沉水植物逆境生理及其净化作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探索沉水植物逆境生理及其净化能力,本文以沉水植物轮叶黑藻(Hydrilla varticillata)、穗花狐尾藻(Myriophyllum spicatum L.)和金鱼藻(Ceratophyllaceae)为材料,研究了不同水质条件下沉水植物的净化作用及其生理生化反应,表面活性剂LAS对沉水植物生长的影响及生理生化反应,沉水植物的光合作用对光照强度以及DIC/pH的响应。为探索湖泊富营养化进程中水生植被退化与恢复机理,提供了研究资料,具有一定的参考价值。主要结论如下:
     (1)轮叶黑藻对生活污水具有一定的净化和适应能力,但对水质不同的污水其处理能力不一样,对居民楼废水其中CODcr和总氮的去除率分别为81.51%和71.36%,在污染水体的影响下轮叶黑藻的SOD和CAT活性变化均经历了先升高后降低的过程,分别在第3天和第10天达到最大值,而后急剧下降。说明过高的CODcr或氨氮浓度对轮叶黑藻是一种逆境胁迫,可抑制其生长甚至导致植物死亡。轮叶黑藻对污水中污染物质虽有一定耐性,但其耐性会随时间的延长而变弱。
     (2)阴离子表面活性剂LAS对沉水植物轮叶黑藻和穗花狐尾藻的损伤程度与浓度有关。在实验浓度范围内LAS<1 mg·L-1时,对穗花狐尾藻和轮叶黑藻的生理活动影响不大;当LAS为(1.0-5.0 mg·L-1)时,LAS开始抑制生长,影响了植物正常生理活动。当LAS超过5.0 mg·L-1时,轮叶黑藻保护酶防御系统崩溃,植物死亡,而在LAS大于20 mg·L-1时穗花狐尾藻也会出现这个现象。结果表明,轮叶黑藻和穗花狐尾藻对LAS具有一定的耐性,穗花狐尾藻对LAS浓度的耐受性要强于轮叶黑藻。
     (3)LAS对沉水植物穗花狐尾藻和轮叶黑藻的损伤程度与胁迫时间有关。穗花狐尾藻(LAS<10.0 mg·L-1时)和轮叶黑藻(LAS<1.0 mg·L-1时),SOD、CAT和POD活性在前48th h没有明显变化;随后穗花狐尾藻的上述指标在72th h急剧增加,而轮叶黑藻则在96th h急剧增加。这表明,该条件下在对应时间点LAS开始抑制这两种沉水植物的生长,影响了植物正常生长。穗花狐尾藻对LAS胁迫时间的耐受性要强于轮叶黑藻,在LAS浓度较高水域进行沉水植被恢复时穗花狐尾藻是首选。
     (4)显微观察显示,轮叶黑藻在LAS为5.0 mg·L-1时,叶绿体形状不规则且聚集成团;10.0 mg·L-1时叶绿体逐渐分解减少,叶片大面积脱绿,呈细胞壁分离,胞质环流停止,气道消失;20.0 mg·L-1时细胞壁分离,叶片脱绿死亡。轮叶黑藻在为5.0mg·L-1的LAS胁迫10小时后光合作用速率仅为对照的58%,对氮、磷营养盐的吸收速率仅为对照的61%。结果表明,LAS通过穿透细胞壁,使蛋白质变性,胞质环流停止,损伤叶绿体、气道等的正常活动,从而使沉水植物的光合作用和氮、磷代谢受阻,这是导致轮叶黑藻等沉水植物衰弱死亡的主要原因之一
     (5)本次的实验结果表明,LAS达到5.0 mg·L-1以上时,才会对沉水植物轮叶黑藻产生明显的胁迫效应和生理损伤。而目前中国富营养化湖泊均未达到该水平,这说明LAS不是引起富营养化水体中沉水植被退化的主要因素,而可能只是影响高等水生植物生长和演替的间接性因素。
     (6)通过研究轮叶黑藻、穗花狐尾藻和金鱼藻光合作用对光照强度的响应,比较了它们的光合能力及光合特征。从三种沉水植物光补偿点、光饱和点及强光下光合作用受抑制的表现特点来看,不同光照强度下供试材料的光合速率高低排列各不相同。当光照强度在10-890μmol.m-2.s-1之间时,光合作用速率金鱼藻>轮叶黑藻>穗花狐尾藻,轮叶黑藻和金鱼藻对光的需求最高。三种沉水植物的光合作用都表现出强光抑制现象,结果显示在不同深度的水层,有不同的竞争优势种,轮叶黑藻和金鱼藻在上层有较强的竞争能力;穗花狐尾藻对光的需求最低,在水深水域有更强的适应性。
     (7)通过研究在不同pH值和不同浓度溶解性无机碳(DIC)下轮叶黑藻、穗花狐尾藻和金鱼藻光合作用特征,发现DIC/pH对三种沉水植物的影响有所不同。三种沉水植物,当环境中pH值从9降低到6时,对外源无机碳的表观光合作用亲合力都降低;同时发现穗花狐尾藻比轮叶黑藻和金鱼藻对pH值变化的耐受力更高;但当DIC浓度达到饱和时,金鱼藻的最大光合作用速率要远远大于穗花狐尾藻和轮叶黑藻的最大光合作用速率。这一个特性为在富营养治理中及其沉水植被恢复中的植物的选择上提供了参考。
This dissertation studied the decontamination abilities, the physiological and biochemical reactions of Hydrilla varticillata, Myriophyllum spicatum L, and Ceratophyllaceae under different water conditions, effects of LAS on their growth, physiological and biochemical reactions, photosynthesis responding to pH and DIC. It explored not only the stress physiology and the decontamination abilities of submerged aquatic plants, but also the degeneration and restoration mechanism of aquatic macrophytes, which had the important scientific significance. Major conclusions were described as follows:
