K P, et al. Growth of Single Crystal SiliconNanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate[J]. Nano Lett.,2003,3:9399.
    [119] WANG W, LI Z, XU X, et al. Au-Doped Polyacrylonitrile-Polyaniline Core-ShellElectrospun Nnaofibers Having High Field-Effect Mobilities [J]. Small,7:597600.
    [120] XU X R, SUN J H, ZHANG H N, et al. Effects of Al Doping on SnO2Nanofibersin Hydrogen Sensor [J]. Sensors and Actuators B-Chemical,2011,160:858863.
    [121] LEI J Y, LU X F, WANG W. Fabrication of MnO2/Graphene Oxide CompositeNanosheets and their Application in Hydrazine Detection [J]. RSC Advanced,2012,2:2541-2544.
    [122] BO D, LI Z C, LI Z Y, et al. Highly Efficient LaCoO3Nanofibers Catalysts forPhotocatalytic Degradation of Rhodamine B [J]. J. Am. Ceram. Soc.,2010,93:35873590.
    [123] LEI J Y, WANG W, SONG M X, et al. Ag/AgCl Coated Polyacrylonitrile NanofiberMembranes: Synthesis and Photocatalytic Properties [J]. Reactive&Functional Polymers,2011,71:10711076.
    [124] DOH S J, KIM C, LEE S G, et al. Development of Photocatalytic TiO2Nanofibersby Electrospinning and its Application to Degradation of Dye Pollutants [J]. J. Hazard.Mater.,2008:154:118127.
    [125] LIU H Q, YANG J X, LIANG J H, et al. ZnO Nanofiber and NanoparticleSynthesized Through Electrospinning and Their Photocatalytic Activity Under VisibleLight [J]. J. Am. Ceram. Soc,2008,91:12871291.
    [126] CHEN L P, HONG S G, ZHOU X P, et al. Novel Pd-Carrying Composite CarbonNanofibers Based on Polyacrylonitrile as a Catalyst for Sonogashira Coupling Reaction[J]. Catal. Commun.,2008,9:22212225.
    [127] CHEN L, BROMBERG L, HATTON T, et al. Catalytic Hydrolysis of p-NitrophenylAcetate by Electrospun Polyacrylamidoxime Nanofibers [J]. Polymer,2007,48:46754682.
    [128] ZHU Y, ZHANG J, ZHENG Y, et al. Stable, Superhydrophobic, and ConductivePolyaniline/Polystyrene Films for Corrosive Environments [J]. Adv. Funct. Mater.,2006,16:568574.
    [129] ZHU Y, ZHANG J C, ZHAI J, et al. Multifunctional Carbon Nanofibers withConductive, Magnetic and Superhydrophobic Properties [J]. Chem Phys Chem.,2006,7:336341.
    [130] WANG N, ZHAO Y, JIANG L. Low-Cost, Thermoresponsive Wettability of Surfaces:Poly(N-isopropylacrylamide)/Polystyrene Composite Films Prepared by Electrospinning [J].Macromol. Rapid Commun.,2008,29:485489.
    [131] ZHU Y, FENG L, XIA F. Chemical Dual Responsive Wettability of SuperhydrophobicPANI-PAN Coaxial Nanofibers [J]. Macromol. Rapid Commun.,2007,28:11351141.
    [132] KI C S, GANG E H, UM N C, et al. Nanofibrous Membrane of Wool Keratose/SilkFibroin Blend for Heavy Metal Ion Adsorption [J]. J. Membr. Sci.,2007,302:2026.
    [133] SONG X F, WANG Z J, LI Z Y, et al. Ultrafine Porous Carbon Fibers for SO2Adsorption via Electrospinning of Polyacrylonitrile Solution [J]. J. Colloid Interf. Sci.,2008,327:388392.
    [134] RAMASESHAN R, SUNDARRAJAN S, LIU Y, et al. Functionalized PolymerNanofibre Membranes for Protection from Chemical Warfare Stimulants [J]. Nanotechnology,2006,17:29472953.
    [135] THAVASI V, SINGH G, RAMAKRISHNA S. Electrospun Nanofibers in Energyand Environmental Applications [J]. Energy Environ. Sci.,2008,1:205221.
    [136] YOON K, HSIAO B S, CHU B. Functional Nanofibers for Environmental Applications[J]. J. Mater. Chem.,2008,18:53265334.
    [137] SONG M Y, KIM D K, IHN K J, et al. New Application of Electrospun TiO2Electrode to Solid-State Dye-Sensitized Solar Cells [J]. Synth. Met.,2005,153:7780.
    [138] FUJIHARA K, KUMAR A, JOSE R, et al. Spray Deposition of Electrospun TiO2Nanorods for Dye-Sensitized Solar Cell. Nanotechnology,2007,18,365709365804.
    [139] LIU J, YUE Z R, FONG H. Continuous Nanoscale Carbon Fibers with SuperiorMechanical Strength [J]. Small,2009,5:536542.
    [140] OLSON D C, SHAHEEN S, WHITE M. Band-Offset Engineering for EnhancedOpen-Circuit Voltage in Polymer–Oxide Hybrid Solar Cells [J]. Adv. Funct. Mater.,2007,17:264269.
    [141] AGARWAL S, WENDORFF J H, GREINER A. Use of Electrospinning Techniquefor Biomedical Applications [J]. Polymer,2008,49:56035621.
    [142] ABIDIAN M, KIM D, MARTIN D. Conducting-Polymer Nanotubes for ControlledDrug Release [J]. Adv. Mater.,2006,18:405409.
    [143] CHEW S Y, MI R, HOKE A, et al. The Effect of the Alignment of ElectrospunFibrous Scaffolds on Schwann Cell Maturation [J]. Biomaterials,2008,29:653661.
    [144] SIKAREEPAISAN P, SUKSAMRARN A, SUPAPHOL P, Electrospun GelatinFiber Mats Containing a Herbal—Centella asiatica—Extract and Release Characteristicof Asiaticoside [J]. Nanotechnology,2008,19:015102015112.
    [145] HAIDER S, PARK S Y. Preparation of the Electrospun Chitosan Nanofbers andtheir Applications to the Adsorption of Cu(II) and Pb(II) Ions from an Aqueous Solution[J]. Journal of Membrane Science,2009,328:90–96
    [146] HUANG C, CHUNG Y C, LIOU M R. Adsorption of Cu(II) and Ni(II) byPelletized Biopolymer [J]. J. Hazard. Mater.,1996,45:265–277.
    [147] NGAH W S, ENDUD C S, MAYANAR R. Removal of Copper(II) Ions fromAqueous Solution onto Chitosan and Cross-Linked Chitosan Beads [J]. React. Funct.Polym.,2002,50:181–190.
    [148] LI S K, LU X F, LI X, et al. Preparation of Bamboo-like PPy Nanotubes and theirApplication for Removal of Cr(VI) Ions in Aqueous Solution [J]. Journal of Colloid andInterface Science,2012,378:3035.
    [149] NEGHLANI P K, RAFIZADEH M. Preparation of Aminated-PolyacrylonitrileNanofber Membranes for the Adsorption of Metal Ions: Comparison with Microfbers [J].Journal of Hazardous Materials,2011,186:182189.
    [150] ZUWEI M, KOTAKI S, RAMAKRISHNA S. Electrospun Cellulose Nanofber asAffnity Membrane [J]. J. Membr. Sci.,2005,265:115–123.
    [151] MA Z J, JI H J, TENG Y, et al. Engineering and Optimization of Nano-andMesoporous Silica Fibers Using Sol–Gel and Electrospinning Techniques for Sorption ofHeavy Metal Ions [J]. Journal of Colloid and Interface Science,2011,358:547553.
