不同温度对一年生鱼类贡氏假鳃鳉生长、发育、成熟及衰老的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贡氏假鳃鳉是一年生季节性鱼类,由于在野外环境中长期受季风性气候的影响,形成了遗传性的短暂的生命周期。在旱季到来前,它们将卵产在水底的泥土中;等到雨季来临时,小鱼快速孵化,长大,产卵后急速衰老,并且这些性状的表达对温度的变化极为敏感。因此,本论文的研究目的就是对不同温度下饲养的贡氏假鳃鳉的生长、发育、性成熟及衰老等几个方面展开研究,以证明温度这一外部因素所起到的重要的影响作用。
     研究方法简述如下,将同日孵化的贡氏假鳃鳉饲养于4个不同温度的容器中,温度分别设置为25℃、27℃、29℃、31℃。每日观察4个温度组中贡氏假鳃鳉的生长发育和存活状况,每周进行一次相关数据的测量记录工作,并按月份汇总,绘制曲线。在贡氏假鳃鳉7月龄时,使用体格强健的雄鱼为代表展开各温度组的衰老研究工作,衰老检测选用以下四类衰老标记物:上皮组织中的SA-β-Gal(衰老特异性β—半乳糖苷酶),骨骼肌中蛋白的氧化水平,肝脏中的脂褐素,大脑皮层的神经退行性变。最终比较各温度组衰老标记物量的差别以揭示机体的衰老情况。
     结果表明,温度对贡氏假鳃鳉的影响显著,并且较低的温度更适于贡氏假鳃鳉的生存。其中,25℃、27℃、29℃、31℃四个温度组中,25℃表现出最良好的生长发育和成熟状况,存活数量最多,并且衰老程度相比其他温度组最轻。
     相比于25℃组,随着温度的增高,贡氏假鳃鳉的生长和发育情况会出现下降的趋势,其中29℃、31℃两组下降最为显著。如生长会受到高温的抑制而有所减弱;脊椎在29℃、31℃两组中出现了异常发育的现象。
     此外,将雄鱼和雌鱼的性成熟和存活状况比较后发现,雌鱼受到温度变化的影响更为明显。如低温下,雌鱼的首次排卵期会比高温组提前1-2周到来,而雄鱼发色期较为稳定,早晚未发生显著改变;并且雌鱼在低温下更易存活,致使雄鱼所占总数比例变化不大。
     上述四类衰老标记物的表达量,随着温度的降低也呈逐次下降趋势,说明低温下的贡氏假鳃鳉衰老程度较轻,即降低温度可以延缓贡氏假鳃鳉的衰老进程。
     综上得知,贡氏假鳃鳉的生长、发育、成熟、存活数和衰老等方面都对温度的变化十分敏感,并且较低的温度对贡氏假鳃鳉的生存具有积极显著的影响。
As a annual killifish, Nothobranchius guentheri (N. guentheri) has a genetic short lifespan which results from the constant monsoon climate in their original habitat. N. guentheri originates from savannah regions in East Africa and has adapted to the seasonal changes between heavy rains and severe draught. They are egg-layers and deposit their eggs in the mud during the dry season, and the eggs will continue to develop and hatch when the rainy season begins. After hatched out, the fish will rapidly grow up, mate and become aging in months. And their living and aging is sensitive to the change of ambient temperature. Therefore, the aim of our research is to study the effects of different temperatures on the growth, development, sexual maturation and aging of N. guentheri.
     Research methods are stated briefly as follows. An equal number of N.guentheri fry are raised separately under the four temperatures 25℃,27℃,29℃and 31℃dating from their birth. Daily observation and record are taken on their development and survival, and weekly measures are carried on the variation of their body length and egg number. Then summary is done once a month and curves based on the results will be drawn. Moreover, aging research is commenced on the strongest male fish at the age of seven months old in the four temperature groups. And four aging markers are selected and utilized below:SA-β-Gal in the epithelium, lipofuscin in the liver, protein oxidation in the muscle and neurodegeneration in the brain. The amount of the four markers are compared to show the overall aging of organism.
