不同基质下低温厌氧发酵产气性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用不同的发酵基质、不同的活性污泥添加量、不同的秸秆添加比例、选取西北民族大学榆中校区污水处理厂的厌氧污泥和从西藏野驴粪便分离出的兼性纤维素菌作为活性污泥接种物,进行模拟季节变化和冬季的低温发酵。其结果如下:
     厌氧发酵过程的最佳发酵温度为35℃,模拟从夏季到秋季(气温从35℃降到25℃时)产气骤降一半左右,模拟试验到冬季时产气降为夏季的1/4。在夏季、正常温度其他条件相同时,羊粪产气最多、其次是鸡粪、牛粪次之、猪粪最少。活性污泥添加量在20%、粪秸秆添加比例为4:1时,平均日产气量为最高。
     在冬季温度较低的情况下,接种处理后的活性污泥,羊粪、猪粪产气量下降明显,牛粪、鸡粪产气量上升较明显。活性污泥添加量10%产气量上升10.1%;粪秸秆添加比例在5:1时上升10.6%。
     总之,分离出的菌种在冬季显著提高了牛粪厌氧发酵的甲烷产量,节省了活性污泥的用量,得出不同发酵情况下的最佳底物添加量,提高了发酵效率,为北方冬季沼气池的正常使用提供了帮助。
Use of different fermentation substrates, addition of activated sludge, adding different percentage of straw, select Northwest Nationalities University Yuzhong Campus anaerobic wastewater treatment plant sludge and isolated from the feces of the Tibetan wild ass and cellulosic bacteria as activated sludge inoculum, to simulate seasonal changes and winter low temperature fermentation. The results are as follows:
     Anaerobic fermentation process, the optimal fermentation temperature is 35℃, simulation from summer to autumn (the temperature dropped from 25℃, 35℃) gas plunged about half of simulation to the winter to summer gas sag 1 / 4. In summer, the normal temperature of other conditions, gas production up sheep, followed by chicken manure, cow dung second, and pig manure at least. Addition of activated sludge to 20%, add the ratio of 4:1 straw manure, gas to peak, the cumulative gas production, the average daily gas production was the highest.
     In the case of low winter temperature, after treatment by activated sludge acclimated inoculum, sheep, pig gas production decreased significantly, cow dung, chicken manure gas production increased significantly. Addition of activated sludge gas production increased 10% significant; addition of 15% and 20%, the difference was not significant. Add a proportion of straw manure significantly different in the 5:1, the rest are not significant.
     In short, the isolated bacteria were significantly increased in the winter of anaerobic fermentation of cow dung methane production, saving the amount of activated sludge, obtained under different fermentation conditions the best substrate to add, improve the fermentation efficiency, the North the normal use of biogas digesters in winter has helped.
引文
[1] IPCC In:Houghton,J. H.,Ding,Y.,Griggs,D. J., Noguer,M.,van der Linden P.J.,Dai X.,Maskell, K. & Johnson,C. A. (Eds) Climate Change 2001: The Scientific Basis,Cambridge:Cambridge University Press,2001.
    [2] Belay,N.,R. Tohnson,B. S., Rajagopl,E. Conway de Macario& L. Daniels. Methanogenic bacteria from human dental plaque. Appl. Environ. Microbiol. 1988,54:600-603.
    [3] Dwyer,D. F.,& J. M. Tiedje. Metabolism of polyethylene glycol by two anaerobic bacteria,Desulfovibrio desulfuricans and a Bacteroids sp. Appl.Environ.Microbiol. 1986, 52:852-856.
    [4] Grotenhuis,J. T. C.,Smit,M.,Plugge,C. M.,Xu,Y. S.,Van Lammeren, A. A. M.,Stams,A. J. M. & Zehnder,A. J. B. Bacteriological composition and structure of granular sludge adapted to different substrates. Appl Environ Microbiol 1991, 57:1942- 1949.