     1. The results showed that Hydrilla verticillata could clear sewage effectively, and the removal rates for CODcr and TN were 81.51% and 71.36% respectively. It also indicated that Hydrilla verticillata had the abilities of decontaminating and the adaptation to sewage, but they were varied when were planted into different laboratory conditions. When Hydrilla verticillata was put into wastewater, the changes of SOD activities and CAT activities had a similar trend that declined after increasing, and the highest activities appeared at the 3rd day and the 10th day. The result showed that high COD and excessive concentration of NH4+-N would stress the growth of Hydrilla verticillata and led it to death, and that Hydrilla verticillata could resist and adapt to sewage to a certain extent. However, its endurance ability would gradually become weakened at high concentrations of sewage, eventually resulted in death.
     2. Damage degree of Myriophyllum spicatum L and Hydrilla verticillata was directly responded to concentrations of LAS. There was little changes of SOD, CAT and POD in the range of experimental LAS concentrations (0-0.5 mg-L"1), which indicated that no apparent effects took place in physiological activities of these aquatic plants. When concentrations of LAS were between 1.0 and 5.0 mg-L-1, activities of SOD, CAT and POD increased, Myriophyllum spicatum L. suffered apparent effects. When LAS was higher than 5.0 mg-L-1, SOD defensing system collapsed, and made macrophytes to death. For Hydrilla verticillata, however, this situation happened when LAS was higher than 20.0 mg-L-1, which indicated that both Myriophyllum spicatum L and Hydrilla verticillata could resist and adapt to sewage, but the latter was more sensitive than the former.
     3. The damage degree of Myriophyllum spicatum L and Hydrilla verticillata was directly related to the contacting time of LAS. When concentration of LAS was below 10.0 mg-L-1 for Myriophyllum spicatum L., and below 1.0 mg-L-1 for Hydrilla varticillata, no apparent effects took place on the physiological activities of SOD, CAT and POD in the first 48 h, but it sharply increased at the 72th h to Myriophyllum spicatum L. and at the 96th h to Hydrilla varticillata, which indicated that the tolerance of Myriophyllum spicatum L was higher than that of Hydrilla varticillata, and Myriophyllum spicatum L should be the pioneer species to the restoration of submerged macrophytes for the urban sewage treatment.
