黄、东海浮游动物群落结构和多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用2006年6-7月、2007年1-2月、2007年11月和2009年4-5月在黄海和东海进行的4个航次的断面调查所获得的大中型浮游动物样品,对黄、东海浮游动物的种类组成、丰度及生物多样性进行了研究;采用多元统计方法分析了黄东海浮游动物的群落结构并探讨了浮游动物与环境因子间的关系;同时首次将分类学多样性指数应用于我国浮游动物生态学研究领域,研究了黄、东海浮游桡足类的多样性。本研究旨在较全面、系统地查明黄海和东海浮游动物的群落生态学特征,探讨我国东部陆架边缘海浮游动物群落演替规律及其与环境演变的关系,同时,为深入研究黄东海浮游动物的长期变化、海洋生态系统动态变化机制、生物资源持续利用研究和生态环境影响评价及生态环境保护措施的制订等提供基础资料和不可或缺的重要依据。
     结果表明:黄、东海浮游动物种类组成十分丰富,4航次共记录浮游动物种类859个、浮游幼虫37类,合计种类896个。黄、东海浮游动物的种类包括原生动物门、刺胞动物门、栉水母动物门、环节动物门、软体动物门、节肢动物门、毛颚动物门和脊索动物门等。甲壳动物和刺胞动物是种类最丰富的浮游动物类群。浮游甲壳动物的种类数量占到总种数的一半以上,桡足类是其主要类群。
     黄、东海浮游动物的丰度呈现明显的季节波动,原生动物、桡足类和浮游幼虫是数量最丰富的类群,总丰度的平面分布主要由这3个类群决定。春季,浮游动物平均丰度为5036.9 ind/m3,丰度的高值区主要密集于山东沿岸、长江口水域和浙闽沿岸;原生动物占绝对优势,平均值为3964.6 ind/m3,其次是桡足类,平均丰度为707.6 ind/m3,浮游幼虫的平均丰度为78.4 ind/m3。夏季,浮游动物平均丰度为1118.8 ind/m3,黄海的浮游动物丰度显著低于东海,高值区主要分布于东海近岸水域;原生动物的丰度大幅度降低,平均丰度仅为16.3 ind/m3,桡足类的平均丰度为443.9 ind/m3,分布相对均匀,浮游幼虫主要分布在长江口外围水域和浙闽沿岸以及山东半岛北岸,平均丰度为57.4 ind/m3。秋季,浮游动物平均丰度为790.2 ind/m3,在整个研究水域分布比较均匀;原生动物的平均丰度为167.9ind/m3,桡足类的平均丰度为353.8 ind/m3,浮游幼虫的平均丰度达到四季的最高值81.8 ind/m3。冬季,浮游动物丰度大幅下降,达到全年最低,平均值仅为162.3ind/m3,黄海和东海近岸水域丰度下降幅度非常大,使得东海外海成为浮游动物丰度的高值区;桡足类及浮游幼虫的分布趋势与总丰度类似,其平均丰度分别为64.8 ind/m3和9.3 ind/m3。由于各季节浮游动物不同生态类型间的比例有很大变化,而且环境条件差异显著,所以浮游动物丰度与环境因子的相关性并不一致,这也说明在不同季节,影响浮游动物种类组成和群落结构的外因不同。
     秋冬季浮游动物生物多样性明显高于夏春季,但4个季节的生物多样性平面分布趋势基本一致,即东海外海>东海近岸>黄海。浮游动物的种类数随纬度的减小而逐渐增大。在黄海,种类数的纬向梯度很小而趋于均匀;而在东海,浮游动物的种类数变化梯度很大,且存在明显的经向梯度。
     多元统计分析显示,黄海与东海的浮游动物群落存在显著差异。黄海的浮游动物群落属于偏温带类型的群落,主要有黄海群落(Y)和黄海近岸群落(苏北近岸群落)(SC),其浮游动物种类组成简单,群落结构比较单一;而东海的浮游动物群落则属于暖水性群落,主要有黑潮群落(K)、东海混合水群落(EM)和东海近岸群落(EC)。东海的浮游动物群落结构复杂,3个群落在陆架延伸方向上依次呈带状分布。此外夏季还在长江口邻近水域划分出长江口群落(CJ)。浮游动物群落结构受环境变量的显著影响。各浮游动物群落均有其相应的分布区域,但在不同季节随着各水系的消长,浮游动物群落的分布范围也存在季节性的变化和位移。
     浮游桡足类生物多样性总体呈现从外海到近岸、从南至北逐渐降低的趋势,但其分布模式,随采用不同的指数而有所不同。根据本次调查结果并综合目前关于我国渤黄东海浮游桡足类研究的文献,系统整理黄、东海浮游桡足类的总种类名录,并计算了其等级多样性。黄、东海有浮游桡足类406种,隶属于109属,44科,5目。根据总名录,计算了平均分类差异指数(△+)和分类差异变异指数((?)+)的理论平均值及95%置信曲线,其中△+的理论平均值为84.3。4季各群落浮游桡足类的平均分类差异指数(△+)都位于95%置信漏斗曲线的内部,说明黄、东海浮游桡足类群落结构正常。黑潮群落和东海混合水群落的绝大多数站位的分类差异变异指数((?)+)显著偏高,并有相当部分位于95%置信漏斗曲线的外部,这是由该水域浮游桡足类种类组成复杂、分类学差异大造成的。
The species composition, abundance and biodiversity of zooplankton in the Yellow Sea and the East China Sea were studied based on the samples collected during four cruises in Jun.-Jul.2006, Jan.-Feb.2007, Nov.2007 and Apr.-May 2009. Zooplankton community structure were analyzed through multivariate analysis method. The correlations between zooplankton community and envionmental factors were also discussed. The taxonomic diversity of pelagic copepods in the Yellow Sea and the East China Sea were studied. This is the first time of taxonomic diversity to be used in community ecology of zooplankton in China seas. The major objective of this study is to elucidate zooplankton species composition and distribution on the shelf and to explore the relation of zooplankton community with environment. This research can provide fundamental information for the long-term monitoring of plankton ecology in the Yellow Sea and East China Sea. The main results are as follows:
     A total of 859 zooplankton taxa and 37 pelagic larvae were identified during 4 surveys. The zooplankton species belong to 8 phyla:Protozoa, Cnidaria, Ctenophora, Annelida, Mollusca, Arthropoda, Chaetognatha and Urochordata. The species number of Crustacea and Cnidaria were most abundant among these identified groups. The species number of pelagic crustacean represented above 50% of total species richness and copepods was the most important component.