    [152] WU S G, LI F T, WANG H T, et al. Effects of Poly (vinyl alcohol)(PVA) Contenton Preparation of Novel Thiol-Functionalized Mesoporous PVA/SiO2Composite NanofberMembranes and their Application for Adsorption of Heavy Metal Ions from AqueousSolution [J]. Polymer,2010,51:62036211.
    [153] IRANI M, KESHTHAR A R, MOOSAVIAN M A. Removal of Cadmium fromAqueous Solution Using Mesoporous PVA/TEOS/APTES Composite Nanofber Preparedby Sol–Gel/Electrospinning [J]. Chem. Eng. J.,2012,200202:192201.
    [154] MIN M H, SHEN L D, HONG G. Micro-Nano Structure Poly(ether sulfones)/Poly(ethyleneimine) Nanofbrous Affnity Membranes for Adsorption of Anionic Dyes andHeavy Metal Ions in Aqueous Solution [J]. Chem. Eng. J.,2012,197:88100.
    [155] XU G R, WANG J N, LI C J. Preparation of Hierarchically Nanofbrous Membraneand its High Adaptability in Hexavalent Chromium Removal from Water [J]. Chem. Eng.J.,2012,198199:310317.
    [156] PARK C, LEE J. Electrosprayed Polymer Particles: Effect of the Solvent Properties[J]. J. Appl. Polym. Sci.,2009,114:430437.
    [157] RAYLEIGH L. On the Equilibrium of Liquid Conducting Masses Charged withElectricity [J]. Phil. Mag. Ser.,1882,14:184186.
    [158] ZELENY J. The Electrical Discharge from Liquid Points, and a Hydrostatic Methodof Measuring the Electric Intensity at their Surfaces [J]. Phys. Rev.,1914,3:6991.
    [159] TAYLOR G. Disintegration of Water Drops in an Electric Field. Proc. Roy. Soc.London Ser. A Math. Phys. Sci.,1964,280:383397.
    [160] BOCK N, A.WOODRUFF M, HUTMACHER D. Electrospraying, a ReproducibleMethod for Production of Polymeric Microspheres for Biomedical Applications [J].Polymers,2011,3:131149.
    [161] BAILAY A G. Electrostatic spraying of liquids, Wiley, New york1988.
    [162] HAO X, LU X, Li Z, et al. Effects of the Electrospray Ionization Parameters on theFormation and Morphology of Colloidal Microspheres of Polyacrylonitrile [J]. J. Appl.Polym. Sci.,2006,102:28892893.
    [163] HAYATI I, BAILEY A I, TADROS T F. Investigations into the Mechanisms ofElectrohydrodynamic Spraying of Liquids. Pt: I. Effect of Electric Field and the Environmenton Pendant Drop and Factors Affecting the Formation of Stable Jets and Atomisation [J].J. Colloid Interface Sci.,1987,117:205–221.
    [164] HAYATI I, BAILEY A I, TADROS T F. Investigations into the Mechanisms ofElectrohydrodynamic Spraying of Liquids. Pt: II. Mechanism of Stable Jet Formation andElectrical Forces Acting on a Liquid Cone [J]. J. Colloid Interface Sci.,1987,117:222–230.
    [165] CLOUPEAU M. PRUNET-FOCH B. Electrohydrodynamic Spraying FunctioningModes. A Critical Review [J]. J. Aerosol Sci.,1994,25:1121–1136.
    [166] SHIRYAEVA S O, GRIGOR’EV A I. The Semiphenomenological Classifcation ofthe Modes of Electrostatic Dispersion of Liquids [J]. J. Electrostat.,1995,34:51–59.
    [167] JAWOREK A, KRUPA A. Classifcation of the Modes of EHD Spraying [J]. J.Aerosol Sci.,1999,30:873–893.
    [168] JAWOREK A, KRUPA A. Jet and Drops Formation in ElectrohydrodynamicSpraying of Liquids A Systematic Approach [J]. Exp. Fluids.,1999,27:43–52.
    [169] JOFFRE G H, CLOUPEAU M. Characteristic Forms of Electrifed Menisci EmittingCharges [J], J. Electrostat.,1986,18:147–161.
    [170] MEESTERS G M H, VERCOULEN P H W, MARIJNISSEN J, et al. Generation ofMicron-Sized Droplets from the Taylor Cone [J]. J. Aerosol Sci.,1992,23:37–49.
    [171] LOPEZ-HERRERA J M, BARRERO A, LOPEZ A, et al. Coaxial Jets Generatedfrom Electrifed Taylor Cones Scaling Laws [J]. J. Aerosol Sci.,2003,34:535–552.
    [172] BARRERO A, LOPEZ-HERRERA J M, BOUCARD A, et al. Steady Cone-JetElectrosprays in Liquid Insulator Baths [J]. J. Colloid Interface Sci.,2004,272:104–108.
    [173] BASAK S, CHEN D R, BISWAS P. Electrospray of Ionic Precursor Solutions toSynthesize Iron Oxide Nanoparticles: Modifed Scaling Law [J]. Chem. Eng. Sci.,2007,62:1263–1268.
    [174] PAINE M D, ALEXANDER M S, STARK J P W. Nozzle and Liquid Effects on theSpray Modes in Nanoelectrospray [J] J. Colloid Interface Sci.,2007,305:111–123.
    [175] LENGGORO I W, OKUYAMA K. Preparation of Nanometer-Sized Zinc SulfdeParticles by Electrospray Pyrolysis [J]. J. Aerosol Sci.,1997,28:351–352.
    [176] JAWOREK A, SOBCZYK A T. Electrospraying Route to Nanotechnology: AnOverview [J]. Journal of Electrostatics,2008,66:197–219.
    [177] JAWOREK A. Micro-and Nanoparticle Production by Electrospraying [J]. PowderTechnology,2007,176:18–35.
    [178] ZELENY J. The Electrical Discharge from Liquid Points and a Hydrostatic Methodof Measuring the Electric Intensity at their Surface [J]. J. Zeleny. Phys. Rev.,1914,3:6992.
    [179] NAKASO K, HAN B, AHN K, et al. Synthesis of Non-Agglomerated Nanoparticlesby an Electrospray Assisted Chemical Vapor Deposition (ES-CVD) Method [J]. J. AerosolSci.,2003,34:869–881.
    [180] SUH J S, HAN B W, OKUYAMA K K, et al. Highly Charging of Nanoparticlesthrough Electrospray of Nanoparticle Suspension [J]. Journal of Colloid and InterfaceScience,2005,287:135–140.
    [181] JAWOREK A. Electrospray Droplet Sources for Thin Film Deposition, A Review[J]. J. Materials Sci.,2007,42:266–297.
    [182] LEWIS K C, DOHMELER D M, JORGENSON J, et al. Electrospray-CondensationParticle Counter: A Molecule-Counting LC Detector for Macromolecules [J]. Anal.Chem.,1994,66:2285–2292.
    [183] CHEN D R, PUI D, KAUFIMAN Y H. Electrospraying of Conducting Liquids forMonodisperse Aerosol Generation in the4nm to1.8μm Diameter Range [J]. J. AerosolSci.,1995,26:963–977.
    [184] XIE J W, LIM L K, PHUA Y Y, et al. Electrohydrodynamic Atomization forBiodegradable Polymeric Particle Production [J]. Journal of Colloid and Interface Science,2006,302:103–112.
    [185] FANTINI D, ZANETTI M, COSTA L. Polystyrene Microspheres and NanospheresProduced by Electrospray [J]. Macromol. Rapid Commun,2006,27:2038–2042.
    [186] WU Y Q, ROBERT L, CLARK. Controllable Porous Polymer Particles Generatedby Electrospraying [J]. Journal of Colloid and Interface Science,2007,310:529–535.