     4. The microscopic observation showed that in LAS polluted environment, chloroplasts of Hydrilla varticillata deformed and assembled when LAS was 5.0 mg-L-1; and when LAS was 10.0 mg-L"1, chloroplasts disintegrated gradually, a lot of leaves lost their color, the cell walls were separated from the others, the circular movement of the plasma stopped, and gas passages disappeared. In LAS (5.0 mg-L-1) polluted environment for ten hours, the photosynthetic rate of Hydrilla varticillata was only 58% of the control group, the rates of uptake N and P was 61% of the control group. The resuls showed that due to LAS penetrated the cell wall of the plants, the protein changed properties, the chloroplasts stopped circular movement, photosynthesis of Hydrilla varticillata and metabolism of nitrogen and phosphorus was inhibited. This was one of main causes of aquatic vegetation degeneration.
     5. The result also showed that obvious stress and physiological damage of Hydrilla varticillata appeared when concentration of LAS was higher than 5.0 mg-L"1. In China, however, LAS in eutrophication lakes did not reached this level, which indicatd that LAS was not an important role in degradation of aquatic macrophytes caused by eutrophication, but might be an indirect factor that affecting growth and evolution of plants in water environment.
     6. Through investigating variations of photosynthesis and respiration of the submerged plants including Hydrilla varticillata, Myriophyllum spicatum L. and Ceratophyllacea, this paper compared photosynthetic productivity and photosynthetic characteristics. Different ranks of photosynthetic productivity were observed for different plants at different light intensity. At the light intensity of 10-890μmol-m-1·s-1, the photosynthetic rate of Ceratophyllaceae was the highest, followed by Hydrilla varticillata and Myriophyllum spicatum L. Photosynthesis of 3 submerged plants was inhibited by high-light. Hydrilla varticillata and Ceratophyllaceae adapted to high-light, and were dominant species in surface water layer. Myriophyllum spicatum L had the lowest light requirement and could adapte to a deep water layer.
     7. The effects of pH and DIC (dissolved inorganic carbon) on photosynthesis of Hydrilla varticillata, Myriophyllum spicatum L and Ceratophyllaceae were investigated. The results showed that photosynthesis of these three plants was different for various pH and DIC conditions. A lower affinity to carbon was observed as pH decresed from 9.0 to 6.0, and Myriophyllum spicatum L was adaptable to extensive pH ranges. When the concentration of DIC reached the saturated level, the highest photosynthesis rate for Ceratophyllaceae was much greater than those for Hydrilla varticillata and Myriophyllum spicatum L.
引文
[1]金相灿主编.湖泊富营养化调查规范[M].北京:中国环境科学出版社.1987.
    [2]金相灿,刘鸿亮主编.中国湖泊富营养化[M].北京:中国环境科学出版社.1990.
    [3]倪乐意.武汉东湖水生植被的退化过程机理和恢复生态学[R].武汉:中国科学院水生生物研究所博士论文,1997.
    [4]成水平等.水生植物的气体交换与输导代谢[J].水生生物学报,2003,27(4).
    [5]李伟,钟杨.水生植物研究的理论与方法[M].武汉:华中师范大学出版社1992.
    [6]刘建康主编.高级水生生物学[M].北京:科学出版社.1999.Pp.224-240.
    [7]宋碧玉,王建,曹明等.利用人工围隔研究沉水植被恢复的生态效应.生态学杂志,1999,18(5):21-24.
    [8]宋碧玉,曹明,谢平.沉水植被的重建与消失对原生动物群落结构和生物多样性的影响[J].生态学报,2000,20(2):270-2760.
    [9]Pokorny J, Kvet J, Ondok J P. Functioning of the plant component in densely stocked fish ponds. Bull Ecol.,1990,21 (3):44-48.