     The conclusion illustrated that the effects of temperature were prominent on N.guentheri, which showed a better growing and living at lower temperature. Especially, the fish in the 25℃group presented the best situation of growth, development, maturation and surviving among all the four groups. And they were getting aging more slowly.
     Compared with the 25℃group, higher temperatures bated the growth, and the backbones of the fish developed a unnormal bending in the groups of 29℃and 31℃.
     Furthermore, it has been found that the female were influenced more obviously than the male by the change of temperature. At lower temperatures, the first spawn appeared over one weeks earlier than that at higher temperatures, while the time had hardly differed when the male of 4 groups turn colorful. Also, low temperature could keep the population of the female steady as well as the male.
     Besides, quantification of the four aging markers also demonstrateed that at lower temperatures, expression of the 4 aging markers stated above were reduced compared with those at higher temperatures. That means low temperature can slow and defer the process of aging in N.guentheri.
     In summary, N.guentheri is sensitive to the change of temperature on the aspects of growth, development, sexual maturation, survival and senescence, and low temperature has apositive and distinct effects on their lives.
引文
[1]. Bailey RS. Observations in the biology of Nothobranchius guentheri (Pfeffer)(Cypronodontidae), an annual fish from the coastal region of East Africa, African J Trop. Hydrobiol and Fish,1972.2:33-43.
    [2]. Genade, T. Annual fishes of the genus Nothobranchius as a model system for aging research. Aging Cell,2005.4,223-233.
    [3]. Markofsky J, Perlmutter A. Age at sexual maturity and its relationship to longevity in the male annual cyprinodont fish, Nothobranchius guentheri. Exp Gerontol,1972. Apr;7(2):131-5.
    [4]. Markofsky J, Perlmutter A. Growth differences in subgroups of varying longevities in a laboratory population of the male annual cyprinodont fish, Nothobranchius guentheri (Peters). Exp Gerontol,1973. Apr;8(2):65-73.
    [5]. Markofsky J. Longitudinal and cross-sectional observations of growth and body composition with age in laboratory populations of the male annual cyprinodont fish, Nothobranchius guentheri. Exp Gerontol, 1976; 11 (5-6):171-7.
    [6]. Markofsky J, Matias JR. The effects of temperature and season of collection on the onset and duration of diapause in embryos of the annual fish Nothobranchius guentheri. J Exp Zool,1977. Oct;202(1):49-56.
    [7]. Markofsky, J. and Milstoc, M. Aging changes in the liver of the male annual cyprinodont fish, Nothobranchius guentheri. Exp. Ocront,1979. Vol.14,11--20.
    [8]. Markofsky, J. and Milstoc, M. Histopathological observations of the kidney during aging of the male annual fish Nothobranchius guentheri. Exp. Geront,1979. Vol.14,149-155.
    [9]. Inglima K, et al. Reversible stage-specific embryonic inhibition mediated by the presence of adults in the annual fish Nothobranchius guentheri. J Exp Zool,1981. Jan;215(1):23-33.
    [10]. Balmer RT. The effect of age on body energy content of the annual cyprinodont fish, Nothobranchius guentheri. Exp Gerontol,1982;17(2):139-43.
    [11]. Cooper EL, et al. Aging changes in lymphopoietic and myelopoietic organs of the annual cyprinodont fish, Nothobranchius guentheri. Exp Gerontol,1983;18(1):29-38.
    [12]. Matias JR. The stage-dependent resistance of the chorion to external chemical damage and its relationship to embryonic diapause in the annual fish, Nothobranchius guentheri. Experientia,1984. Jul 15;40(7):753-4.
    [13]. Haarlem RV. Contact inhibition of overlapping:one of the factors involved in deep cell epiboly of Nothobranchius korthausae. Dev Biol,1979. May;70(1):171-9.