    [187] ALMERISA B, DENG W W, FAHMY T, et al. Controlling the Morphology ofElectrospray-Generated PLGA Microparticles for Drug Delivery [J]. Journal of Colloidand Interface Science,2010,343:125–133.
    [188] LIU Z Y, BAI H W, SUN D D. Facile Fabrication of Porous Chitosan/TiO2/Fe3O4Microspheres with Multifunction for Water Purifcations [J]. New J. Chem.,2011,35:137–140.
    [189] MOON J H, YI G R, YANG S M, et al. Electrospray-Assisted Fabrication ofUniform Photonic Balls [J]. Adv. Mater.,2004,16:605–609.
    [190] NAKASO K, HAN B, AHN K H, et al. Synthesis of Nonagglomerated Nanoparticlesby an Electrospray Assisted Chemical Vapor Deposition (ES-CVD) Method [J]. J. AerosolSci.,2003,34:869–881.
    [191] MURTOMA M, KIVIKERO N, MANNERMA J P, et al. Electrostatic Atomizationin the Microscale Granulation [J]. J. Electrost.,2005,63:891–897.
    [192] WANG D Z, JAYASINGHE S, EDIRISINGHE M. High Resolution Printpatterningof a Nano-Suspension [J]. J. Nanopart. Res.,2005,7:301–306.
    [193] LI S W, JAYASINGHE S N, EDIRISINGE M J. Aspirin Particle Formation byElectric-Field-Assisted Release of Droplets [J]. Chem. Eng. Sci.,2006,61:3091–3097.
    [194] ARYA N, CHAKRABORTY S, DUBE N. Electrospraying: A Facile Technique forSynthesis of Chitosan-based Micro/Nanospheres for Drug Delivery Applications. Journalof Biomedical Materials Research Part B: Applied Biomaterials,2009,88:1731.
    [195] JAYASINGHE S N, EDIRISINGHEL M J, WANG D Z. Controlled Deposition ofNanoparticle Clusters by Electrohydrodynamic Atomization [J]. Nanotechnology,2004,15:1519–1523.
    [196] VALO H, PELTONEN L, KARJALAIMEN M, et al. Electrospray Encapsulation ofHydrophilic and Hydrophobic Drugs in Poly(L-lactic acid) Nanoparticles [J]. Small,2009,5:1791–1798.
    [197] CHRISTOPHER J, HOGAN J, YUN K M, et al. Controlled Size Polymer ParticleProduction via Electrohydrodynamic Atomization [J]. Colloids and Surfaces A: Physicochem.Eng. Aspects.,2007,311:67–76.
    [198] HAQUE S, JOHANNESSON K H. Arsenic Concentrations and Speciation Along aGroundwater Flow Path: the Carrizo Sand Aquifer, Texas [J]. USA. Chem. Geol.,2006,228:5771.
    [199] VAKLAVIKOVA M, GALLIO G P, HREDZAK S. Removal of Arsenic from WaterStreams: an Overview of Available Techniques [J]. Clean Technol. Policy.,2008,10:8995.
    [200] USEPA,2000. US Environmetal Protection Agency (EPA), Technologies and Costfor Removal of Arsenic from Water Drinking Water. EPA815-R-00-028,2000.
    [201] SHIH M. An Overview of Arsenic Removal by Pressure-Driven Membrane Processes,Desalination,2005,172:8597.
    [202] FIERRO G, MUNIZ G, GONZALEZ M L, et al. Arsenic Removal by Iron-DopedActivated Carbons Prepared by Ferric Chloride Forced Hydrolysis [J]. J. Hazard. Mater,2009,168:430437.
    [203] MOHAN D, PITTMAN C U. Arsenic Removal from Water/wastewater usingAdsorbents-Acritical Review [J]. J. Hazard. Mater.,2007,142:153.
    [204] WELCH A H, WATKINS S A, HELSEL D R, et al. Arsenic in Ground-WaterResources of the United States. USGS Fact Sheet FS-063-00,2000.
    [205] SHARMA V K, SOHN M. Aquatic Arsenic: Toxicity, Speciation, Transformation,and Remediation [J]. Environ. Int.,2009,35:743–759.
    [206] KARTINEN E O, MARTIN C J. An Overview of Arsenic Removal Processes [J]Desalination,1995,103:7988.
    [207] TWARAKAVI N K C, KALUARACHCHI J J. Arsenic in the Shallow GroundWaters of Conterminous United States: Assessment, Health Risks, and Costs for MCLCompliance [J]. Journal of American Water Resources Association,2007,42:275–294.
    [208] SINGH A K. Chemistry of Arsenic in Groundwater of Ganges-Brahmaputra RiverBasin [J]. Current Science,2006,91:599–606.
    [209] SMEDLEY P L, KINNIBURGH D G A. Review of the Source, Behavior andDistribution of Arsenic in Natural Waters [J]. Applied Geochemistry,2002,17:517–568.
    [210] MUKHERJEE A, SENGUPTA M K, HOSSAIN M A. Arsenic Contamination inGroundwater: A Global Perspective with Emphasis on the Asian Scenario [J]. Journal ofHealth Population and Nutrition,2006,24:142–163.
    [211] CHOWDHURY U, BISWAS B, CHOWDHURY T. Groundwater Arsenic Contaminationin Bangladesh and West Bengal, India [J] Environmental Health Perspectives,2000,108:393–397.
    [212] HENKE, KEVIN R. Arsenic: Environmental Chemistry, Health Threats and WasteTreatment. p.317.2009.
    [213] DEMIRBAS E, DIZGE N, SULAK M T, et al. Adsorption Kinetics and Equilibrium ofCopper from Aqueous Solutions Using Hazelnut Shell Activated Carbon [J]. ChemicalEngineering Journal,2009,148:480487.
    [214] SHRIVASTAVA A K. A Review on Copper Pollution and its Removal from WaterBodies by Pollution Control Technologies [J]. Indian J. Environmental Protection.,2009,29:552560.
    [215] BREWER G J. Copper Toxicity in the Genaral Population [J]. Clin Neurophysiol,2010,121:459460.
    [216] KING P, SRINIVAS P, KUMAR P Y, et al. Sorption of Copper(II) Ion fromAqueous Solution by Tectona Grandis (Teak Leaves Powder)[J]. J. Hazard. Mater.,2006,136:560566.
    [217] YU B, ZHANG Y, SHUKLA S. The Removal of Heavy Metal from Aqueous Solutionsby Sawdust Adsorption-Removal of Copper [J]. J. Hazard. Mater.,2000, B80:3342.
    [218] AHMAD A, RAFATULLAH M. Removal of Cu(II) and Pb(II) Ions from AqueousSolutions by Adsorption on Sawdust of Meranti Wood [J]. Desalination,2009,250:300310.
    [1] CHEN J, ZHANG J, XIAN Y, et al. Preparation and Application of TiO2PhotocatalyticSensor for Chemical Oxygen Demand Determiniation in Water Research [J]. WaterResearch,2005,39:13401346.
    [2] WEI D, AMARATUNGA G. Photoelectrochemical Cell and its Applications inOptoelectronics [J]. Int. J. Electrochem. Sci.,2007,2:897912.
    [3] LEE W S, WAN B, KUO C, et al. Maintaining Catalytic Activity of Au/TiO2Duringthe Storage at Room Temperature [J]. Catalysis Communications,2007,8:16041608.
    [4] LI W, PAN G, ZHANG M, et al. EXAFS Studies on Adsorption Irreversibility ofZn(II) on TiO2: Temperature Dependence [J]. J Colloid Interf Sci.,2008,319:385391.