    [10]刘保元,邱东茹,吴振斌.富营养浅湖水生植被重建对底栖动物的影响[J].应用与环境生物学报,1997,3(4):323-327.
    [11]Carignan R, Kallf J. Phosphorus sources for aquatic weeds:water or sediments [J]. Science,1980,207:987-989.
    [12]Carpenter S R, Lodge D M. Effects of submersed macrophytes on ecosystem process [J]. Aquatic Botany,1986,26:341-371.
    [13]Nielson S L, Sand-Jensen K. All metric scaling of maximal photosynthetic growth rate to surface/volume ratio [J]. Limnol Oceanogra,1990,35:177-181.
    [14]Drenner R W, Day D J, Basham S J, et al. Ecological water treatment system for removal of phosphorus and nitrogen from polluted water [J]. Biological Application, 1997,7(2):381-391.
    [15]Hosper S H, Meijer M L. Biomanipulation, will it work for your lake, A simple test for the assessment of chances for clear water, following drastic fish-stock reduction in shallow eutrophic lakes [J]. Ecological Engineering,1993,2:63-72.
    [16]李文朝.浅水湖泊生态系统的多稳态理论及其应用[J].湖泊科学,1997,9(2):98-103.
    [17]曹萃禾.四种水生维管束植物在太湖生态系统中的作用[J].生态学杂志,1987,37-39.
    [18]戴莽,倪乐意,谢平等.利用大型围隔研究沉水植被对水体富营养化的影响[J].水生生物学报,1999,23(2):97-101.
    [19]黄文成.沉水植物在治理演池草海污染中的作用[J].植物资源与环境,1994,3(4):29-33.
    [20]李文朝等.沉水植物可有效根治东太湖菱黄水[J].湖泊科学,1987,9(4):364-368.
    [21]吴玉树.水生植物对生活污水的净化效率[J].生态学报,1988,8(4):347-353.
    [22]Carpenter S R, Lodge D M. Ecosystem processes. Effects of submerged macrophytes on Aquat[J]. Botany,1986,26:341-371.
    [23]Christian R. The effect of submerged aquatic vegetation on phytoplankton and water quality in the trial freshwater Potomac river[J]. Freshwater Biology,1990,5 (3):279-288.
    [24]Williams C. Community to remove water. Studies on the ability of Potamoget on pectinatus dissoved nitrgen and phsphors compounds from lake [J]. Annle Ecol,1981, 18:617-637.
    [25]Rogers, K H, Breen C M. Growth and production of potamoget on crispus L. in a South Africa lake[J]. Ecol,1980,68:561-571.
    [26]曲文辉.螺类与着生藻类的相互作用及其对沉水植物的影响[J].生态学报,1999.
    [27]李文朝.东太湖水生植物的促淤效应与磷的沉积[J].环境科学,1997,18(3):9-12.
    [28]Rogers K H, Breen C M. Growth and production of potamoget on crispus L in a South Africa lake[J]. Ecol.,1980,68:561-571
    [29]吴振斌等.水生植物对富营养水体水质净化作用研究[J].武汉植物学研究,2001,19(4):299-303.
    [30]高光.伊乐藻、轮叶黑藻净化养鱼污水效果试验[J].湖泊科学,1996,8(2):184-188.
    [31]Lubchenco D J. The sustainable biosphere intiative[J]. Colojy Research Agenda Ecology,1991,72(2):371-379.
    [32]赵福庚等主编.植物逆境生理生态学[M].北京:化学工业出版社.2004.
    [33]张福锁主编.环境胁迫与植物营养[M].北京:北京农业大学出版社.1993.
    [34]孙存普,张建中,段绍瑾.自由基生物学导论[M].合肥:中国科学技术大学出版社.1999.
    [35]方允中,李文杰.自山基与酶基础理论及其生物学和医学中的应用[M].北京:科学出版社.1989.
    [36]Streb P. Light stress effects and antioxidative protection in two desert plants[J]. Functional Ecology,1997,11 (4):416-424.