    [14]. Lesseps RJ, et al. Cell patterns and cell movements during early development of an annual fish, Nothobranchius neumanni. J Exp Zool,1975. Aug;193(2):137-46.
    [15]. Valdesalici S, Cellerino A. Extremely short lifespan in the annual fish Nothobranchius furzeri. Proc Biol Sci,2003. Nov 7;270 Suppl 2:S189-91.
    [16]. Valenzano DR. Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish Nothobranchius furzeri. Aging Cell,2006.275-278.
    [17]. Valenzano, D.R., et al. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr. Biol,2006b.16,296-300.
    [18]. Valenzano DR, Cellerino A. Resveratrol and the pharmacology of aging:a new vertebrate model to validate an old molecule. Cell Cycle,2006. May;5(10):1027-32.
    [19]. Terzibasi E. The short-lived fish Nothobranchius furzeri as a new model system for aging studies. Exp. Gerontol,2007.42,81-89.
    [20]. Terzibasi E, et al. Large differences in aging phenotype between strains of the short-lived annual fish Nothobranchius furzeri. PLoS One,2008;3(12):e3866.
    [21]. Terzibasi E, et al. Effects of dietary restriction on mortality and age-related phenotypes in the short-lived fish Nothobranchius furzeri. Aging Cell,2009. Apr;8(2):88-99.
    [22]. Reichwald K, et al. High tandem repeat content in the genome of the short-lived annual fish Nothobranchius furzeri:a new vertebrate model for aging research. Genome Biol,2009. Feb 11;10(2):R16.
    [23]. Hartmann N, et al. Telomeres shorten while Tert expression increases during ageing of the short-lived fish Nothobranchius furzeri. Mech Ageing Dev,2009. May;130(5):290-6.
    [24]. Valenzano, D.R., et al. Mapping loci associated with tail color and sex determination in the short-lived fish Nothobranchius furzeri. Genetics,2009. Dec; 183(4):1385-95.
    [25]. Hsu CY, Chiu YC, Hsu WL, Chan YP. Age-related markers assayed at different developmental stages of the annual fish Nothobranchius rachovii. J. Gerontol. A Biol. Sci. Med. Sci,2008.63,1267-1276.
    [26]. Hsu CY, Chiu YC. Ambient temperature influences aging in an annual fish (Nothobranchius rachovii). Aging Cell,2009.8,726-737.
    [27]. Kishi, S. Functional aging and gradual senescence in zebrafish. Ann. NY Acad. Sci,2004,1019, 521-526.
    [28]. Kishi S, Uchiyama J, Baughman A, Goto T, Lin M, Tsai S. The zebrafish as a vertebrate model of functional aging and very gradual senescence. Exp. Gerontol,2003.38,777-786.
    [29]. Dimri G, Lee X, Basile G, Acosta M, Scott G, Roskelley EC, Medrano Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci,1995. USA 92,9363-9367.
    [30]. Schmued, L.C. and Hopkins K.J. Fluoro-Jade:Novel Fluorochromes for Detecting Toxicant-Induced Neuronal Degeneration. Toxicol. Pathol,2000. vol 28, no 1,91-99.
    [31]. Schmued, L.C., Albertson, C., Slikker Jr., W. Fluoro-Jade:a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res,1997.751,37-46.
    [32]. Magalhaes JP, Migeot V, Mainfroid V, et al. No increase in senescence-associated beta-galactosidase activity in Werner syndrome fibro-blasts after exposure to H2O2 [J].Ann NY Acad Sci,2004.1019:375-8.
    [33]. Belichenko, P.V., Fedorov, A.A., Dahlstrom, A.B. Quantitative analysis of immunofluorescence and lipofuscin distribution in human cortical areas by dual-channel confocal laser scanning microscopy. J. Neurosci,1996. Methods 69,155-161.
    [34]. Brunk, U.T., Terman, A. Lipofuscin:mechanisms of age-related accumulation and influence on cell function. Free Radic. Biol. Med,2002.33,611-619.