     The abundance of zooplankton in the Yellow Sea and the East China Sea changed dramatically during 4 seasons. Protozoan, copepods and pelagic larvae were the most abundant groups, which greatly controlled the distribution of tatal abundance. In spring, the mean abundance of zooplankton was 5036.9 ind/m3, and the high value area was located in coastal region of Shandong, Zhejiang and Fujian Province and the adjacent waters of Changjiang River Estuary. Protozoan was in great dominance, with mean abundance of 3964.6 ind/m3, followed by copepods (707.6 ind/m3) and pelagic larvae (78.4 ind/m3). In summer, the average abundance of zooplankton was 1118.8 ind/m, and the abundance in the East China Sea was higher than that in the Yellow Sea. The high value area located in coastal area of the East China Sea. The protozoan abundance declined obviously (16.3 ind/m3) during summer. The average abundance of copepods was 443.9 ind/m3, and its spatial distribution was relatively even in suvryed area. Pelagic larvae mainly distributed in the coastal region of Zhejiang and Fujian Province, the adjacent waters of Changjiang River Estuary and in the north of Shandong Peninsula, with mean abundance of 57.4 ind/m3. In autumn, the average abundance of zooplankton was 790.2 ind/m3, and distributed relatively even in suvryed area. The mean abundance of protozoan was 167.9 ind/m3, and copepods was 353.8 ind/m3. Pelagic larvae abundance came to the maximum value (81.8 ind/m3) in the year. Zooplankton abundance decreased sharply during winter (162.3 ind/m3), the highest value presented in the offshore area of the East China Sea. The distribution trend of copepods and pelagic larvae was similar with total abundance, and the average value was 64.8 ind/m3 and 9.3 ind/m3, respectively.
     There were many different ecological categories in zooplankton community in this region, and each category had its relevant hydrographic factor. The proportion of each category varied following the change of environmental conditions in different seasons, so the zooplankton abundance showed different relationships with environmental factors in 4 seasons.
     Zooplankton biodiversity was significantly higher in autumn and winter than that in summer and spring, but the spatial distribution pattern was almost the same: Offshore area of the East China Sea> Inshore area of the East China Sea> the Yellow Sea. The species richness decreased gradually with increasing latitude. Especially in the East China Sea, zooplankton biodiversity performed an obvious gradient across the shelf.
     According to the multivariate analysis, significant differences of zooplankton communities were detected between the Yellow Sea and East China Sea. Communities in the Yellow Sea belong to "temperate fauna", with simple species composation, including Yellow Sea Community (Y) and Yellow Sea Coastal Community (Subei Coastal Community, SC); Communities in the East China Sea belong to "warm-water fauna", including Kuroshio Community (K), East China Sea Mixed-water Community (EM) and East China Sea Coastal Community (EC). Zooplankton community structure was more complex in the East China Sea,3 communities form a cross-shore zonation. Besides, a Changjiang River Estuary Community (CJ) was detected in summer in the neighborhood of Changjiang River delta, as a result of the great influence from Changjiang River discharge. Environment with different oceangraphic features support pelagic fauna with different species compositions. The present study showed a clear relationship between zooplankton assemblages and water masses distributions. The boundaries of the different planktonic communities shift with changes in hydrographic conditions, especially, with changes in the movement of water masses and currents in different seasons.
     The biodiversity distribution tendencies of pelagic copepods showed different patterns depending on which index was being calculated. Species richness and Shannon-Wiener index were significantly higher in East China Sea, whereas taxonomic distinctness was significantly higher in the Yellow Sea.
     Based on the present surveys combined with previous studies, the master list of pelagic copepods in the Yellow Sea and the East China Sea were set up, and its hierarchical diversity was analysed. A total of 5 orders,44 families,109 genera and 406 species of pelagic copepods heretofore recorded in the Yellow Sea and East China Sea. The funnel plots with 95% confidence limits for both Average Taxonomic Distinctness (AvTD,⊿+) and Variation in Taxonomic Distinctness (VarTD, A+) and the ellipse plots with 95% probability contours for the joint distribution of AvTD and VarTD of the pelagic copepods master list of the Yellow Sea and East China Sea were established, and the AvTD is 84.3.
     The AvTD value of each community in different season all fell inside the confidence funnel, which indicated a normal state of community structure. The VarTD value of many stations of Kuroshio Community and East China Sea Mixed-water Community fell above the confidence funnel, indicating a higher than expected variation in distinctness of species pairs.
