美国海滨桤木和薄叶桤木水分生理和光合特性比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以美国本土海滨桤木和薄叶桤木为试验材料,采取盆栽、人工控水的方式研究并比较了海滨桤木(Alnus maritima)和薄叶桤木(A. incana ssp. tenuifolia)气孔导度(Gs)、叶片水势(ψleaf)、渗透调节能力以及光合性能对土壤水分条件的响应,以探讨引起两种桤木生态分布巨大差异的生理生态原因。结果表明:
     (1)正常水分条件下,海滨桤木Gs低于薄叶桤木,其与大气温度,相对湿度和水蒸气亏缺等气象因子相关性低于薄叶桤木;干旱胁迫下,海滨桤木Gs对其自身ψleaf下降信号的敏感度低于薄叶桤木;复水后,其Gs恢复的更为缓慢。
     (2)正常水分条件下,海滨桤木ψleaf高于薄叶桤木,且引起气孔关闭的ψleaf临界值较高;干旱胁迫下,海滨桤木ψleaf下降幅度高于薄叶桤木。
     (3)正常水分条件下,海滨桤木和薄叶桤木渗透调节能力无显著差异;干旱胁迫下,尽管两种桤木均表现出:(a)饱和状态渗透势(ψssat)下降,(b)膨压与水势关系的最大变化率降低,(c)初始失膨点渗透势(ψstlp)增加,(d)细胞渗透调节能力范围(ψssat-ψstlp)减小的趋势,但与薄叶桤木相比,海滨桤木ψstlp较高,ψssat-ψstlp较小。
     (4)海滨桤木最大净光合速率(Amax)、量子表观速率(AQY)、呼吸速率(Rd)、光补偿点(LCP)、光合速率(Pn)以及光下最大荧光(Fm')、光合电子传递速率(ETR)和光化学淬灭系数(qP)均显著高于薄叶桤木,而光饱和点则低于薄叶桤木,表明海滨桤木对强光的适应性更低;干旱胁迫下两种桤木Pn和蒸腾速率(Tr)显著下降,水分利用率(WUE)上升,光系统Ⅱ(PSⅡ)的有效光化学量子产量(Fv'/Fm')、ETR和非光化学系数(qN)显著下降,其中,海滨桤木变化幅度大于薄叶桤木。
     从以上结果可以看出,尽管在有效辐射范围内光合性能较强,但较低的气孔敏感性、较高的叶片水势、干旱下较低的渗透调节能力、较小的光合有效辐射范围以及对干旱较高的敏感性,是造成海滨桤木分布范围狭小的主要原因之一。
This study compared stomatal conductance (Gs), leaf water potential (ψleaf), basic osmotic adjustment and photosynthetic responses of Alnus maritima and A. incana ssp. tenuifolia growing in America under artificial soil humidities, to explore physiological reasons of gigantic difference in ecological distribution of the both tree species. The results indicated that, (1) A. maritima kept a lower Gs and the correlation coefficients between A. maritima and meteorological factors ie. air temperature, vapor pressure deficit, relative humidity was lower than A. tenuifolia under well watered irrigation. During the dry-down period, A. maritima showed a weaker ability to keep stomatal open influenced by the decrease ofψleaf. In rewatered experiment, recovery speed of Gs of A. maritima was slower than that of A. tenuifolia.
     (2) Under well watered condition, A. maritima kept a higherψleaf and a higher threshold ofψleaf leading to stomata close compared to A. tenuifolia. Under drought stress, the decline inψleaf but was larger than A. tenuifolia.
     (3) There was no significant difference in the osmotic regulation of the two species. However, both species showed: (a) a decrease in solute potential at full turgor (ψssat) and, (b) a decline of maximum variation rate of turgor pressure against solute potential, (c) an increase in solute potential at turgor loss point(ψstlp), (d)ψssat-ψstlp dropped after surfing drought stressed. Noticeablyψstlp of A. maritima was higher, butψssat-ψstlp was lower than A. tenuifolia.
     (4) Light response curve of A. maritima showed a higher maximum net photosynthetic rate (Amax), apparent quantum yield (AQY), dark respiration rate (Rd) and light compensation point (LCP), but a lower light saturation point (LSP), compared with A. tenuifolia. Net photosynthetic rate (Pn), maximum fluorescence yield in light-adapted state (Fm'), non-cycle photosynthetic electron transport rate (ETR) and photochemical chlorophyll fluorescence quenching coefficient (qP) of A. maritima were higher than those of A. tenuifolia. Drought treatment led to a significant decrease in effective PS II quantum yield (Fv'/Fm'), in ETR and non-photochemical quenching coefficient (qN) in both species, particularly in A. maritima.