    [5] HUANG C, JIANG Z, HU B. Mesoporous Titanium Dioxide as a Novel Solid-PhaseExtraction Material for Flow Injection Micro-Column Preconcentration On-line Coupledwith ICP-OES Determination of Trace Metals in Enviromental Samples [J]. Talanta,2007,73:274281.
    [6] ZHAO X, JIA Q, SONG N, et al. Adsorption of Pb(II) from an Aqueous Solution byTitanium Dioxide/Carbon Nanotube Nanocomposites: Kinetics, Thermodynamics, andIsotherms [J]. J. Chem. Eng. Data.,2010,55:44284433.
    [7] DUTTA P K, RAY A K, SHARMA V K, et al. Adsorption of Arsenate and Arseniteon Titanium Dioxide Suspensions [J]. J Colloid Interf Sci.,2004,278:270275.
    [8] BANG S, PATEL M, LIPPINCOTT L, et al. Removal of Arsenic from Groundwaterby Granular Titanium Dioxide Adsorbent [J]. Chemosphere,2005,60:389397.
    [9] KIM M S, HONG K M, CHUNG J G. Removal of Cu(II) from Aqueous Solutions byAdsorption Process with Anatase-Type Titanium Dioxide [J]. Water Research,2003,37,35243529.
    [10] BREWER G J. Copper Toxicity in the Genaral Population [J]. Clin Neurophysiol,2010,121:459460.
    [11] LIANG P, QIN Y C, HU B, et al. Nanometer-size Titanium Dioxide MicrocolumnOn-line Preconcentration of Trace Metals and their Determination by Inductively CoupledPlasma Atomic Emission Spectrometry in Water [J]. Anal. Chim. Acta.,2001,440:207213.
    [12] GEORGAKA A, SPANOS N. Study of the Cu(II) Removal from Aqueous Solutionsby Adsorption on Titania [J]. Global nest Journal.,2010,12:239247.
    [13] VISA M, CARCEL R A, ANDRONIC L, et al. Advanced Treatment of Wastewaterwith Methyl Orange and Heavy Metals on TiO2, Fly Ash and their Mixtures [J]. CatalysisToday,2009,144:137142.
    [14] YOON S H, OH S E, YANG J E, et al. TiO2Photocatalytic Oxidation Mechanism ofAs(III)[J]. Environ. Sci. Technol.,2009,43:864869.
    [15] BUTLER E C, DAVIS A P. Photocatalytic Oxidation in Aqueous Titanium-DioxideSuspensions-the Influence of Dissolved Transition-Metals [J]. J. Photochem. Photobiol A.,1993,70:273283.
    [16] BIDEAU M, CLAUDEL B, FAURE L, et al. The Photooxidation of Acetic Acid byOxygen in the Presence of Titanium Oxide (Anatase and Rutile)[J]. Langmuir,2001,17:749756.
    [17] ZHANG X W, XU S Y, HAN G R. Fabrication and Photocatalytic Activity of TiO2Nanofiber Membrane [J]. Materials Letter,2009,63:17611763.
    [18] JUENGSUWATTANANON K, RUJITANAROJ P, SUPAPHOL P, et al. Preparationof Ultrafine TiO2Nanofiber and their Application in Removal of NOxin Air [J]. MaterialsScience Forum Vol,2008,569:2528.
    [19] ASHKARRAN A A, MAHMOUDI E. Photocatalytic Activity of TiO2NanofibersPrepared by Liquid Phase Deposition [J]. Journal of Theoretical and Applied Physics,2010,3:1924.
    [20] AMIN S S, LI S Y, WU X X, et al. Facile Synthesis and Tensile Behavior of TiO2One-Dimensional Nanostructures [J]. Nanoscale Res Lett.,2010,5:338343.
    [21] YU J, YU H, CHENG B. Preparation and Photocatalytic Activity of MesoporousAnatase TiO2Nanofibers by Hydrothermal Method [J]. J. Photochemistry and PhotobiologyA: Chemistry,2006,182:121127.
    [22] ZHANG W, ZHU R, KE L, et al. Anatase Mesoporous TiO2Nanofibers with HighSurface Area for Solid-State Dye-Sensitized Solar Cell [J]. Small,2010,6:21762182.
    [23] SONG X F, WANG Z J, LI Z Y, et al. Ultrafine Porous Carbon Fibers for SO2Adsorption via Electrospinning of Polyacrylonitrile Solution [J]. J Colloid Interf Sci.,2008,327:388392.
    [24] MADHUGIRI S, SUN B, SMIRNIOTIS P, et al. Electrospun Mesoporous TitaniumDioxide Fiber [J]. Microporous and Mesoporous Materials,2004,69:7783.
    [25] DAI Y Q, COBLEY C M, ZENG J, et al. Synthesis of Anatase TiO2Nanocrystalswith Exposed {001} Facets [J]. Nano Letters,2009,9:24552459.
    [26] CHANDRASEKAR, ZHANG L, HOWE J, et al. Fabrication and Characterization ofElectrospun Titania Nanofibers [J]. J. Mater. Sci.,2009,44:11981205.
    [27] NUANSING W, NINMUANG S, JARERNBOON W. Structural Characterization andMorphology of Electrospun TiO2Nanofiber [J]. Materials Science and Engineering B,2006,131:147155.
    [28] SHARMA Y C, UMA, UPADHYAY S. Removal of a Cationic Dye from Wastewatersby Adsorption on Activated Carbon Developed from Coconut Coir [J]. Energy Fuels,2009,23:29832988.
    [29] SING K S W, EVERETT D H, HAUL R A W, et al. Reporting Physisorption Data forGas/Solid Systems with Special Reference to the Determination of Surface Area andPorosity [J]. Pure Appl. Chem.,1985,57:603619.
    [30] YANG P D, ZHAO D Y, MARGOLESE D I, et al. Block Copolymer TemplatingSyntheses of Mesoporous Metal Oxides with Large Ordering Lenghts and SemicrystallineFramework [J]. Chem. Mater.,1999,11:28132826.
    [31] KOSMULSKI M. The Significance of the Difference in the Point of Zero Chargebetween Rutile and Anatase [J]. Advance Colloid Interface Science,2002,99:255264.
    [32] BALABIN R M, SYUNYAEV R Z. Petroleum Resins Adsorption onto Auartz Sand:Near Infrared (NIR) Spectroscopy Study [J]. J. Colloid Interf. Sci.,2008,318:167174.
    [33] BALABIN R M, SYUNYAEV R Z, STADLER T, et al. Asphaltene Adsorption ontoan Iron Surface: Combined Near-infrared (NIR), Raman, and AFM Study of the Kinetics,Thermodynamics, and Layer Structure [J]. Energy Fuels,2011,25:189196.
    [34] SYUNYAEV R, BALABIN R, AKHATOV I, et al. Adsorption of PetroleumAsphaltenes onto Reservoir Rock Sands Studied by Near-Infrared (NIR) Spectroscopy [J].Energy Fuels,2009,23:12301236.
    [35] DRON J, DODI A. Comparison of Adsorption Equilibrium Models for the Study ofCL, NO3and SO42Removal from Aqueous Solutions by an Anion Exchange Resin J.Hazard. Mater.,2011,190:300307.
    [36] LUDWIG C, SCHINDLER P W. Surface Complexation on TiO2: I. Adsorption of H+and Cu2+Ions onto TiO2(Anatase)[J]. J Colloid Interf Sci.,1995,169:284290.
    [37] VASSILEVA E, PROINOVA I, HADJIIVANOVE K. Solid-phase Extraction ofHeavy Metal Ions on a High Surface Area Titanium Dioxide (Anatase)[J]. Analyst,1996,121:607612.