引文
[1]郑重,李少菁,许振祖.海洋浮游生物学.北京:海洋出版社,1984
    [2]Fernando C H. Zoopalnkton, fish and fisheries in tropical freshwaters. Hydrobiologia,1994, 272:105-123
    [3]Frost B W. Grazing control of phytoplankton stock in the open subarctic Pacifica Ocean:A model assessing the role of mesozooplankton particularly the large Calanoid copepods Neocalanus spp. Marine Ecology Progress Series,1987,39(1):49-68
    [4]Urban R J, Dagg M, Peterson J. Copepod grazing on phytoplankton in the Pacific sector of the Antartic Polar Front. Deep-Sea Research,2001,48:4224-4246
    [5]Wang R, Fang C L. Copepods feeding activities and its contribution to downwards vertical flux of carbon in the east China Sea. Oceanologia et Limnologia Sinica,1997,28(6):579-587
    [6]唐启升,苏纪兰.中国海洋生态系统动力学研究1.关键科学问题与研究发展战略.第一版.北京:科学出版社,2000.75-109
    [7]郑执中,郑守仪.黄、东海及邻近水域浮游有孔虫地理区划的初步探讨.海洋与湖沼,1963,5(3):207-214
    [8]陈亚瞿,徐兆礼,王云龙,胡方西,韩明宝,严宏昌.长江口河口锋区浮游动物生态研究Ⅱ.种类组成、群落结构、水系指示种.中国水产科学,1995,2(1):59-63
    [9]洪惠馨.水母和海蜇.生物学通报,2002,37(2):13-16
    [10]王荣,高尚武,王克,左涛.冬季黄海暖流的浮游动物指示.水产学报,2003,27(增):39-48
    [11]李少菁,许振祖,黄加祺,曹文清,陈钢,柯才焕,陈丽华.海洋浮游动物学研究.厦门大学学报(自然科学版),2001,40(2):574-585
    [12]Lindeque P K, Harris R P, Jones M B, Smerdon G R. Simple molecular method to distinguish the identity of Calanus species (Copepoda:Calanoida) at any development stage. Marine Biology,1999,133:91-96
    [13]Sundt R C, Melle W. Atlantic observation of Calanus marshallae (Copepod:Calanoida). Marine Ecology Progress Series,1998,166:207-210
    [14]Bucklin A, Kocher T D. Source regions for recruitment of Calanus finmarchicus to Georges Bank:Evidence from moleculer population genetic analysis of mtDNA. Deep-Sea Research Ⅱ, 1996,43:7-8
    [15]Street G T, Lotufo G R, Montagna P A, Fleeger J W. Reduced genetics diversity in a meiobenthic copepod exposed to a xenobiotic. Journal of Experimental Marine Biology and Ecology,1998,222(1-2):93-111
    [16]Schizas N V, Stree G T, Coull B C, Chandler G T, Quattro J M. Molecular population structure of the Marine benthic copepod Microarthridion littorale along the southeastern and Gulf of the USA. Marine Biology,1999,135(3):399-405
    [17]Lee G E. Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate population. Evolution,2000,54(6):2014-2027
    [18]Edmands S. Phylogeography of the intertidal copepod Tigriopns californinus reveals substantially reduced population differentiation at Northern latitudes. Molecular Ecology, 2001,10:1743-1750
    [19]Bucklin A, Karrtvedt S, Guarnieri M, Goswami U. Population genetics of drifting(Calanus spp.) and resident (Acartia clausi) plankton in Norwegian fjords. Journal of plankton Research,2000,22(7):1237-1251
    [20]Schizas N V, Chandler G T, Coull B C, Klosterhaus S L, Quattro J M. Differential survival of three mitochondrial lineages of a marine benthic copepod exposed to a pesticide mixture. Environmental Science and Technology,2001,35(3):535-538
    [21]Hunt B P V, Pakhomov E A, McQuaid C D. Community structure of mesozooplankton in the Antarctic polar frontal zone in the vicinity of the Prince Edward Islands (Southern Ocean): small-scale distribution patterns in relation to physical parameters. Deep-Sea Research II, 2002,49:3307-3325
    [22]Ashjian C J, Rosenwaks G A, Wiebe P H, Davis C S, Gallager S M, Copley N J, Lawson G L, Alatalo P. Distribution of zooplankton on the continental shelf off Marguerite Bay, Antarctic Peninsula, during Austral Fall and Winter,2001. Deep-Sea Research Ⅱ,2004,51:2073-2098
    [23]Ward P, Grant S, Brandon M, Siegel V, Sushin V, Loeb V, Griffiths H. Mesozooplankton community structure in the Scotia Sea during the CCAMLR 2000 survey:January-February 2000. Deep-Sea Research Ⅱ,2004,51:1351-1367
    [24]Fielding S, Ward P, Pollard R T, Seeyave S, Read J F, Hughes J A, Smith T, Castellani C. Community structure and grazing impact of mesozooplankton during late spring/early summer 2004/2005 in the vicinity of the Crozet Islands (Southern Ocean). Deep-Sea Research Ⅱ,2007,54:2106-2125
    [25]Schnack-Schiel S B, Michels J, Mizdalski E, Schodlok M P, Schroder M. Composition and community structure of zooplankton in the sea ice-covered western Weddell Sea in spring 2004-with emphasis on calanoid copepods. Deep-Sea Research Ⅱ,2008,55:1040-1055
    [26]Hays G C, Clark D R, Walne A W, Warner A J. Large-scale patterns of zooplankton abundance in the NE Atlantic in June and July 1996. Deep-Sea Research Ⅱ,2001,48:951-961
    [27]Ikauniece A. Long-term abundance dynamics of coastal zooplankton in the Gulf of Riga. Environment International,2001,26:175-181