     These results indicated that the rarity and patchy distribution of A. maritima may partly attribute to (1) the lower sensitivity of leaf stomatal, (2) higher leaf water potential, (3) lower osmotic adjustment ability under drought stress, (4) higher sensitivity to drought stress and (5) smaller range of effective photosynthetic solar radiation.
引文
蔡时青,许大全. 2000.大豆叶片补偿点和光呼吸的关系.植物生理学报, 26(6): 545~550
    陈建. 2008.四种灌木植物光合效率对土壤水分的响应过程和机制[硕士学位论文].山东:山东农业大学
    陈绍光,李燕南,王沙生. 1996.空气和土壤干旱对不同杨树种类无性系生长及光合的影响.北京林业大学学报, 18(3): 35~41
    陈小凤,李杨瑞,叶燕萍,莫云川. 2007.利用叶绿素荧光参数和净光合速率评价引进禾本科牧草的抗旱性.草业科学, 24(5): 53~57
    陈自新,周国梁. 1989.北京市区园林树木生态适应性的调查研究.园林科研, 2: 5~25
    樊大勇,谢宗强. 2004.木质部导管空穴化研究中的几个热点问题.植物生态学报, 28(1): 126~132
    冯涛,刘纪凤. 2009.叶绿素荧光分析在研究植物热胁迫中的应用.现代农业科技, 13: 360~368.
    关义新. 1995.水分胁迫下植物叶片光合的气孔和非气孔限制.植物生理学通讯, 31(4): 293~297
    郭连生,田有亮. 1992. 9种针阔叶幼树的蒸腾速率、叶水势与环境因子关系的研究.生态学报, 2(1): 47~52
    郭连生,田有亮. 1998.运用P~V技术对华北常见造林树种耐旱性评价的研究.内蒙古林学院学报, 20: 1~8
    郭卫华,李波,张新,王仁卿. 2007.水分胁迫对沙棘(Hippophae rhamnoides)和中间锦鸡儿(Caragana intermedia)蒸腾作用影响的比较.生态学报, 27(10): 4132~4140
    侯嫦英. 2003.水分胁迫对青檀等树种生长及生理特性的影响. [硕士学位论文].南京:南京林业大学
    韩刚,李彦瑾,孙德祥,赵忠. 2008. 4种沙生灌木幼苗PV曲线水分参数对干旱胁迫的响应.西北植物学报, 28(7) : 1422~1428
    胡学华,蒲光,肖千文,刘永红,邓家林. 2007.水分胁迫下李树叶绿素荧光动力学特性研究.中国生态农业学报, 15(1): 75~77
    蒋高明. 2004.植物生理生态学.北京:高等教育出版社: 36
    蒋高明. 1996.植物生理生态学研究中的稳定碳同位素技术及其应用.生态学杂志, 15(2): 49~54.