    [37]曹锡清等.膜脂过氧化对细胞有机体的作用[J].生物化学与生物物理学进展,1988,86(2):17-23.
    [38]Rascio N. The underwater life of secondarily aquatic plants:some problems and solutions[J]. Critical Review in Plant Science,2002,21:401-427.
    [39]刘宁,高玉葆,贾彩霞等.渗透胁迫下多花黑麦草叶内过氧化物酶和脯氨酸含量以及质膜相对透性的变化[J].植物生理学通讯,2000,36(1):11-14.
    [40]李晶,阎秀峰,祖元刚.低温胁迫下红松幼苗活性氧的产生及保护酶的变化[J].植物学报,2000,42(2):148-152
    [41]唐学玺,李永棋.久效磷对海洋微藻毒性机理的初步研究,[J]超氧化物歧化酶和过氧化物酶活性的变化[J].环境科学学报,1998,18(2):204-207.
    [42]许秋瑾,颜昌宙,金相灿,等.壳聚糖预处理对沉水植物黑藻生长的影响[J].南京师范大学学报(自然科学版),2004,27(2):74-76.
    [43]徐勤松等.镉、铜和锌胁迫下黑藻活性氧的产生及抗氧化酶活性的变化研究.2006,30(1):107-112.
    [44]王兴民,许秋瑾,金相灿,等.氧化胁迫对沉水植物黑藻抗冷力的影响[J],环境科学研究,2004.
    [45]朱伟,张兰芳等.水污染对菹草及伊乐藻生长的影响[J].水资源保护,2006,9(3):48-52.
    [46]张兰芳、朱伟等.污染水体中悬浮物对菹草(Potamageton crispus)生长的影 响[J].湖泊科学,2006,19(1):128-134.
    [47]张智等.水体富营养化及其治理措施[J].重庆环境科学,2002,24(3):52-54.
    [48]刘红玉,廖柏寒,鲁双庆等.LAS和AE对水生植物损伤的显微和亚显微结构观察[J].中国环境科学,2001,21(6).
    [49]刘红玉,周朴华,杨仁斌等.非离子型表面活性剂AE对稀脉浮萍的损伤作用[J].应用与环境生物学报,2001,7(3):197-200.
    [50]刘红玉,周朴华,杨仁斌等.阴离子型表面活性剂LAS对水生植物生理生化特性的影响[J].农业环境保护,2001,20(5):341-344.
    [51]刘红玉.表面活性剂对水生植物的损伤及生物降解研究[D].湖南农业大学博士论文.2001.
    [52]金送笛,李永函,王永利.几种生态因子对菹草光合作用的影响[[J].水生生物学报,1991,15(4):295-302.
    [53]苏胜齐.环境对菹草生长和繁殖的影响及菹草对富营养化水净化能力的研究[D].西南农业大学,2001,9-27.
    [54]候德等.沉水植物蓖齿眼子菜光补偿深度研究[J].农业环境科学学报.2006(2)65-70.
    [55]陈开宁,强胜,李文朝.蓖齿眼子菜的光合速率及影响因素[J].湖泊科学,2002,14(4):357-362.
    [56]陈鸿达.11种沉水植物的生产力[J].海洋与湖沼1998,19(6):525-531.
    [57]苏文华,张光飞,张云孙等.5种沉水植物的光合特征[J].水生生物学报,2004,28(4):391-395.
    [58]任南,严国安,马剑敏等.环境因子对东湖几种沉水植物生理的影响研究[[J].武汉大学学报(自然科学版),1996,42(2):213-218.
    [59]Sand-Jensen K. Photosynthetic carbon sources of stream macrophytes. Journal of Experimental Botany,139:198-210.
    [60]Jahnke L S, Eighmy T T, Fagerberg W R. Studies of Elodea nuttalli grown under photorespiratory conditions photosynthetic characteristics[J]. Plant Cell and Environment,1991,14:147-156.