    [28]Gonzalez-Gordillo J I, Rodriguez A. Comparative seasonal and spatial distribution of decapod larvae assemblages in three coastal zones off the south-western Iberian Peninsula. Acta Oecologica,2003,24:219-233
    [29]Somoue L, Elkhiati N, Ramdani M, Hoai T L, Ettahiri O, Berraho A, Chi T D. Abundance and structure of copepod communities along the Atlantic coast of southern Morocco. Acta Adriatica,2005,46(1):63-76
    [30]Brown H, Bollens S M, Madin L P, Horgan E F. Effects of warm water intrusions on populations of macrozooplankton on Georges Bank, Northwest Atlantic. Continental Shelf Research,2005,25:143-156
    [31]Wishner K F, Outram D M, Ullman D S. Zooplankton distributions and transport across the northeastern tidal front of Georges Bank. Deep-Sea Research Ⅱ,2006,53:2570-2596
    [32]Schulz J, Molmann C, Hirche H. Vertical zonation of the zooplankton community in the Central Baltic Sea in relation to hydrographic stratification as revealed by multivariate discriminant function and canonical analysis. Journal of Marine Systems,2007,67:47-58
    [33]Marrari M, Vinas M D, Martos P, Hernandez D. Spatial patterns of mesozooplankton distribution in the Southwestern Atlantic Ocean (34°-41°S) during austral spring:relationship with the hydrographic conditions. Journal of Marine Science,2004,61:667-679
    [34]Berasategui A D, Ramirez F C, Schiariti A. Patterns in diversity and community structure of epipelagic copepods from the Brazil-Malvinas Confluence area, south-western Atlantic. Journal of Marine Systems,2005,56:309-316
    [35]Berasategui A D, Marque M, Gomez-Erache M, Ramirez F C, Mianzan H W, Acha E M. Copepod assemblages in a highly complex hydrographic region. Estuarine, Coastal and Shelf Science,2006,66:483-492
    [36]Palomares-Garcia R, Gomez-Gutierrez J. Copepod Community Structure at Bahia Magdalena, Mexico during El Nino 1983-84. Estuarine, Coastal and Shelf Science,1996,43:583-595
    [37]Keister J E, Peterson W T. Zonal and seasonal variations in zooplankton community structure off the central Oregon coast,1998-2000. Progress in Oceanography,2003,57:342-361
    [38]Reese D C, Miller T W, Brodeur R D. Community structure of near-surface zooplankton in the northern California Current in relation to oceanographic conditions. Deep-Sea Reasearch 11,2005,52:29-50
    [39]Nejib M, Yahia D, Souissi S, Yahia-Kefl O D. Spatial and Temporal Structure of Planktonic Copepods in the Bay of Tunis (Southwestern Mediterranean Sea). Zoological Studies,2004, 43(2):366-375
    [40]McKinnon A D, Duggan S, Death G. Mesozooplankton dynamics in nearshore waters of the Great Barrier Reef. Estuarine, Coastal and Shelf Science,2005,63:497-511
    [41]Kang Y, Kim S, Lee W. Seasonal and spatial variations of zooplankton in the central and southeastern Bering Sea during the mid-1990s. Deep-Sea Research I,2006,53:795-803
    [42]Nishikawaa J, Matsuura H, Castillo L V, Campos W L, Nishida S. Biomass, vertical distribution and community structure of mesozooplankton in the Sulu Sea and its adjacent waters. Deep-Sea Research Ⅱ,2007,54:114-130
    [43]Strzelecki J, Koslow J A, Waite A. Comparison of mesozooplankton communities from a pair of warm-and cold-core eddies off the coast of Western Australia. Deep-Sea Research Ⅱ,2007, 54:1103-1112
    [44]Escribano R, Hidalgo P, Gonzalez H, Giesecke R, Riquelme-Bugueno R, Manriquez K. Seasonal and inter-annual variation of mesozooplankton in the coastal upwelling zone off central-southern Chile. Progress in Oceanography,2007,75:470-485
    [45]Taylor A H. North-South shifts of the Gulf Stream and their climatic connection with the abundance of zooplankton in the UK and its surrounding seas. Journal of Marine Science, 1995,52:711-721
    [46]Beaugrand G, Ibanez F, Lindley J A. Geographical distribution and seasonal and diel changes in the diversity of calanoid copepods in the North Atlantic and North Sea. Marine Ecology Progress Series,2001,219:189-203
    [47]Kane J. The demography of Calanus finmarchicus (Copepoda:Calanoida) in the Middle Atlantic Bight, USA,1977-2001. Journal of Plankton Research,2005,27(5):401-414
    [48]Pitois S G, Fox C J. Long-term changes in zooplankton biomass concentration and mean size over the Northwest European shelf inferred from Continuous Plankton Recorder data. Journal of Marine Science,2006,63(5):785-798
    [49]Chiba S, Saino T. Variation in mesozooplankton community structure in the Japan/East Sea (1991-1999) with possible influence of the ENSO scale climatic variability. Progress in Oceanography,2003,57:317-339