    [5]顾夏声等水处理工程清华大学出版社1985
    [6] Macleod,F. A.,Guiot,S. R. & Costerton,J. W. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Appl Environ Microbiol 1990, 56:1598-1607.
    [7] Abram J. W. & Nedwell D. B. Inhibition of methanogenesis by sulfate reducing bacteria competing for transferred hydrogen. Arch Microbiol 1978,117:89-92.
    [8] Reynolds,E. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 1963, 17:208-212.
    [9] Thompson A.M.,Hogan K. B. & Hoffman J. S. Methane Reductions - Implications for global warming and atmospheric chemical change,Atmos. Environ. 1992, 26:2665–2668.
    [10] Zhilina, T. N. Biotypes of methanosarcina. Microbiology (Russ.) 1976, 45: 481–489.
    [11] Boone D.R & W. B. Whiteman Proposal of minimal standards for describing new taxa of methanogenic Bacteria. Int J Syst Bacteriol 1988,38:212-219.
    [12] Cappenberg T. E. & Prins R. A. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. III-Experiments with 14C-labeled substrates. Anton Leeuwenhoek 1974, 40:457-469.
    [13] McCarty,P.L.and Smith,D.P.,Environ.Sci.Technol.,Vol.20.,pp.1200-1206,1986
    [14] McCarty,P.L.,Wat.Sci.Teah.,Vol.24.,No.8,pp.17-33,1991
    [15] McCarty,P.L.来华讲座摘编厌氧消化工程陈柏铨整理广州能源研究所生物能室1983
    [16] Hartman,H. & Alexei Fedorov The origin of the eukaryotic cell :a gemomic investigation. PNAS 2002, 99:1420-1425.
    [17] Jones. W. J.,Leign,J. A.,Mayer. F.,Woese.,C. R. & Wolfe. R. S. Methanococcus jannaschii sp.nov.,an extremely thermophilic methanogen from from a submarine hydrothermal vent. Arch.Microbiol. 1983, 136:254-261.
    [18] Luton P. E.,Wayne J. M.,Sharp R. J. & Riley P. W. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 2002,148:3521–3530.
    [19] Miller,M. B. & Bassler,B. L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 2001, 55:165-199.
    [20] Paggi,R. A.,C. B. Martone,C. Fuqua & R. E. D. Castro Detection of quorum sensing signals in the haloalkaliphilic archaeon Natronococcus occultus. FEMS Micriobiolgy Letters 2003, 221: 49-52.
    [21]东秀珠,蔡妙英常见细菌鉴定手册北京:科学出版社,2001
    [22] Raskin,L.,Rittmann,B. E. & Stahl,D. A. Competition and coexistence of sulfate-reducing and methanagenic populations in anaerobic biolilms. Appl Environ Microbiol 1996, 62: 3847-3857.
    [23] Patel,G. B. & Sprott,G. D. Methanosaeta concilii gen. nov.,sp. nov. (“Methanothrix concilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov. Int J Syst Bacteriol 1990a, 40: 79-82.
    [24] Szewzyk,U. & B. Schink. Degradation of hydroquinone ,gentisate, and benzoate,by a fermenting bacterium in pure culture or defined mixed culture. Arch.Microbiol. 1985, 151:541–545.
    [25] Bryant,M.P. Part 13. Methan-producing bacteria, p.472-477,in R.E.Buchanan and N. E. Gibbons (eds.) Bergey’s manual of determinative bacteriology ,8th ed. Williams& Wilkins ,Baltimore. 1974
    [26] Zhilina,T. N. Death of methanosarcina in the air. Microbiology (Engl. Transl.) 1972, 41:980-981.
    [27] OremL, R. S. Biogeochemistry of methanogenic bacteria,in Anaerobic Bacteria (Zehnder. A.J.B.Ed.),pp. 641-705,John Wiley & Sons,New York. 1988.
    [28] Dunny,G. M. & Leonard,B. A. Cell-cell communication in gram-positive bacteria. Annu. Rev. Microbiol. 1997, 51:527.