    金红喜. 2006.西北干旱沙区四种主要造林灌木的蒸腾耗水研究. [硕士学位论文].兰州:西北师范大学
    康承财,钟全林,王健. 2008.林木抗旱生理研究进展.世界林业研究, 21(1): 20~26
    康绍忠. 1994.土壤—植物—大气连续体水分传输理论及其应用.北京:水利电力出版社: 121~126
    拉其尔. 1994.植物生理生态学.第五版.翟志席,郭玉海,马永泽,柏长青译. 1997.北京:中国农业大学出版社: 164~188
    李春香,王纬,李德全. 2001.长期水分胁迫对小麦生育中后期根叶渗透调节能力、渗透调节物质的影响.西北植物学报, 21(5): 924~930
    李华祯,姚保强,杨传强,齐晓明,曹文玉,沈冠华,汤兴坤. 2006. 4种经济树木水分生理及抗旱特性研究.山东林业科技, 2: 9~11
    李吉跃. 1991.太行山区主要造林树种耐旱特性的研究(Ⅳ):蒸腾作用与气孔调节.北京林业大学学报, 2: 239~250
    李吉跃,周平,招礼军. 2002.干旱胁迫对苗木蒸腾耗水的影响.生态学报, 22(9): 1380 ~ 1386
    李吉跃,张建国. 1993.北京主要造林树种耐早机理及其分类模型的研究(Ⅰ):苗木叶水势与土壤含
    水量的关系及分类.北京林业大学学报, 15(3): 1~11
    李吉跃,张建国,姜金璞. 1994.京西山区人工林水分参数的研究(Ⅱ).北京林业大学学报, 16(2): 1~9
    李晓,冯伟,曾春晓. 2006.叶绿素荧光分析技术及应用进展.西北植物学报, 26(10): 2186~2196
    李晓储,黄利斌,张永兵. 2006.四种含笑叶解剖性状与抗旱性的研究.林业科学研究, 19(2) : 177~181
    林植芳,林桂珠,孔国辉. 1995.生长光强对亚热带自然林两种木本植物稳定碳同位素比、细胞间
    CO2浓度和水分利用效率的影响.热带亚热带植物学报, 3(2): 77~82
    刘利民,齐华,罗新兰,张旋. 2008.植物气孔气态失水与S P AC系统液态供水的相互调节作用研究
    进展.应用生态学报, 19(9): 2067~2073
    刘建伟,刘雅荣,王世绩. 1994.不同杨树无性系光合作用与其抗旱能力的初步研究.林业科学, 30(1): 83~87
    刘晚苟. 2009.植物生理学中荧光现象概念之我见.植物生理学通讯, 45(7): 705
    卢从明,张其德,匡廷云. 1994.水分胁迫对甘薯叶肉细胞光合电子传递的影响.植物学通报, 11(增刊): 9~14
    芦站根,赵昌琼,韩英. 2003.不同光照条件下生长的曼地亚红豆杉光合特性的比较研究.西南师范大学学报, 28(1): 117~121
    罗青红,李志军. 2005.树木水分生理生态特性及抗旱性特点.塔里木大学学报, 17(2): 30~33
    毛斌. 2009.大青山阳坡几种落叶树木的水分生理及其抗旱性研究. [硕士学位论文].内蒙古:内蒙古农业大学
    潘瑞炽. 2004.植物生理学.第五版.北京:高等教育出版社: 56~95
    庞士锉. 1989.植物逆境生理学基础.黑龙江:东北林业大学出版社: 86
    綦伟,谭浩,翟衡. 2006.干旱胁迫对不同葡萄砧木光合特性和荧光参数的影响.应用生态学报, 17(5): 835~838
    阮成江,李代琼. 2001.黄土丘陵区沙棘气孔导度及其影响因子.西北植物学报, 21(6): 1078~1084
    司建华,常宗强,苏永红等.胡杨叶片气孔导度特征及其对环境因子的响应.西北植物学报, 2008, 21(1): 125~130
    时连辉. 2004.土壤水分胁迫对不同品种桑树的影响[硕士学位论文].山东:山东农业大学
    史胜青,袁玉欣,张金香,施征. 2003.不同水分胁迫方式对核桃苗叶绿素荧光动力学特征的影响. 河北农业大学学报, 26(2): 20~24
    沈繁宜,刘覃. 1991.植物叶水势与蒸腾强度关系的理论探讨.植物生理通讯, 27(3): 227~229
    孙谷畴,林植芳,林桂珠等. 1993.亚热带人工林松树13C/12C比率和水分利用效率.应用生态学报, 4(3): 325~327
    唐连顺,李广敏. 1994.水分胁迫下玉米叶肉细胞超微结构的变化及其与膜脂过氧化害的关系.植物学报, 36(增刊): 43 ~ 49
    唐甜甜,赵林森,董燕. 2007.水分胁迫对滇润楠和香樟幼苗叶绿素荧光合叶水势的影响.西北林学院学报, 22(4): 16~20
    滕元文,周湘红. 1993.果树气孔反应及其对叶水势的调控.干旱地区农业研究, 4: 61~64
    王爱民,祖元刚. 2005.大兴安岭不同演替阶段白桦种群光合生理生态特征.吉林农业大学学报, 27(2): 195~193
    王凤茹,张红,商振清. 2000.水分胁迫及复水过程中小麦幼苗叶片内Ca2 +的定位.植物生理学报, 26:280 ~ 282
    王孟本,李洪建. 1999.树种蒸腾作用、光合作用和蒸腾效率的比较研究.植物生态学报, 23(5): 401~410
    王孝威. 2002.水分胁迫对短枝型果树光合作用的非气孔抑制.西北植物学报, 23(9): 1609~1613
    汪源,陈其兵,鞠波. 2005.浅谈滨水植物及其在园林中的应用.西华师范大学学报(自然科学版), 26(4): 436~439
    文建雷,刘志龙,王姝清. 2003.水分胁迫条件下元宝枫的光合特征及水分利用效率.西北林学院学报, 18(2): l~3
    许大全. 2001.光合作用研究进展:从分子机理到绿色革命.植物生理学报, 27(2): 97~108
    严昌荣,韩兴国,陈灵芝. 1998.暖温带落叶阔叶林主要植物叶片中δ13C值的种间差异及时空变化. 植物学报, 40(9): 853~859
    杨敏生,裴保华,于冬梅. 1997.水分胁迫对毛白杨杂种无性系苗木维持膨压和渗透调节能力的影响. 生态学报, 364-370
    叶冬梅. 2002.樟子松水分生态阀值的研究. [硕士学位论文].内蒙古:内蒙古农业大学
    于秉军.土壤水势对水曲柳幼苗水分、光合和生长的影响. [硕士学位论文].黑龙江:东北林业大学, 2003
    于晓芳,高聚林,宋国栋. 2008.玉米叶片水分利用率及其相关性状的研究.玉米科学, 16(3): 64~69
    张继树. 2006.植物生理学.北京:高等教育出版社: 32~37, 42
    张建国. 2000.树木耐旱特性及其机理研究.北京:中国林业出版社: 69
    张木清,陈如凯. 2005.作物抗旱分子生理与遗传改良.北京:科学出版社: 132~134
    张玮. 2007.沙棘光合及水分生理生态特性研究. [硕士学位论文].内蒙古:内蒙古农业大学
    赵平,刘惠,孙谷畴. 2007. 4种植物气孔对水汽压亏缺敏感度的种间差异.中山大学学报(自然科学版), 46(4): 63~68
    Bowman W D, Roberts S W. 1985. Seasonal changes in tissue elasticity in chaparral shrubs. Plant Physiology, 65: 233~236