    [50]Mackas D L, Peterson W T, Zamon J E. Comparisons of interannual biomass anomalies of zooplankton communities along the continental margins of British Columbia and Oregon. Deep-Sea Research Ⅱ,2004,51:875-896
    [51]Rian C H, William T P. Copepod biodiversity as an indicator of changes in ocean and climate conditions of the northern California current ecosystem. Limnology and Oceanography,2006, 51(6):2607-2620
    [52]Davis C S, Gallager S M, Berman M S, Haury L R, Strickler J R. The Video Plankton Recorder (VPR):design and initial results. Archiv fur Hydrobiologie-Beiheft Ergebnisse der Limnologie,1992,36:67-81
    [53]Davis C S, Gallager S M, Solow A. Microaggregations of oceanic plankton observed by towed video microscopy. Science,1992,257:230-232
    [54]Davis C S, Gallager S M, Marra M, Stewart W K. Rapid visualization of plankton abundance and taxonomic composition using the Video Plankton Recorder. Deep-Sea Research Ⅱ,1996, 43:1947-1970
    [55]Gallagher S M, Davis C S, Epstein A W, Solow A R, Beardsley R C. High-resolution observations of plankton spatial distributions correlated with hydrography in the Great South Channel, Georges Bank. Deep-Sea Research Ⅱ,1996,43:1627-1663
    [56]Ashjian C J, Davis C S, Gallagher S M, Alatalo P. Distribution of plankton, particles, and hydrographic features across Georges Bank described using the Video Plankton Recorder. Deep-Sea Research Ⅱ,2001,48:245-282
    [57]Benfield M C, Lavery A C, Wiebe P H, Greene C H, Stanton T K, Copley N J. Distributions of physonect siphonulae in the Gulf of Maine and their potential as important sources of acoustic scattering. Canadian Journal of Fisheries and Aquatic Sciences,2003,60:759-772
    [58]Ashjian C J, Davis C S, Gallager S M, Alatalo P. Characterization of the zooplankton community, size composition, and distribution in relation to hydrography in the Japan/East Sea. Deep-Sea Research Ⅱ,2005,52:1363-1392
    [59]Ashjian C J, Davis C S, Gallager S M, Wiebe P H, Lawson G L. Distribution of larval krill and zooplankton in association with hydrography in Marguerite Bay, Antarctic Peninsula, in austral fall and winter 2001 described using the Video Plankton Recorder. Deep-Sea Research Ⅱ,2008,55(3-4):451-471
    [60]Herman A W. Simultaneous measurement of zooplankton and light attenuance with a new optical plankton counter. Continental Shelf Research,1988,8:205-221
    [61]Beaulieu S E, Mullin M M, Tang V T, Pyne S M, King A L, Twining B S. Using the optical plankton counter to determine the size distributions of preserved zooplankton samples. Journal of Plankton Research,1999,21:1939-1956
    [62]Gallienne C P, Robins D B, Woodd-Walker R S. Abundance, distribution and size structure of zooplankton along a 20 degree west meridional transect of the northeast Atlantic Ocean in July. Deep-Sea Research Ⅱ,2001,48:925-949
    [63]Pollard R T, Bathmannb U, Dubischar C, Read J F, Lucas M. Zooplankton distribution and behaviour in the Southern Ocean from surveys with a towed Optical Plankton Counter. Deep-Sea Research Ⅱ,2002,49:3889-3915
    [64]Edvardsen A, Zhou M, Tande K S, Zhu Y W. Zooplankton population dynamics:Measuring in situ growth and mortality rates using an Optical Plankton Counter. Marine Ecology Progress Series,2002,227:205-219
    [65]Remsen A, Hopkins T L, Sutton T T. What you see is not what you catch:a comparison of concurrently collected net, Optical Plankton Counter, and Shadowed Image Particle Profiling Evaluation Recorder data from the northeast Gulf of Mexico. Deep-Sea Reasearch I,2004,51: 129-151
    [66]Carlotti F, Thibault-Botha D, Nowaczyk A, Lefevre D. Zooplankton community structure, biomass and role in carbon fluxes during the second half of a phytoplankton bloom in the eastern sector of the Kerguelen Shelf (January-February 2005). Deep-Sea Research Ⅱ,2008, 55(5-7):720-733
    [67]Thwaites F T, Gallager S M, Davis C S, Bradley A M, Girard A, Paul W. A winch and cable for the autonomous vertically profiling plankton observatory. Oceans 98-Engineering for sustainable use of the oceans:conference proceedings 28 September-1 October 1998,1: 32-36.1998
    [68]Morrison J R, Sosik H M, Codiga D L, Gallager S M, Fargion G S. Time Series Measurements and Algorithm Development at the FRONT Site on the New England Continental Shelf. American Geophysical Union, Fall Meeting,2001
    [69]Daniel L C, Adam E H. Current Profile Timeseries from the FRONT Moored Array. Technical Report. Department of Marine Sciences University of Connecticut, Groton,2002