    [38] BRAKAT M A. Adsorption Behavior of Copper and Cyanide Ions at TiO2–SolutionInterface [J]. J Colloid Interf Sci.,2005,291:345352.
    [39] DEMIRBAS E, DIZGE N, SULAK M, et al. Adsorption Kinetics and Equilibrium ofCopper from Aqueous Solutions Using Hazelnut Shell Activated Carbon. Chem. Eng. J.,2009,148:480487.
    [40] SARI A, TUZEN M, CITAK D, et al. Equilibrium, Kinetic and ThermodynamicStudies of Adsorption of Pb(II) from Aqueous Solution onto Turkish Kaolinite Clay [J]. J.Hazard. Mater.,2007,149:283291.
    [41] ONYANGO M, KOJIMA Y. Adsorption Equilibrium Modeling and Solution ChemistryDependence of Fluoride Removal from Water by Trivalent Cation Exchanged Zeolite F-9[J]. J. Colloid. Interf. Sci.,2004,279:341350.
    [1] PENA M E, KORFIATIS G P, PATEL M, et al. Adsorption of As(V) and As(III) byNanocrystalline Titanium Dioxide [J]. Water Research,2005,39:23272337.
    [2] MANDAL S, PADHI T, PATEL R K. Studies on the Removal of Arsenic (III) fromWater by a Novel Hybrid Material [J]. J. Hazard. Mater.,2011,192:899908.
    [3] WHO, Guidelines for Drinking Water Quality, World Health Organization, Geneva,Switzerland,1993.
    [4] SINGH M, THANH D N, ULBRICH P, et al. Synthesis, Chacracterization and Study ofArsenate Adsorption from Aqueous Solution by-and--phase Manganese DioxideNanoadsorbents [J]. J. Sol. Sta. Chem.,2010,183,29792986.
    [5] DUTTA P K, RAY A K, SHARMA V K, et al. Adsorption of Arsenate and Arsenite onTitanium Dioxide Suspensions [J]. J. Colloid Interface Sci.,2004,278:270275.
    [6] BANG S, PATEL M, LIPPINCOTT L. Removal of Arsenic from Groundwater byGranular Titanium Dioxide Adsorbent [J]. Chemosphere,2005,60:389397.
    [7] LIU G, ZHANG X, TALLEY J, et al. Effect of NOM on Arsenic Adsorption by TiO2inSimulated As(III)-Contaminated Raw Water [J]. Water. Res.,2008,42:23092319.
    [8] NIU H, WANG M, SHI L, et al. Adsorption Behavior of Arsenic onto ProtonatedTitanate Nanotubes Prepared via Hydrothermal Method [J]. Microporous MesoporousMater,2009,122:2835.
    [9] XU Z H, MENG X G. Size Effects of Nanocrystalline TiO2on As(V) and As(III)Adsorption and As(III) Photooxidation [J]. J. Hazard. Mater.,2009,168:747752.
    [10] JEGADEESAN G, AL-ABED S R, SUNDARAM V, et al. Arsenic Sorption on TiO2Nanoparticles: Size and Crystallinity Effects [J]. Water. Res.,2010,44:965973.
    [11] PIRILA M, MARTIKAINEN M, AINASSAARI K, et al. Removal of AqueousAs(III) and As(V) by Hydrous Titanium Dioxide [J]. J. Colloid Interface Sci.,2011,353:257262.
    [12] GUAN X H, DU J S, MENG X G, et al. Application of Titanium Dioxide in ArsenicRemoval from Water: A Review [J]. J. Hazard. Mater.,2012,215216:116.
    [13] RACHEL A, SUBRAHMANYAM M, BOULE P. Comparison of PhotocatalyticEfficiencies of TiO2in Suspended and Immobilised form for the Photocatalytic Degradationof Nitrobenzenesulfonic Acids [J]. Appl. Catal. B: Environ.,2002,37:301308.
    [14] ZHANG X W, XU S Y, HAN G R. Fabrication and Photocatalytic Activity of TiO2Nanofber Membrane [J]. Mater. Lett.,2009,63:17611763.
    [15] XU S Y, SHI Y, GOOK S. Fabrication and Mechanical Property of Nano PiezoelectricFibers [J]. Nanotechnology,2006,17:44974501.
    [16] VU D, LI Z, ZHANG H, et al. Adsorption of Cu(II) from Aqueous Solution byAnatase Mesoporous TiO2Nanofibers Prepared via Electrospinning [J]. J. Colloid. Interf.Sci.,2012,367:429435.
    [17] LI D, T. MCCANN J, XIA Y. Electrospinning: A Simple and Versatile Techniquefor Producing Ceramic Nanofibers and Nanotubes [J]. J. Am. Ceram. Soc.,2006,89:18611869.
    [18] KOO C M, HAM H, CHOI M, et al. Characteristics of Polyvinylpyrrolidone-LayeredSilicate Nanocomposites Prepared by Attrition Ball Milling [J]. Polymer,2003,44:681689.
    [19] SHANG S Q, JIAO X L, CHEN D. Template-Free Fabrication and PhotocatalyticProperties of TiO2Hollow Spheres [J]. ACS Appl.Mater. Interf.,2012,4:860865.
    [20] LI Y J, MA M Y, SUN S, et al. Preparation of TiO2-Carbon Surface Composites withHigh Photoactivity by Supercritical Pretreatment and Sol-Gel Processing [J]. Appl. Surf.Sci.,2008,254:41544158.
    [21] ZHANG H Z, BANFIELD J. Understanding Polymorphic Phase TransformationBehavior During Growth of Nanocrystalline Aggregates: Insights from TiO2[J]. J. Phys.Chem. B.,2000,104:34813487.
    [22] SUN Q, XU Y. Evaluating Intrinsic Photocatalytic Activities of Anatase and RutileTiO2for Organic Degradation in Water [J]. J. Phys. Chem. C.,2010,114:1891118918.
    [23] YU J G, YU H G, CHENG B, et al. The Effect of Calcination Temperature on theSurface Microstructure and Photocatalytic Activity of TiO2Thin Films Prepared byLiquid Phase Deposition [J]. J. Phys. Chem. B.,2003,107:1387113879.
    [24] LI D, XIA N. Electrospinning Nanofibers Reinventing the Whell [J]. Adv.Mater.,2004,16:11511170.
    [25] DAI Y Q, COBLEY C M, ZENG J, et al. Synthesis of Anatase TiO2Nanocrystalswith Exposed {001} Facets [J]. Nano Letters,2009,9:24552459.
    [26] LI D, XIA Y. Fabrication of Titania Nanofibers by Electrospinning [J]. Nano Letter,2003,3:555560.
    [27] YU J G, SU Y S, CHENG B. Template-Free Fabrication and Enhanced PhotocatalyticActivity of Hierarchical Macro-/Mesoporous Titania [J]. Adv. Funct. Mater.,2007,17:19841990.
    [28] SING K, EVERETT D, HAUL R, et al. Reporting Physisorption Data for Gas/SolidSystems with Special Reference to the Determination of Surface Area and Porosity [J].Pure Appl. Chem.,1985,57:603619.
    [29] GREGG S, SING K S. Adsorption, Surface Area and Porosity,2nd ed, AcademicPress, London,1982.
    [30] YU J G, SU Y R, CHENG B, et al. Effects of pH on the Microstructures andPhotocatalytic Activity of Mesoporous Nanocrystalline Titania Powders Prepared viaHydrothermal Method [J]. Catal. A: Chem.,2006,258:104112.
    [31] HO Y S, MCKAY G. Comparative of Chemisorption Kinetics Models Applied toPollutant Removal on Various Sorbents [J]. J. Environ. Sci. Health. Part A.,1999,34:11791204.