    [35]. Oliver CN, Ahn BW, Moerman EJ, Goldstein S, Stadtman ER. Agerelated changes in oxidized proteins. J. Biol. Chem,1987.262,5488-5491.
    [36]. Maldonado, T.A., Jones, R.E., Norris, D.O. Timing of neurodegeneration and beta-amyloid (Abeta) peptide deposition in the brain of aging kokanee salmon. J. Neurobiol,2002.53,21-35.
    [37]. Nystrom T.Role of oxidative carbonylation in protein quality control and senescence[J]. EMBO J,, 2005.24:1311-1318.
    [38]. Stadtman ER. Protein oxidation and aging. Science,1992.257:1220-1224.
    [39]. Sohal RS, Agarwal S, Dubey A, Orr WC. Protein oxidative damage is associated with life expectancy of houseflies. Proc Natl Acad Sci U S A.1993.90:7255-7259.
    [40]. Appel SH, Smith RG, Le WD. Immune-mediated cell death in neurodegenerative disease. Adv Neurol. 1996.69:153-9. Review.
    [41]. Zheng J, Mutcherson R, Helfand SL. Calorie restriction delays lipid oxidative damage in Drosophila melanogaster. Aging Cell,2005.4:209-216.
    [42]. Sohal RS, Ku HH, Agarwal S, Forster MJ, Lal H. Oxidative damage, mitochondrial oxidant generation, and antioxidant defenses during aging and in response to food restriction in the mouse. Mech. Ageing Dev,1994.74:121-133.
    [43]. Johansen PH, Cross LA. Effects of sexual maturation and sex steroid hormone treatment on the temperature preference of the guppy, Poecilia reticulata (Peters). Can J Zool,1980.58:586-588
    [44]. Hernandez M, Buckle LF, Espina S. Temperature preference and acclimation in Poecilia sphenops (Pisces:Poeciliidae). Aquac Res,2002.33:933-940
    [45]. Nordlie FG. Physicochemical environments and tolerances of cyprinodontid fishes found in estuaries and salt marshes of eastern North America. Rev Fish Biol Fish,2006.16:51-106
    [46]. Lee SJ, Kenyon C. Regulation of the longevity response to temperature by thermosensory neurons in Caenorhabditis elegans. Curr Biol,2009, May.12;19(9):715-22.
    [47]. Conti B, et al. Transgenic mice with a reduced core body temperature have an increased life span. Science,2006.314:825-828.
    [48].卢桂霞.衰老的病因与病理.中国民康医学,2006.18(7):547,556.
    [49].王念民等.温度对鱼类性别分化和性别决定的影响.水产学杂志,2007.20(2):91-93.
    [50].楼允东,吴萍.温度在水产动物性别控制中的作用.上海水产大学学报,2008.17(4):481-484.
    [51].杨惠玲等主编.高级病理生理.科学出版社,1998.
    [52].李磷,丁安伟.衰老研究新进展.西北药学杂志,2000.4:177-178.
    [53].段珩.细胞凋亡与疾病的关系.临床军医杂志,2003.8:26.
    [54]. Bjorksten J, Tenhn H. The cross linking theory of agingadded evidence. Expt. Gerontology,1990.25: 91.
    [55]. Baroiller JF, D'Cotta H. Environment and sex determination in farmed fish. Comp Biochem Physiol C Toxicol Pharmacol,2001, Dec.130(4):399-409.
    [56].陈国栋等.雌激素的抗衰老作用及其机制研究.中国老年学杂志,2008,28(5):447-449.
    [57].许娟等.糖尿病肾病患者蛋白氧化损伤的研究.泰山医学院学报,2009.30(6):407-409.
    [58]. Shaftel SS, et al. Sustained hippocampal IL-1β overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Invest,2007, Jun.117(6):1595-604.
    [59]. Choi SH, Bosetti F. Cyclooxygenase-1 null mice show reduced neuroinflammation in response to β-amyloid. Aging (Albany NY),2009, Feb 11.1 (2):234-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700