    [70]Flagg C N, Smith S L. On the use of the acoustic Doppler current profiler to measure zooplankton abundance. Deep-Sea Research,1989,36(3):455-474
    [71]Brierley A S, Brandon M A, Watkins J L. An assessment of the utility of an acoustic Doppler current profiler for biomass estimation. Deep-Sea Research I,1998,45 (9):1555-1573
    [72]Tarling G A, Matthews J B L, Saborowski R, Buchholz F. Vertical migratory behaviour of the euphausiid, Meganyctiphanes norvegica, and its dispersion in the Kattegat Channel. Developments in Hydrobiology,1998,132:331-341
    [73]Ressler P H. Acoustic backscatter measurements with a 153 kHz ADCP in the northeastern Gulf of Mexico:determination of dominant zooplankton and micronekton scatterers. Deep-Sea Research I,2002,49(11):2035-2051
    [74]Sutor M M, Cowles T J, Peterson W T, Pierce S D. Acoustic observations of finescale zooplankton distributions in the Oregon upwelling region. Deep-Sea Research Ⅱ,2005,52: 109-121
    [75]Postel L, Silva A J, Mohrholz V, Lass H U. Zooplankton biomass variability off Angola and Namibia investigated by a lowered ADCP and net sampling. Journal of Marine Systems,2007, 68:143-166
    [76]Petersen G, Tande K S, Nilssen E M. Temporal and regional variation in the copepod community in the central Barents Sea during spring and early summer 1988 and 1989. Journal of Plankton Research,1995,17(2):263-282
    [77]Chiba S, Ishimaru T, Hosie G W, Fukuchi M. Spatio-temporal variability of zooplankton community structured off east Antarctica (90 to 160°E). Marine Ecology Progress Series, 2001,216:95-108
    [78]Beaugrand G, Ibanez F, Lindley J A, Reid P C. Diversity of calanoid copepods in the North Atlantica and adjacent seas:species associations and biogeography. Marine Ecology Progress Series,2002,232:179-195
    [79]Kibirige I, Perissinotto R. The zooplankton community of the Mpenjati estuary, a South African temporarily open/closed system. Estuarine, Coastal and Shelf Science,2003,58:1-15
    [80]Froneman P W. Zooplankton community structure and biomass in a southern African temporarily open/closed estuary. Estuarine, Coastal and Shelf Science,2004,60:125-132
    [81]Li K Z, Yin J Q, Huang L M, Tan Y H. Spatial and temporal variations of mesozooplankton in the Pearl River estuary, China. Estuarine, Coastal and Shelf Science,2006,67:543-552
    [82]Clarke K R, Warwick R M. Change in marine communities:An approach to statistical analysis and interpretation (2nd edition). Plymouth:Primer-E,2001
    [83]金德祥.厦门浮游动物—鱼类的食物—分布的概况.岭南农刊,1935,1(2):92-106
    [84]郑重.厦门海洋浮游生物生态研究的初步报告.厦门水产学报,1950,1(2):9-17
    [85]尹光德.胶州湾砂壳纤毛虫的三个新种.山东大学学报,1956,2(4):64-69
    [86]尹光德.胶州湾砂壳纤毛虫之初步调查.山东大学学报,1952,1(2):36-56
    [87]郑执中,郑守仪.黄海和东海的浮游有孔虫.海洋与湖沼,1960,3(3):125-156
    [88]郑执中,郑守仪.南海北部的浮游有孔虫.海洋与湖沼,1964,6(1):38-71
    [89]丘书院.论中国东南沿海的水母类.动物学报,1954,6(1):49-57
    [90]丘书院.厦门港浮游动物志1.水螅水母类.动物学报,1954,6(1):41-48
    [91]高哲生,李凤鲁,张云美,李宪纶.山东沿海的水螅水母的研究(一).山东大学学报,1958,1:75-118,图版Ⅰ-Ⅺ
    [92]周太玄,黄明显.烟台水螅水母类的研究.动物学报,1958,10(2):173-191,图版Ⅰ-V
    [93]许振祖,张金标.粤东—闽南近海的浮游水螅水母类、管水母类和钵水母类.厦门大学学报,1978,4:19-63,图版Ⅰ-Ⅺ
    [94]张金标.中国海洋浮游管水母类.北京:海洋出版社,2005
    [95]沈寿彭,吴宝铃.中沙群岛浮游多毛类的初步调查.海洋与湖沼,1978,9(1):99-107
    [96]沈寿彭.西沙群岛浮游多毛类的调查.我国西沙、中沙群岛海域海洋生物调查研究报告集.北京:科学出版社,1978.201-226
    [97]孙瑞平,沈寿彭,吴宝铃.中沙群岛浮游多毛类的初步调查——中沙群岛多毛类调查之二.我国西沙、中沙群岛海域海洋生物调查研究报告集.北京:科学出版社,1978.133-169
    [98]孙瑞平,吴宝铃.西沙群岛浮游多毛类的初步调查.海洋科学集刊,1979,15:57-70
    [99]张福绥.中国近海的浮游软体动物Ⅰ.翼足类、异足类及海蜗牛的分类研究.海洋科学集刊,1964,5:-25-226
    [100]郑重,陈孝麟.中国海洋枝角类的初步研究Ⅰ.分类.海洋与湖沼,1966,8(2):168-174
    [101]陈瑞祥.我国东海近岸水域的介形类.海洋科技,1978,8:39-51
    [102]陈清潮,尹健强,张谷贤.南海北部和中部的浮游介形类.南海海洋生物研究论文集(一),北京:海洋出版社,1983.82-132
    [103]陈瑞祥,林景宏.中国海洋浮游介形类.北京:海洋出版社,1995
    [104]郑重,张松踪,李松,方金钏,赖瑞卿,张淑莲,李少菁,许振祖.中国海洋浮游桡足类上卷.上海:上海科技出版社,1965
    [105]陈清潮,章淑珍.黄海和东海的浮游桡足类Ⅰ.哲水蚤目.海洋科学集刊,1965,7:20-131
    [106]陈清潮,章淑珍,朱长寿.黄海和东海的浮游桡足类Ⅱ.剑水蚤目和猛水蚤目.海洋科学集刊,1974,9:27-100
    [107]陈清潮,章淑珍.南海的浮游桡足类Ⅰ.海洋科学集刊,1974,9:101-116
    [108]陈清潮,沈嘉瑞.南海的浮游桡足类Ⅱ.海洋科学集刊,1974,9:125-137
    [109]陈清潮.南海的浮游桡足类Ⅲ.南海海洋生物研究论文集(一),北京:海洋出版社,1983.133-138
    [110]连光山,林金美.南黄海和东海浮游剑水蚤类的研究.海洋科技,1978,9:45-67
    [111]连光山,林金美.南黄海和东海哲水蚤类的研究.海洋科技,1978,11:58-112
    [112]郑重,李松,李少菁,陈柏云.中国海洋浮游桡足类 中卷.上海:上海科技出版社,1982
    [113]连光山,钱宏林.西太平洋热带水域的浮游桡足类.西太平洋热带水域浮游生物论文集.北京:海洋出版社,1984.118-205
    [114]陈瑞祥.我国东南近岸海域端足类(?)亚目的初步研究.海洋科技,1978,9:68-96
    [115]林民玉.东海陆架区浮游端足类(?)亚目的初步报告.海洋科学集刊,1982,19:43-50
    [116]蔡秉及.南黄海和东海糠虾类的初步研究.海洋科技,1980,16:39-56
    [117]王荣,陈宽智.假磷虾一新种——中华假磷虾Pseudeuphausia sinica的描述.海洋与湖沼,1963,5(4):353-359