    [32] ZHANG Y, LI Q, SUN L, et al. High Efficient Removal of Mercury from AqueousSolution by Polianiline/Humic Acid Nanocomposite [J]. J. Hazard. Mater.,2010,175:404409.
    [33] LANGMUIR I. The Adsorption of Gases on Plane Surfaces of Glass, Mica andPlatinium [J]. J. Am. Chem. Soc.,1918,40:13611403.
    [34] KUMAR K V. Comparative Analysis of Linear and Non-linear Method of Estimating theSorption Isotherm Parameters for Malachite Green onto Activated Carbon [J]. J. Hazard.Mater.,2006, B136:172202.
    [35] PENNA M, MENG X G, KORFIATIS G P, et al. Adsorption Mechanism of Arsenic onNanocrystalline Titanium Dioxide [J]. Environ. Sci. Technol.,2006,40:12571262.
    [36] ZHANG K, DWIVEDI V, CHI C et al. Graphene Oxide/Ferric Hydroxide Composites forEffcient Arsenate Removal from Drinking Water [J]. J. Hazard. Mater.,2010,182:162168.
    [37] DENG S, YU G, XIE S. et al. Enhanced Adsorption of Arsenate on the AminatedFibers: Sorption Behavior and Uptake Mechanism [J]. Langmuir,2008,24:1096110967.
    [38] GIMENEZ J, MARTINEZ M, PABLO J, et al. Arsenic Sorption onto Natural Hematite,Magnetite, and Goethite [J]. J. Hazard. Mater.,2007,141:575580.
    [39] SINGH T S, PANT K K. Equilibrium, Kinetics and Thermodyanamic Studies forAdsorption of As(III) on Activated Aluminia [J]. Sep. Purif. Technol.,2004,36:139147.
    [40] PILLEWANA P, MUKHERJEE S, ROYCHOWDHURY T, et al. Removal of As(III)and As(V) from Water by Copper Oxide Incorporated Mesoporous Alumina [J]. J. Hazard.Mater.,2011,186:367375.
    [41] FENG L, CAO M H, MA X Y, et al. Superparamagnetic High Surface Area Fe3O4Nanoparticles as Adsorbents for Arsenic Removal [J]. J. Hazard. Mater.,2012,217218:439446.
    [42] LIN S, LU D, LIU Z. Removal of Arsenic Contaminants with Magnetic-Fe2O3Nanoparticles [J]. Chem. Eng. J.,2012,211212:4652.
    [1] ZHANG K, DWIVEDI V, CHI C. Graphene Oxide/Ferric Hydroxide Compositesfor Efficient Arsenate Removal from Drinking Water [J]. J. Hazard. Mater.,2010,182:162168.
    [2] HARVEY C F, ASHFAQUE K N, YU W, et al. Groundwater Dynamics and ArsenicContamination in Bangladesh [J]. Chemical Geology,2006,228:112136.
    [3] CULLEN W R, REIMER K J. Arsenic Speciation in the Environment [J]. Chem. Rev.,1999,89:713764.
    [4] SMEDLEY P L, KINNIBURGH D G. A Review of the Source, Behaviour and Distributionof Arsenic in Natural Waters [J]. Applied Geochemistry.,2002,17:517568.
    [5] BASKAN M B, PALA A. Removal of Arsenic from Drinking Water Using ModifedNatural Zeolite [J]. Desalination,2011,281:396403.
    [6] WEI Y T, ZHENG Y M, CHEN J P. Enhanced Adsorption of Arsenate onto aNatural Polymer-based Sorbent by Surface Atom Transfer Radical Polymerization [J].Journal of Colloid and Interface Science,2011,356:234239.
    [7] PIRILA M, MARTIKAINEN M, AINASSAARI K, et al. Removal of Aqueous As(III)and As(V) by Hydrous Titanium Dioxide [J]. Journal Colloid Interface Science,2011,353:257262.
    [8] ABOU EL-REASH Y G, OTTO M, KENAWY I M, et al. Adsorption of Cr(VI) andAs(V) Ions by Modified Magnetic Chitosan Chelating Resin [J]. International Journal ofBiological Macromolecules,2011,49:513522.
    [9] DENG S B, YU G, XIE S H, et al. Enhanced Adsorption of Arsenate on the AminatedFibers: Sorption Behavior and Uptake Mechanisms [J]. Langmuir,2008,24:1096110967.
    [10] GERENTE C, ANDRES Y, MCKAY G, et al. Removal of As(V) onto Chitosan fromSorption Mechanism Explanation to Dynamic Water Treatment Process [J]. Chem. Eng. J.,2010,158:593598.
    [11] KENAWY E R, BOWLIN G L, MANSFIELD K, et al. Release of TetracyclineHydrochloride from Electrospun Poly(ethylene-co-vinylacetate), Poly(lactic acid), and a Blend[J]. J. Controlled Release.,2002,81:5764.
    [12] BUCHKO C, CHEN L, SHEN Y, et al. Processing and Microstructural Characterizationof Porous Biocompatible Protein Polymer Thin Films [J]. Polymer,1999,40:73977407.
    [13] GIBSON P, SCHREUDER-GIBSON H H, RIVIN D. Electrospun Fiber Mats: TransportProperties [J]. AIChE J.,1999,45:190-195.
    [14] GIBSON P, SCHREUDER G H, RIVIN D. Transport Properties of Porous MembranesBased on Electrospun Nanofibers [J]. Colloids Surface A,2001,187188:469481.
    [15] AUSSAWASATHIEN D, DONG J, DAI L. Electrospun Polymer Nanofiber Sensors[J]. Synth. Met.,2005,154:3740.
    [16] VERRECK G, CHUN I, ROSENBLATT, et al. Incorporation of Drugs in an AmorphousState into Electrospun Nanofibers Composed of a Water-Insoluble, Nonbiodegradable Polymer[J]. J. Controlled Release.,2003,92:349360.
    [17] KHIL M S, CHA D I, KIM H Y. Electrospun Nanofibrous Polyurethane Membrane asWound Dressing [J]. J. Biomed. Mater. Res. B.,2003,67B:675679.
    [18] SAEED K, HAIDER S, OH T J. Preparation of Amidoxime-Modified Polyacrylonitrile(PAN-oxime) Nanofibers and Their Applications to Metal Ions Adsorption [J]. J. Membr. Sci.,2008,322:400405.
    [19] KAMPALANONWAT P, SUPAPHOL. Preparation and Adsorption Behavior of AminatedElectrospun Polyacrylonitrile Nanofiber Mats for Heavy Metal Ion Removal [J]. Appl. Mater.Interfaces.,2010,2:3619–3627.
    [20] DENG S, BAI R, CHEN J P. Aminated polyacrylonitrile fbers for lead and copperremoval [J]. Langmuir,2003,19:5058–5064.
    [21] NEGHLANI P K, RAFIZADEH M. Preparation of Aminated-Polyacrylonitrile NanofiberMembranes for the Adsorption of Metal Ions: Comparison with Microfibers [J]. J. Hazard.Mater.,2011,186:182189.
    [22] LIU R X, LI Y, TANG H. Synthesis and Characteristics of Chelating Fibers ContainingImidazoline Group or Thioamide Group [J]. J. Appl. Polym. Sci.,2002,83:16081616.
    [23] GREGG S, SING K. Adsorption, Surface Area and Porosity,2nd ed, AcademicPress, London,1982.
    [24] HO Y S, MCKAY G. Comparative of Chemisorption Kinetics Models Applied toPollutant Removal on Various Sorbents [J]. Journal of Environmental Science and Health.Part A,1999,34:11791204.
    [25] HO Y S. Second-Order kinetic model for the Sorption of Cadmium onto TreeFern: A Comparison of Linear and Non-linear Methods [J]. Water Research,2006,40:119–125.