    [29]东秀珠:“厌氧细菌概论”。葛诚微生物肥料的生产应用基础中国农业科技出版社2000. 222-256.
    [30] Fox,G. E. & E.Stackebrandt The application of 16S rRNA catalogorizing and 5S rRNA sequencing in bacterial systematics Methods Microbiol. 1987,.19:405-458.
    [31] Ivanov,V. E. & Stabnikova,E. Use of data on the DNA G+C content in studies of molecular phylogeny of methanogenic archaebacteria. Microbiology translated from Mikrobiolgiya. 1999, 68:623-627.
    [32] Santegoeds,C. M.,Damgaard,L. R.,Hesselink,G.,Zopfi,J.,Lens,P.,Muyzer,G. & De Beer,D. Distribution of sulfate-reducing and methanogenic bacteria in anaerobic aggregates determined by microsensor and molecular analysis. Appl Environ Microbiol 1999,65: 4618-4629.
    [33] Peters, V. & Conrad, R. Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils. Appl Environ Microbiol 1995, 61: 1673-1676.
    [34]任南琪,王爱杰等厌氧生物技术原理与应用北京化学工业出版社2004年3月第一版10-12
    [35] Rouvieáre, P.E. & Wolfe R.S. Novel biochemistry of methanogenesis. J Biol Chem 1988, 263:7913-7916.
    [36] Cappenberg,T. E. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. I-Field observation. Anton Leeuwenhoek 1974, 40:285-295.
    [37] Burns,S. J. Carbon isotope evidence for coupled sulfate reduction methane oxidation in Amazon Fan sediments. Geochim. Cosmochin. Acta,1998, 62:797-804.
    [38] Hilpert R.,Winter J.,Hammes W. & Kandler O. The sensitivity of archaebacteria to antibiotics. Zentralbl Bakteriol Mikrobiol Hyg 1 Abt Orig 1981, C2:11-20.
    [39] Woese,C. R.,kandler,O. & Wheelis, M. L. Towardsa natural system of organism: proposal for the domains Archaea, Bacteria and Eucarya. Proc. Natl. Acad. Sci. USA. 1990, 87:4576-4579.
    [40] Cha,C.,Gao,P. & Chen,Y. C. Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol. Plant. Microbe. Interact. 1998, 11(11):1119-1129.
    [41] Chen,S.Y.厌氧产氢产酸细菌的生物学和分子系统学研究中国科学院微生物研究所博士论文,2005
    [42] Franzmann, P. D.,Liu, Y.,Balkwill, D. L.,Aldrich, H. C.,Conway de Macario E. & Boone D.R. Methanogenium frigidum sp. nov.,a psychrophilic,H2-using methanogen from Ace Lake ,Antartica. Int J Syst Bacteriol 1997, 47:1068-1072
    [43] Galand, P. E.,Saarnio, S. & Fritze, H. Depth related diversity of methanogen Archaea in Finnish oligotrophic fen. FEMS Microbiology Ecology 2002, 42:441-449.
    [44] Huber,R.,Kurr,M.,Jannasch,H.,W.& Stetter,K. O. A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110℃. Nature 1989, 342:833.
    [45]胡纪萃编著废水厌氧生物处理理论与技术中国建筑工业出版社2003:19-20
    [46] Joulian,C. B. Ollivier, B. K. C. Patel & P. A. Roger Phenotypic and phylogenetic characterization of dominant culturable methanogens isolated from ricefield soils FEMS Microbiology Ecology 1998, 25: 135-145.
    [47] Kalmokoff, M. L.,K. F. Jarrell & S. F. Koval. Isolation of flagella from the archaebacterium Methanococcus voltae by phase separation with Triton X-114.J. Bacteriol. 1988, 170:1752–1758.
    [48] Lelieveld J.,P. J. Crutzem,& C. Bruhl. Climate effects of atmospheric methane. Chemosphere 1993, 26:739-768.