    [118]蔡秉及.南黄海和东海磷虾类分类的初步研究.海洋科技,1978,8:15-38
    [119]蔡秉及.南黄海和东海磷虾分类的初步研究.海洋通报,1982,4:68-78
    [120]陈清潮,张谷贤.南海北部和中部的磷虾类.南海海洋生物研究论文集(一),北京:海洋出版社,1983.139-172
    [121]刘瑞玉.黄海和渤海的毛虾.动物学报,1956,8(1):29-40
    [122]蔡秉及,郑重.中国东南沿海莹虾的分类研究.厦门大学学报,1965,12(2):111-122
    [123]庄世德,陈孝麟.中国南黄海、东海毛颚类分类的初步研究.海洋科技,1978,9:1-44
    [124]张谷贤,陈清潮.南海北部和中部的毛颚类.南海海洋生物研究论文集(一).北京:海洋出版社,1983.17-63
    [125]杨国锋.中国南海北部被囊类的初步研究.中国动物学会30周年学术讨论会论文摘要汇编第一分册.1963.153
    [126]侯舒民.西太平洋热带水域的半肌目(Hemimyaria)被囊类.西太平洋热带水域浮游生物论文集.北京:海洋出版社,1984.217-258
    [127]吴宝铃,吴启泉,丘建文,陆华. 中国动物志 环节动物门 多毛纲Ⅰ.叶须虫目.北京:科学出版社,1997
    [128]刘瑞玉,王绍武. 中国动物志 节肢动物门 甲壳动物亚门糠虾目.北京:科学出版社,2000
    [129]高尚武,洪惠馨,张士美. 中国动物志 无脊椎动物 第27卷 刺胞动物门 水螅虫纲管水母亚纲钵水母纲.北京:科学出版社,2002
    [130]陈清潮,石长泰. 中国动物志 无脊椎动物 第28卷 节肢动物门 甲壳动物亚门端足 目 蜮亚目.北京:科学出版社,2002
    [131]萧贻昌.中国动物志无脊椎动物第38卷毛颚动物门箭虫纲.北京:科学出版社,2004
    [132]郑执中,郑守仪.黄海和东海浮游有孔虫的生态研究.海洋与湖沼,1962,4(1-2):77-122
    [133]张福绥.中国近海的浮游软体动物Ⅱ.黄海与东海浮游软体动物生态的研究.海洋与湖沼,1966,8(1):13-28
    [134]张金标.中国海水螅水母类区系的初步分析.海洋学报,1979,1(1):127-197
    [135]张金标,许振祖.中国海管水母的地理分布.厦门大学学报(自然科学版),1980,19(3):100-107
    [136]高尚武.东海水母类的研究.海洋科学集刊,1982,19:33-42
    [137]林茂,张金标.台湾海峡西部海域水螅水母类和栉水母类的生态研究.海洋学报,1989,11(5):624-628
    [138]刘红斌.1986年春季东海黑潮区管水母类组成与分布的初步研究.黑潮调查研究论文选(一).北京:海洋出版社,1990.267-276
    [139]林景宏,陈明达,陈瑞祥.东海浮游介形类对海流、水团的指示作用.海洋学报,1996,18(5):86-92
    [140]林景宏,陈瑞祥,郭凤飞.中国近海浮游介形类大尺度生态研究Ⅱ.浮游介形类与水系的相关研究.海洋学报,1998,20(2):96-101
    [141]陈柏云.西沙、中沙群岛海洋浮游桡足类的种类和组成和分布.厦门大学学报(自然科学版),1982,21(2):209-217
    [142]杨关铭,何德华,王春生,苗育田,于洪华.台湾以北海域浮游桡足类生物海洋学特征的研究Ⅰ.数量分布.海洋学报,1999,21(4):78-86
    [143]杨关铭,何德华,王春生.台湾以北海域浮游桡足类生物海洋学特征的研究Ⅱ.群落特征.海洋学报,1999,21(6):72-80
    [144]杨关铭,何德华.台湾以北海域浮游桡足类生物海洋学特征的研究Ⅲ.指示性种类.海洋学报,2000,22(1):93-101
    [145]马兆党,宋庆云.东海黑潮区莹虾类的初步研究.黄渤海海洋,1992,10(4):53-62
    [146]王春生.东海黑潮区毛颚类数量分布及几种水团指示种的初步研究.黑潮调查研究论文选(二).北京:海洋出版社,1990.224-236
    [147]郑重,郑执中,王荣,林雅蓉,高尚武.烟、威鲐鱼渔场及邻近水域浮游动物生态的初步研究.海洋与湖沼,1965,7(4):329-354
    [148]孟凡,丘建文,吴宝铃.黄海大海洋生态系的浮游动物.黄渤海海洋,1993,11(3):30-37
    [149]何德华,杨关铭,方绍锦,沈伟林,刘红斌,高爱根,黄淑莘.浙江沿岸上升流区浮游动物生态研究Ⅰ.生物量及主要类群丰度.海洋学报,1987,9(1):79-92
    [150]何德华,杨关铭,沈伟林.浙江沿岸上升流区浮游动物生态研究Ⅱ.浮游动物种类分布与多样度.海洋学报,1987,9(1):617-616
    [151]孟凡,赵晶,李钦亮,马兆党.东海北部海潮锋面涡旋区浮游动物的生态结构.黑潮调查研究论文选(四).北京:海洋出版社,1992.142-150
    [152]苗育田,于洪华,何德华,王春生.正常天气系统下的东海水系与指示生物对应关系的分析.海洋通报,1998,17(2):13-21
    [153]毕洪生,孙松,高尚武,张芳.渤海浮游动物群落生态特点Ⅰ.种类组成与群落结构.生态学报,2000,20(5):715-721
    [154]刘光兴.胶州湾浮游动物的生态学研究.中国海洋大学博士学位论文.青岛:青岛海洋大学,2001
    [155]郭沛涌,沈焕庭,刘阿成,王金辉,杨元利.长江河口浮游动物的种类组成、群落结构及多样性.生态学报,2003,23(5):892-900
    [156]王荣,高尚武,王克,左涛.冬季黄海暖流的浮游动物指示.水产学报,2003,27(增):39-48
    [157]Liao C H, Lee K T, Lee M A, Lu H J. Biomass distribution and zooplankton composition of the sound-scattering layer in the waters of southern East China Sea. Marine Science,1999,56: 766-778
    [158]Liao C H, Chang W J, Lee M A, Lee K T. Summer Distribution and Diversity of Copepods in Upwelling Waters of the Southeastern East China Sea. Zoological Studies,2006,45(3): 378-394
    [159]徐兆礼.中国海洋浮游动物研究的新进展.厦门大学学报(自然科学版),2006,45(增刊2):16-23
    [160]郑执中.黄海和东海西部浮游动物群落的结构及其季节变化.海洋与湖沼,1965,7(3):199-204
    [161]陈清潮,陈亚瞿,胡雅竹.南黄海和东海浮游生物群落的初步探讨.海洋学报,1980,2(2):149-157
    [162]刘红斌,何德华,王春生.东海中南部黑潮区浮游动物分布与群落划分的初步研究.黑潮调查研究论文选(三).北京:海洋出版社,1991.305-313
    [163]林景宏,陈瑞祥,郭凤飞.中国近海浮游介形类大尺度生态研究:Ⅳ.浮游介形类的生态群落与群落特征.海洋学报,1998,20(3):98-103
    [164]林景宏,陈瑞祥,郭凤飞.中国近海浮游介形类大尺度生态研究:Ⅴ.浮游介形类群落生境地理位置的季节性变迁.海洋学报,1998,20(5):109-113
    [165]左涛,王克,王荣,高尚武.春季南黄海浮游动物群落的多元统计分析.水产学报, 2003,27(增刊):108-114
    [166]丁峰元,李圣法,董婧,程家骅.春季东海区近海浮游动物群落结构及其影响因子.海洋渔业,2005,27(1):26-32
    [167]左涛,王荣,陈亚瞿,高尚武,王克.春季和秋季东、黄海陆架区大型网采浮游动物群落划分.生态学报,2005,25(7):1531-1540
    [168]刘光兴,陈洪举,朱延忠,齐衍萍.三峡工程一期蓄水后长江口及其邻近水域浮游动物的群落结构.中国海洋大学学报,2007,37(5):789-794
    [169]吴德星,兰健.中国东部陆架边缘海海洋物理环境演变及其环境效应.地球科学进展,2006,21(7):667-672
    [170]齐衍萍.夏、冬季黄东海浮游动物群落生态学研究.中国海洋大学硕士学位论文.青岛:中国海洋大学,2008
    [171]苏育嵩.长江口及济州岛邻近海域的综合调查第二章黄东海地理环境概况、环流系统与中心渔场.山东海洋学院学报,1986,16(1):12-27
    [172]Shannon C E, Weaner W. The Mathematical Theory of Communication. Urbana, IL.:The University of Illinois Press,1949.125pp
    [173]Lambshead P J D, Platt H M, Shaw K M. The detection of differences among assemblages of marine benthic species based on assessment of dominance and diversity. Journal of Natural History,1983,17:859-874
    [174]陈柏云.中国海洋浮游桡足类区系的初步研究.海洋学报,1984,5(增刊):914-922
    [175]黄世玫.长江口及济洲岛邻近海域综合调查研究报告第五章第三节浮游动物生态.山东海洋学院学报,1986,16(2):55-87
    [176]洪旭光,张锡烈,俞建銮,孟凡.东海北部黑潮区浮游动物的多样性研究.海洋学报,2001,23(2):139-142
    [177]左涛.东黄海浮游动物群落结构研究.中国科学院研究生院博士学位论文.青岛:中国科学院研究生院,2003
    [178]中华人民共和国科学技术委员会海洋组海洋综合调查办公室.全国海洋综合调查报告第八册中国近海浮游生物的研究.1977.1-158