    [26] XU T, CAI Y, OSHEA K E. Adsorption and Photocatalyzed Oxidation of MethylatedArsenic Species in TiO2Suspensions [J]. Environ. Sci. Technol.,2007,41:5471–5477.
    [27] GUPTA S, BADU B V. Utilization of Waste Product (Tamarind Seeds) for theRemoval of Cr(VI) from Aqueous Solutions: Equilibrium, Kinetics, and Regeneration Studies[J]. J. Environ. Manage.,2009,90:3013–3022.
    [28] LANGMUIR I. The Adsorption of Gases on Plane Surfaces of Glass, Mica andPlatinium [J]. Journal of the American Chemical Society,1918,40:13611403.
    [29] FREUNDLICH H. Uber Die Adsorption in L sungen [J]. Zeitschrift Für PhysikalischeChemie (Leipzig),1906,57A:385470.
    [30] CHEN R, ZHI C, YANG H, et al. Arsenic (V) Adsorption on Fe3O4NanoparticleCoated Boron Nitride Nanotubes [J]. J. Colloid Interface Sci,2011,359:261268.
    [31] CHUANG C L, FAN M, XU M, et al. Adsorption of Arsenic(V) by Activated CarbonPrepared from Oat Hulls [J]. Chemosphere,2005,61:478–483.
    [32] KWOK K C M, LEE V K C, GERENTE C, et al. Novel Model Development forSorption of Arsenate on Chitosan [J]. Chem. Eng. J.2009.,151:122–133.
    [33] GUPTA A, CHAUHAN V S, SANKARARAMAKRISHNAN N. Preparation andEvaluation of Iron–Chitosan Composites for Removal of As(III) and As(V) from ArsenicContaminated Real Life Groundwater [J]. Water Research,2009,43:38623870.
    [34] LIN T F, WU J K. Adsorption of Arsenite and Arsenate Within Activated AluminaGrains: Equilibrium and Kinetics [J]. Water Research,2001,35:2049–2057.
    [35] SINGH M, THANH D N, ULBRICH P, et al. Synthesis, Chacracterization and Studyof Arsenate Adsorption from Aqueous Solution by-and--phase Manganese DioxideNanoadsorbents [J]. J. Sol. Sta. Chem.,2010,183:29792986.
    [36] CHEN W F, PARETTE R, ZOU J Y, et al. Arsenic Removal by Iron-Modifed ActivatedCarbon [J]. Water Research,2007,41:18511858.
    [37] TIAN Y, WUA M. Synthesis of Magnetic Wheat Straw for Arsenic Adsorption [J].Journal of Hazardous Materials,2011,193:1016.
    [1] BERG H C, TRAN T C, NGUYEN H V, et al. Arsenic Contamination of Groundwaterand Drinking Water in Vietnam: A Human Health Threat [J]. Environmental Science andTechnology,2001,35:26212626.
    [2] SMEDLEY P L, KINNIBURGH D G. A Review of the Source, Behavior andDistribution of Arsenic in Natural Waters [J]. Appl. Geochem.,2002,17:517568.
    [3] XIA Y, LIU J. An Overview on Chronic Arsenism via Drinking Water in PR China [J].Toxicology,2004,198:2529.
    [4] CAMACHO L M, GUTIERREZ M T, ALARCON-HERRERA M L, et al. Occurrenceand Treatment of Arsenic in Groundwater and Soil in Northern Mexico and SouthwesternUSA [J]. J Hazard Mater.,2011,83:211-225.
    [5] BISSEN M, FRIMMEL F. Arsenic-A Review. Part I: Occurrence, Toxicity, Speciation,Mobility [J]. Acta Hydrochim. Hydrobiol.,2003,31:9–18.
    [6] BISSEN M, FRIMMEL F. Arsenic-A review. Part II: Oxidation of Arsenic and itsRemoval in Water Treatment [J]. Acta Hydrochim. Hydrobiol.,2003,31:97–107.
    [7] HEIKENS A, PANAULLAH G, MEHARG A. Arsenic Behavior from Groundwaterand Soil to Crops: Impacts on Agriculture and Food Safety, in: G.W. Ware (Ed.)[J].Environmental Contamination and Toxicology,2007,189:43–87.
    [8] APPELO T C. Arsenic in Groundwater a World Problem, Netherlands NationalCommittee of the IAH, Deltares,2006.
    [9] MENG X Q, BANG S, KORFIATIS G P. Effects of Silicate, Sulfate, and Carbonateon Arsenic Removal by Ferric Chloride [J]. Water Research,2000,34:1255–1261.
    [10] SHARMA V K, SOHN M. Aquatic Arsenic: Toxicity, Speciation, Transformations,and Remediation [J]. Environ. Int.,2009,35:743–759.
    [11] CHOONG T S Y, CHUAH T G, ROBIAH Y, et al. Arsenic Toxicity, Health Hazardsand Removal Techniques from Water: An Overview [J]. Desalination,2007,217:139–166.
    [12] EC, Directive Related with Drinking Water Quality Intended for Human Consumption,European Commission, Brussels,2002.
    [13] US. EPA, Treatment of Arsenic Residuals from Drinking Water Removal Processes, USGovernment Printing Office, Washington, DC,2001.
    [14] BASKAN M B, PALA A. Determination of Arsenic Removal Effciency by Ferric IonsUsing Response Surface Methodology [J]. J. Hazard Mater.,2009,166:796–801.
    [15] MALIK A H, KHAN Z M, MAHMOOD Q S et al. Perspectives of Low Cost ArsenicRemediation of Drinking Water in Pakistan and Other Countries [J]. J. Hazard Mater.,2009,168:1–12.
    [16] FIERRO V, MUNIZ G, GONZALEZ S G, et al. Arsenic Removal by Iron-DopedActivated Carbons Prepared by Ferric Chloride Forced Hydrolysis [J]. J. Hazard Mater.,2009,168:430–437.
    [17] MASUE Y, LOEPPERT R H, KRAMER T A. Arsenate and Arsenite Adsorption andDesorption Behavior on Coprecipitated Aluminum: Iron Hydroxides [J]. Environ. Sci.Technol.,2007,41:837–842.
    [18] MOHAN D, PITTMAN C. Arsenic Removal from Water/Wastewater Using Adsorbents—ACritical Review [J]. J. Hazard Mater.,2007,142:1–53.
    [19] WANG J S, WAI C M. Arsenic in Drinking Water-A Global Environmental Problem [J].J. Chem. Edu.,2004,81:207213.
    [20] ELSON C M, BEM E M, ACKMAN R G. Removal of Arsenic from ContaminatedDrinking Water by a Chitosan/Chitin Mixture [J]. Water Research,1980,14:1307-1311.
    [21] WANNGAH W S, FATINATHAN S. Adsorption of Cu(II) Ions in Aqueous SolutionUsing Chitosan Beads, Chitosan–GLA Beads and Chitosan–Alginate Beads [J]. Chem.Eng. J.,2008,143:62–72.
    [22] GERETE C, ANDRES Y, MCKAY G, et al. Removal of As(V) onto Chitosan. FromSorption Mechanism Explanation to Dynamic Water Treatment Process [J]. Chem. Eng. J.,2010,158:593598.
    [23] YAMANI J, MILLER S, SPAULDING M. Enhanced Rrsenic Removal Using MixedMetal Oxide Impregnated Chitosan Beads [J]. Water Research,2012,46:44274434.
    [24] MILLER S M, SPAULDING M L, ZIMMERMAN J. Optimization of Capacity andKinetics for a Novel Bio-based Arsenic Sorbent, TiO2Impregnated Chitosan Bead[J]. Water Research,2011,45:5745-5754.25] BODDU V M, ABBURI K, TALBOTT J L, et al. Removal of Arsenic(III) andArsenic(V) from Aqueous Medium Using Chitosan-Coated Biosorbent [J]. Water Reearchs,2008,42:633–642.