    Bowes G. 1991. Growth at elevated CO2: photosynthetic response mediated though rubisco. Plant,Cell and Environment, 14: 795~806
    Calatayud A, Roca D, Martinez P F. 2006. Spatial-temporal variations in rose leaves under water stress conditions studied by chlorophyⅡfluorescence imaging. Plant Physiology and Biochemistry, 44(10): 564~573
    Campbell G S, Norman J M. 1998. An Introduction to Environmental Biophysics. New York: Springer-Verlag: 36~51
    Cregg B M, Zhang J W. 2001. Physiology and morphology of Pinus sylvestris from diverse sources under cyclic drought stress. Forest Ecology and Management, 154: 131~139
    Corcuear L, Camarero J J, Gil-Pelegrin E. 2002. Functional groups in Quercus species derived from the analysis of pressure-volume curves. Tree, 16: 465~472
    Curtis P S, Wang X Z.. 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia, 113: 229~313
    Davis S D, Ewers F W, Sperry J S. 2002. Shoot dieback during prolonged drought in Ceanothus (Rhamnaceae) chaparral of California: a possible case of hydraulic failure. American Journal of Botany, 89: 820~828
    Dubrovsky M, Nemesova I, Kalvova J. 2005. Uncertainties in climate change scenarios for the Czech Republic. Climate Research, 29: 139~156
    Engelbrecht B M J, Kursar T A. 2003. Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants. Oecologia, 136: 383~393
    Farquher G D, Sharkey T D. 1982. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33: 3~17
    Guan Y X, Dai J Y, Lin Y. The photosynthetic stomatal and nonstomatal limitation of plant leaves under water stress. Plant Physiology Communication, 1995, 31: 293-297
    Graves W R, Gallagher J L. 2003. Resistance to salinity of Alnus matitma from disjunct wetlands: Symptoms of salt injury, comparison to other shrubs, and effect of inundation. Wetlands, 23(2): 394~405
    Hacke U G, Sperry J S, Pittermann J. 2000. Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic and Applied Ecology, 1: 31~41
    Hansona P J, Weltzin J F. 2000. Drought disturbance from climate change: response of United States forests. The science of the total environment, 262: 205~220
    Herrick J D, Thomas R B. 1999. Effects of CO2 enrichment on the photosynthetic light response sun and shade leaves of canopy sweetgum trees (Liquidambar styraciflua) in a foreststem. Tree Physiology, 19(12): 779~786
    Hinckley TM, Teskey RO, Duhme R, Richter H. 1981. Water deficit and plant growth, VI. New York: Academic Press: 153~208
    Houghton J, Ding Y, Griggs D J. 2001. Climate Change 2001: The Scientific Basis. United Kingdom: Cambridge University Press: 944
    Huber S C, Rogers H H, Mowry F L. 1984. Effects of water stress on photosynthesis and carbon partitioning in soybean (Glycine max [L.] Merr.) plants grown in the field at different CO2 levels. Plant Physiology, 76: 244~249
    Jongdee B, Fukai S, Cooper M. 2002. Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crop Research, 76: 153 ~ 163
    Kjelgern R, Wang L X, Joyce D. 2009. Water deficit stredd responses of three native Australian ornamental herbaceous wildflower species foe water~wise landscapes. Hort. Science, 44(5): 1358~1365
    Kramer P J. 1983. Water relations of plants. NewYork: Academic Press: 102~124
    Kozlowski T T. 1981. Water deficits and plant growth. Volume VI. Woody plant communities . New York: Academic Press: 78