    [62]Madsen T V, Maberly S C. Diurnal variation in light and carbon limitation of photosynthesis by two submerged freshwater macrophyte with a differential ability to use bicarbonate[J]. Fresh water Biology,1991,26:175-187.
    [63]Maberly S C. Diel episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake[J]. Frseshwater Biology,1996,35:579-598
    [64]Sand J K, Pedersen M F, Laurentius S. Photosynthetic use of inorganic carbon among primary and secondary water plants in streams[J]. Freshwater Biology,1992, 27:283-293.
    [65]Maberly S C, Madsen T V. Use of bicarbonate ions as a source of carbon in photosynthesis by Callitriche hermaphroditica[J]. Aquatic Botany,2002,73:1-7.
    [66]Maberly S C, Spence D H N. Photosynthesis and phtorespiration in ater organisms-amphibious plants[J]. Aquatic Botany,1989,34:267-286.
    [67]Kadono Y. Photosynthetic carbon sources in some Potamogeton species. Botanical Magazine of Tokyo,1980,93:185-194.
    [68]Maberly S C, Madsen T V. Affinity for CO2 in relation to the ability of freshwater macrophytes to use HCO3'[J]. Functional Ecology,1998,12:99-106.
    [69]Pagano A M, Titus J E. Submersed macrophytegrowth at low pH:contrasting responses of threespecies to dissolved inorganic carbon enrichment and sediment type[J]. Aquatic Botany,2004,79:65-4.
    [70]Pierini S A, Thomaz S M. Effects of inorganic carbon source on photosynthetic rates of Egeria najas Planchon Egeria densa Planchon [J]. Aquatic Botany,2004,78: 135-146.
    [71]Walker N A. The transport systems of Charophyte and Chlorophyte giant algae and theirintegration into modes of behaviour. In:Spanswick R M, Lucas W J, Dainty J eds, Plant Membrane Transport:Current Conceptual Issues[J]. Elsevier/North-Holland Biomedical Press Amsterdam,1980,287-300.
    [72]Lucas W J. Photosynthetic assimilation of exogenous H2CO3 by aquatic plants[J]. Annual Review of Plant Physiology,1983,34:71-104.
    [73]Newman J R, Raven J A. Carbonic anhydrase in Ranunculus penicillatus spp pseudofluitans:activity, location and implication for carbon assimilation[J]. Plant Cell and Environment,1993,16:491-500.
    [74]Rascio N, Cucato F, Dalla V F, la Rocca N, Larcher W. Structural and functional features of the leaves of Ranunculus trichophyllus Chaix., a freshwater submerged macrophyte[J]. Plant Cell and Environment,1999,22:205-212.
    [75]Staal M, Elzenga J T M, Prins H B A.14C fixation by leaves and leaf cell protoplasts of the submerged aquatic angiosperm Potamogeton lucens:carbon dioxide or bicarbonate? [J]. Plant Physiology,1989,90:1035-1040.
    [76]Sand-Jensen K. Effect of epiphytes on eelgrass photosynthesis[J]. Aquatic Botany,1977,3:55-63.
    [77]Frederick T S, Hilary A N. The effects of global climate change on seagrasses[J]. Aquatic Botany,1999,63:169-196.
    [78]Middleboe A L, Markager S. Depth limits and minimum light requirements of freshwater macrophytes [J]. Freshwater Biology,1997,37:553-568.
    [79]Melzer A. Aquatic macrophytes as tools for lake management[J]. Hydrobiologia, 1999,395/396:181-190.
    [80]Corby Lee, Nicholas J, Russel, Graham F. Development and Validation of Laboratory Microcosms for Anionic Surfactant Biodegradation by Riverine Biofilms[J]. Wat Res,1998,32(8):2291-2298.
    [81]程侣柏,胡家振,姚蒙正等.精细化工产品的合成及应用[M].大连:大连理工大学出版社.1992.
    [82]李轶,王栋,我国表面活性剂LAS废水的处理技术进展[J].环境污染治理技术与设备,2000,1(1):65-71.