    [26] GANG D D, DENG B L, LIN L S. As(III) Removal Using an Iron ImpregnatedChitosan Sorbent [J]. J Hazard Mater.,2010,182:156161.
    [27] PREVOST M C, NOUR S K F, JEKEL M T, et al. Kinetic and ThermodynamicAspects of Adsorption of Arsenic onto Granular Ferric Hydroxide (GFH)[J]. WaterResearch,2008,42:33713378.
    [28] PIERCE M L, MOORE C B. Adsorption of Arsenite and Arsenate on AmorphousIron Hydroxide [J]. Water Research,1982,16:12471253.
    [29] ZHANG K, DWIVEDI V N, CHI C Y, et al. Graphene Oxide/Ferric HydroxideComposites for Efficient Arsenate Removal from Drinking Water [J]. J Hazard Mater.,2010,182:162168.
    [30] LIU Z, YI G, ZHANG H, et al. Monodisperse Silica Nanoparticles EncapsulatingUpconversion Fluorescent and Superparamagnetic Nanocrystals [J]. Chem. Commun.,2008,35:694696.
    [31] LIU Z, DING J, XUE J. A New Family of Biocompatible and Stable MagneticNanoparticles: Silica Cross-linked Pluronic F127Micelles Loaded with Iron Oxides [J].New J Chem.,2009,33:8892.
    [32] YAVUZ C T, MAYO J T, YU W W, et al. Low-feld Magnetic Separation ofMonodisperse Fe3O4Nanocrystals [J]. Science.,2006,314:964–967.
    [33] SIMEONIDISA K, GKINISA TH, TRESINTSIB S, et al. Magnetic Separation ofHematite-coated Fe3O4Particles Used as Arsenic Adsorbents [J]. Chem Eng J.,2011,168:10081015.
    [34] MAYO J T, YAVUZ Y C, YEAN S, et al. The Effect of Nanocrystalline MagnetiteSize on Arsenic Removal [J]. Sci. Technol. Adv. Mater.,2007,8:71–75.
    [35] CHEN R, ZHI C, YANG H, et al. Arsenic(V) Adsorption on Fe3O4NanoparticleCoated Boron Nitride Nanotubes [J]. J Colloid Interf Sci.,2011,359:261–268.
    [36] TIAN Y, WU M, LIN X, et al. Synthesis of Magnetic Wheat Straw for ArsenicAdsorption [J]. J. Hazard. Mater.,2011,193:10–16.
    [37] SAVINA I N, ENGLISH C J, WHITBY R L D, et al. High Effcienct Removal ofDissolved As(III) Using Iron Nanoparticle-Embedded Macroporous Polymer Composites[J]. J Hazard Mater.,2011,192:1002–1008.
    [38] WU Y Q, CLARK R L. Controllable Porous Polymer Particles Generated byElectrospraying [J]. J Colloid Interf Sci.,2007,310:529–535.
    [39] JAWOREK A, SOBCZYK A T. Electrospraying Route to Nanotechnology: AnOverview [J]. J. Electrostatics.,2008,66:197–219.
    [40] LIU Z Y, BAI H W, SUN D D. Facile Fabrication of Porous Chitosan/TiO2/Fe3O4Microspheres with Multifunction for Water Purifcations [J]. New J Chem.,2011,35:137–140.
    [41] GANG Z Y, YU S H, DONG P S, et al. Synthesis, Characterization and Propertiesof Ethylenediamine-functionalized Fe3O4Magnetic Polymers for Removal of Cr(VI) inWastewater [J]. J Hazard. Mater.,2010,182:295302.
    [42] NGAH W S W, GHANI S A, KAMARI A. Adsorption Behaviour of Fe(II) and Fe(III)Ions in Aqueous Solution on Chitosan and Cross-linked Chitosan Beads [J]. BioresourTechnol.,2005,96:443451.
    [43] ZAINAL Z, HUI L, HUSSEIN M, et al. Characterization of TiO2–Chitosan/GlassPhotocatalyst for the Removal of a Monoazo Dye via Photodegradation–AdsorptionProcess [J]. J. Hazard. Mater.,2009,164:138145.
    [44] WANG LL, JIANG J S. Preparation of Fe3O4Spherical Nanoporous ParticlesFacilitated by Polyethylene Glycol4000[J]. Nanoscale Res Lett,2009,4:1439–1446.
    [45] SING K S W, EVERETT D H, HAUL R A W, et al. Reporting Physisorption Datafor Gas/Solid Systems with Special Reference to the Determination of Surface Area andPorosity [J]. Pure Appl Chem.,1985,57:603619.
    [46] BRUNAUER S, EMMETT P H. Adsorption of Gases in Multimolecular Layers[J]. J. Am. Chem. Soc.,1938,60:309319.
    [47] WANG J H, ZHENG S, SHAO Y, et al. Amino-Functionalized Fe3O4@SiO2Core/Shell Magnetic Nanomaterial as a Novel Adsorbent for Aqueous Heavy Metals Removal[J]. J Colloid Interf Sci.,2010,349:293299.
    [48] PENG Z G, HIDAJAT K, UDDIN M S. Adsorption of Bovine Serum Albumin onNanosized Magnetic Particle [J]. J Colloid Interf Sci.,2004,271:277283.
    [49] RAVEN K P, JAIN A, RICHARD H. Arsenite and Arsenate Adsorption onFerrihydrite: Kinetics, Equilibrium, and Adsorption Envelopes [J]. Environ. Sci. Technol.,1998,32:344–349.
    [50] GOLDBERG S, JOHNSTON C. Mechanisms of Arsenic Adsorption on AmorphousOxides Evaluated Using Macroscopic Measurements, Vibrational Spectroscopy, andSurface Complexation Modeling [J]. J. Colloid Interface Sci.,2001,234:204–216.
    [51] DAVID M S, SIMON R R. Surface Complexation of Arsenic(V) to Iron(III)(hydr)oxides:Structural Mechanism from AB Initio Molecular Geometries and EXAFS Spectroscopy[J]. Geochimica et Cosmochimica Acta,2003,67:4223–4230.
    [52] CHEN C C, CHUNG Y C. Arsenic Removal Using a Biopolymer Chitosan Sorbent[J]. J. Environ. Sci. Health A.,2006,41:645–658.
    [53] LIU B J, XIN L, WANG D F, et al. Adsorption Behavior of As(III) onto ChitosanResin with As(III) as Template Ions [J]. Journal of Applied Polymer Science,2012,125:246–253.
    [54] MILLER S M, ZIMMERMAN J B. Novel, Bio-based, Photoactive Arsenic Sorbent:TiO2-Impregnated Chitosan Bead [J]. Water Research,2010,44:5722–5729.
    [55] GUPTA A, CHAUHAN V. Preparation and Evaluation of Iron–Chitosan Compositesfor Removal of As(III) and As(V) from Arsenic Contaminated Real life Groundwater [J].Water Research,2009,43:38623870.
    [56] GANG D D. DENG B L, LIN L S. As(III) Removal Using an Iron-ImpregnatedChitosan Sorbent [J]. Journal of Hazardous Materials,2010,182:156161.
    [57] GUPTA V K, SANI, JIAN N. Adsorption of As(III) from Aqueous Solutions by IronOxide-Coated Sand [J]. Journal of Colloid and Interface Science,2005,288:55–60.
    [58] TIAN Y, WUA M, LIN X. Synthesis of Magnetic Wheat Straw for Arsenic Adsorption[J]. Journal of Hazardous Materials,2011,193:10-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700