    Lahlou O, Ledent J F. 2005. Root mass and depth, stolons and roots formed on stolons in four cultivars of potato under water stress . European journal of agronomy, 22: 159~173
    Lenz T I, Wright I J, Westoby M. 2006. Interrelations among pressure-volume curve traits accross species and water availability gradients. Physiologia Plantarum, 127: 423~433
    Li C Y, Wang K Y. 2003. Differences in drought responses of three contrasting Eucalyptus microtheca F. Muell. Populations. Forest Ecology and Management, 179: 377~385
    Lemcoff J H, Guarnaschelli A B, Garau A M. 2002. Elastic and osmotic adjustments in rooted cuttings of several clones of Eucalyptus camaldulensis Dehnh. from southeastern Australia after a drought. Flora, 197: 134~142
    McDowell N, Pockman W T, Allen C D. 2008. Mechanism of plant suivival and mortality during drought:why do some plants survive while others succumb to drought?. New physiologist, 178: 719~739
    Pérez-Pérez J G, Robles J M, Tovar J C, Botía P. 2009. Response to drought and salt stress of lemon 'Fino 49' under field conditions: Water relations, osmotic adjustment and gas exchange. Scientia Horticulturae, 122: 83~90
    Mcnaughton K G, Jarvis P G. 1991. Effects of spatial scale on stomatal control of transpiration. Agricultural and forest meteorology, 54: 279~302
    Plaut Z, Butow B J, Blumenthal C S, Wrigley C W. 2004. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-synthesis water deficit and elevated temperature. Field Crops Research, 86: 185~198
    Pockman W T, Sperry J S. 2000. Vulnerability to xylem cavitation and the distrlbutton of Sonoran Desert vegetation. American Journal of Botany, 87: 1287~1299
    Schereiber U, Bilger W, Neubauer C. 1994, Chlorophyll fluorescence as a non-destructive indicator for rapid assessment of invivo photosynthesis. Ecological Studies, 100: 40~70
    Schrader J A, Graces W R, Rice S A, Gibson J P. 2006. Differences in shade tolerance help explain varying success of two sympatric alnus species. Plant Science, 167(5): 979~989
    Schultz H R. 2003. Differences in Hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis winifera L. cultivars during drought. Plant, Cell and Environment, 26, 1393~1405
    Schuze E D. 1986. Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil. Annual Review of Plant Physiology, 37: 247~274
    Terashima I. 1992. Anatomy of non-uniform leaf photosynthesis. Photosynthesis, 31: 195~212
    Tyree M T, Cochard H, Cruizita P. 1993. Drought-induced leaf shedding in walnut: evidence for vulnerability segmentation. Plant, Cell and Environment, 16: 879~882
    Tyree M T, Zimmermann M H. 2002. Xylem Structure and the Ascent of Sap. Second edition. New York: Springer: 244
    Walker D A. 1989. Automated measurement of leaf photosynthetic O2 evolution as a function of photon flux density. Philosophical transactions of the royal society of london. Series B, Biological Sciences, 323: 313~326
    Wilhite D A. 2000. Drought: a global assessment . London:Routledge: 3~18
    Xiong L, Wang R G, Mao G. 2006. Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiology, 142: 1065~1074

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700