    [83]区自清等.洗涤剂、LAS在土壤上吸附行为及机理研究[J].应用生态学报,1995,6(2):206-211.
    [84]吴景阳,李健博,李云飞等.海河口阴离子表面活性剂的地球化学及环境信息[J].科学通报,1987,768-772.
    [85]陈家瑞,万文豪,陆尚志等.中国植物志[M].北京:科学出版社,2000,53(2):135-140.
    [86]Pieterse A H, Murphy K J. Aquatic Weeds:The Ecolony and Mananement of Nuisance AquaticVenetation [M]. New York:Oxford University Press,1993. Pp.3-30
    [87]Barko J W, James W F. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, andresuspension. In:Jeppesen E, S Dergaard M, Christoffersen K eds. The Structurinn Role of Submersed Macrophvtes in Lakes[J]. New York:Sprinner-Verlan,1998. Pp.197-214.
    [88]Barko J W, James W F. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, andresuspension. In:Jeppesen E, S ndergaard M, Christoffersen Keds. The Structurinn Role of Submersed Macrophvtes in Lakes[J]. New York:Sprinner-Verlan,1998:197-214.
    [89]国家环境保护总局“水质合废水监测分析方法”编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社.2002.
    [90]邹琦.植物生理学实验指导[M].北京:中国农业出版社.2000..pp.72-75.
    [91]Christian R. The effect of submerged aquatic vegetation on phytoplankton and quality in the trial freshwater Potomac River[J]. Freshwat. Ecol,1990,5(3):279-28
    [92]陈建勋,王晓峰.植物生理学实验指导[M].北京:华南理工大学出版社.2000.Pp.119-122
    [93]Devid R. Prasad Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte:Response of antioxidant entioxidant enzymes antioxidants[J]. Plant Science,1998, (138).
    [94]张智等.水体富营养化及其治理措施[J].重庆环境科学,2002,Vol.24,No.3P:52-54.
    [95]王斌,周莉苹,李伟.不同水质条件下菹草的净化作用及其生理反应初步研究[J].武汉植物学研究,2002,20(2):150-152.
    [96]Reed S C, Middlebrooks E J, Crites R W. Natural system for wastewarter management and treatment. In:New York, McGraw Hill Book Company,1988.
    [97]Wang B, Li W. Physiological reactions of Potamogeton malaianus to different N and P concentrations in the growth medium. Acta Ecologica Sinica,2002,22(10): 1616-1621.
    [98]Rai U N, Sarita Sdinha, R D, Tripathi, P. Chandra Wasterwater treatability potential of some aquatic macrophytes:Removal of heavy metal [J]. Ecological Engineering,1995, (5)1066-1071.
    [99]Satoh A, Kobayashi H, Shiraiwa Y. Kinetic analyses of photosynthesis: properties of the utilization and fixation of dissolved inorganic carbon in photosynthesis of microalgae[J]. J Phycol,1997,45:21-28.
    [100]Keeley J E, Sandquist D R. Diurnal photosynthesis in CAM and nonCAM seasonal-pooll aqueatic macrophtes [J]. Ecologu,1991,72:716-727.
    [101]Spencer W E, Teeri J. Acclinmation of photosynthetic phenotype to environemental hererogeneity[J]. Ecology,1994,75(2):301-324.
    [102]Thielmann J, Tolebert N E, Goyal A, et al. Two systems for concentrating CO2 and bicarbonate during photosynthesis by Scendesmus[J]. Plant Physl,1990, 92:622-629.
    [103]Hatch M D, Boardman N K. The Biochemistry of Plants:A Comprehensive Treatise. Photosynthesis [M]. New York:Academic Press,1987. Pp.219-274.
    [104]许大全,张玉忠,张容铣.植物忠光和作用的光抑制.植物生理学通讯,1992,28:237-243.
    [105]夏建荣,高坤山.高浓度培养条件下极大螺旋藻光抑制研究.水生生物学学报,2002,26(1):14-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700