    [49]卢德勋著系统动物营养学导论中国农业出版社2004
    [50] Macario,E. & Winter,J. Characterization of a new mesophilic secondary alcohol-utilizing methanogen, Methanobacterium palustre sp. nov. from a peat bog. Arch Microbiol 1989, 151:1-9.
    [51]闵航等厌氧微生物学浙江大学出版社1993
    [52] Owen,R. J. & Pitcher,D. Current methods for estimating DNA base composition and levels of DNA-DNA hybridization. In chemical Methods in Bacterial Systematics, pp. 67-93. Edited by M. Goodfellow and D.E. Minnkin. London:Academic Press,1985
    [53] Patel,G. B. & Sprott,G. D. Comparative analysis of the sheath structure of Methanothrix concilii GP6 and Methanospirillum hungatei strain GP1 and JF1. Can. J. Microbiol.1986, 32:623-631
    [54] Raimbault,M.,Rinaudo,G.,Garcia. J. L. & Boureau. M. A device to study metabolic gases in the rice rhizosphere. Soil Biol.Biochem. 1977, 9:193-196.
    [55] Felsenstein,J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985, 39:783-791.
    [56] Garcia,J. L., Patel,B. K. C. & Ollivier,B. Taxonomic,Phylogenetic, and eological Diversity of Methanogenic Archaea. Anaerobe 2000, 6:205-226.
    [57] Reeve,J. N.,J. N?lling,R. M. Morgan & D. Smith Methanogenesis: genes,genomes,and who’s on first? J. Bacteriol. 1997, 179: 5975-5986.
    [58] Sudhir K.,Koichiro,T.,Ingrid,B. J.,& Masatoshi N.. MEGA2: Molecular Evolutionary Genetics Analysis software, Arizona State University, Tempe,Arizona,USA. 2001.
    [59] Tajima,K.,Nagamine,T.,Matsui,H.,Nakamura,M. & Aminov,R. I. Phylogenetic analyssis of archaeal 16s rRNA libraies from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Micriboiol. Lett. 2001, 200(1): 67-72.
    [60] Woese, C.R. Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 2000a, 97(15):8392-6.
    [61]赵一章等产甲烷菌及研究方法成都科技大学出版社1997.
    [62] Hallam,S. J.,Putnam,N.,Preston,C. M.,Detter,J. C.,Rokhsar,D., Richardson,P. M. & Delong,E. F. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 2004, 305:1457-1462.
    [63] GroKopf R.,Janssen P.H. & Liesack W. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval.Appl Environ Microbiol, 1998, 64:960-969.
    [64]郑平,冯孝善主编,废物生物处理高等教育出版社2006
    [65] Girguis,P. R.,V. J. Orphan,S. J. Hallam & E. F.,Delong Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Appl. Environ. Microbiol. 2003, 69:515-523.
    [66] G.乌尔松[瑞],B.纽厄尔[澳]编著,高景峰,彭永臻译污水处理系统的建模、诊断和控制化学工业出版社2005
    [67] Hansen , K. H. , Ahring , B. K. & Raskin , L. Quantification of syntrophic fatty acid-β-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization. Appl Environ Microbiol 1999, 65:4767-4774.
    [68] Kumar,S.,Tamura, K.,Jakobsen I. B. & Nei,M. MEGA2: molecular evolutionary geneticsanalysis software. Bioinformatics 2001, 17:1244-1245.
    [69] Leigh,J. A. Nitrogen fixation in methanogens: the archaeal perspective. Curr. Issues. Mol. Biol. 2000, 2:125-131.
    [70] Reeburgh,W. S.,S. C. Whalen & M. J. Alperin The role of methylotrophy in the global methane budget, p 1-14. In J. C. Murrell and D. P. Kelly(ed.), Microbial growth on C1 compounds . Proceedings of the 7th International Symposum. American Society for Microbiogy, Washington. D.C. 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700