    [179]王云龙,沈新强,李纯厚,袁骐,归从时,李长松,等.中国大陆架及邻近海域浮游生物.上海:上海科学技术出版社,2005
    [180]Clarke K R. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology,1993,18:117-143
    [181]苗育田,于洪华,何德华,王春生.东海南部水系分布和季节变化特征.海洋通报,1998,17(5):1-9
    [182]沈国英,施并章.海洋生态学(第二版).北京:科学出版社,2002.160-161
    [183]Sanders H L. Marine Benthic Diversity:A Comparative Study. The American Naturalist, 1968,102(925):243-282
    [184]郑重,曹文清.中国海洋枝角类的初步研究Ⅲ.生殖.海洋学报,1984,6(3):377-388
    [185]徐兆礼,王云龙,袁骐.东海浮游枝角类生态学研究.生态学杂志,2006,25(6):635-639
    [186]徐兆礼,张金标,蒋玫.东海管水母类生态研究.水产学报,2003,27(增):82-90
    [187]徐兆礼,张金标,王云龙.东海水螅水母类生态研究.水产学报,2003,27(增):91-97
    [188]徐兆礼,高倩,陈佳杰,蔡萌,陈华,黄梅玲.东海栉水母对温度和盐度生态适应的Yield-Density模型.生态学杂志,2008,27(1):68-72
    [189]徐兆礼.东海水母类丰度的动力学特征.动物学报,2006,52(5):854-861
    [190]徐兆礼,崔雪森,陈卫忠.东海浮游桡足类的种类组成及优势种.水产学报,2004,28(1):35-40
    [191]徐兆礼,蒋玫,晁敏,王云龙,袁骐,陈亚瞿.东海浮游桡足类的数量分布.水产学报,2003,27(3):258-264
    [192]徐兆礼.东海浮游糠虾类种类特征和多样性.应用生态学报,2006,17(9):1711-1714
    [193]Xu Z L, Li C J. Species Composition and Diversity of Pelagic Euphausiid In the East China Sea. Acta Oceanologica Sinica,2005,24(5):98-106
    [194]Xu Z L, Jiang M. Study on relation between distribution and environment of pelagic amphipods in the East China Sea. Acta Oceanologica Sinica,2006,25(5):112-119
    [195]徐兆礼,王云龙.东海浮游等足类和涟虫类的调查.动物学杂志,2006,41(2):1-8
    [196]徐兆礼.东海浮游十足类(Decapods)多样性研究.海洋环境科学,2005,24(4):1-4
    [197]徐兆礼,张凤英.东海浮游多毛类的时空分布.海洋环境科学,2006,35(3):1-4
    [198]徐兆礼.东海浮游翼足类(Pteropods)种类组成和多样性研究.生物多样性,2005,13(2):168-173
    [199]Xu Z L, Li C J. Horizontal distribution and dominant species of heteropods in the East China Sea. Journal of Plankton Research,2005,27:373-382
    [200]徐兆礼,戴一帆,陈亚瞿.东海毛颚类种类组成和多样性.上海水产大学学报,2004,13(4): 304-309
    [201]徐兆礼,林茂,张金标.东海海樽类优势种的数量变化.动物学报,2006,52(1):151-62
    [202]Sanchez-Velasco L. Diet composition and feeding habits of fish larvae of two co-occurring species (Pisces; Callionymidae and Bothidae) in the North-western Mediterranean. Journal of Marine Science,1998,55:299-308
    [203]Nip T H M, Ho W, Wong C K. Feeding ecology of larval and juvenile black seabream (Acabthopagrus schlegeli) and Japanese seaperch (Lateolabrax japonicus) in Tolo Harbour, Hong Kong. Environmental Biology of Fishes,2003,66:197-209
    [204]徐兆礼,王荣,陈亚瞿.黄海南部及东海中小型浮游桡足类生态学研究Ⅰ.数量分布.水产学报,2003,27(增):1-8
    [205]陈亚瞿,徐兆礼,杨元利.黄海南部及东海中小型浮游桡足类生态学研究Ⅱ.种类组成及群落特征.水产学报,2003,27(增):9-15
    [206]陈亚瞿,徐兆礼,赵文武.黄海南部及东海中小型浮游桡足类生态学研究Ⅲ.优势种.水产学报,2003,27(增):16-22
    [207]Souissi S, Ibanez F, Ben Hamadou R, Boucher J, Cathelineau A C, Blanchard F, Poulard J D. A new multivariate mapping method for studying species assemblages and their habitats: example using bottom trawl surveys in the Bay of Biscay (France). Sarsia,2001,86:527-542
    [208]Field J G, Clarke K R, Warwick R M. A practical strategy for analysis multispecies distribution patterns. Marine Ecology Progress Series,1982,8(1):37-52
    [209]Bray J R, Curtis J T. An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographs,1957,27:325-349
    [210]Kruskal J B. Multidimensional scaling by optimizing goodness of fit to a non-metric hypothesis. Psychometrika,1964,29(1):1-27
    [211]Clarke K R, Green R H. Statistical design and analysis for a'biological effect'study. Marine Ecology Progress Series,1988,46:213-226
    [212]Clarke K R, Warwick R.M. Quantifying structural redundancy in ecological communities. Oecologia,1998,113:278-289
    [213]Cabal J, Gonzalez-Nuevo G, Nogueira E. Mesozooplankton species distribution in the NW and N Iberian shelf during spring 2004:Relationship with frontal structures. Journal of marine systems,2008,72:282-297
    [214]毛汉礼,任允武,万国铭.应用T-S关系定量地分析浅海水团的初步研究.海洋与湖沼,1964,6(1):1-21
    [215]李凤岐,王凤钦,苏育嵩,马鹤来,钱清瑛.黄、东海域春季水团的划分、判别与分析.青岛海洋大学学报,1989,19(1-Ⅱ):22-34
    [216]刘树勋,沈新强,王幼琴,韩士鑫.渤、黄东海水团多年月平均分布与变化的初步分析.海洋学报,1993,15(4):1-11
    [217]Hur H B, Jacobs G A, Teague W J. Monthly variations of water masses in theYellow and East China Seas, November 6,1998. Journal of Oceanography,1999,55(2):171-184
    [218]Li G X, Han X B, Yue S H, Wen G Y, Yang R M, Kusky T M. Monthly variations of water masses in the East China Seas. Continental Shelf Research,2006,26:1954-1970
    [219]臧家业,汤毓祥,邹娥梅,Lie Heung-Jae.黄海环流的分析.科学通报,2001,46(增):7-15
    [220]于非,张志欣,刁新源,郭景松,汤毓祥.黄海冷水团演变过程及其于邻近水团关系 的分析.海洋学报,2006,28(5):26-34
    [221]郑执中,郑守仪.黄、东海及邻近水域浮游有孔虫地理区划的初步探讨.海洋与湖沼,1963,5(3):207-214
    [222]刘瑞玉,徐凤山.黄、东海底栖动物区系的特点.海洋与湖沼,1963,5(4):306-321
    [223]Fleminger A. Pattern, number, variability and taxonomic signification of integumental organs (sensilla and glandular pores) in the genus Eucalanus (Copepoda, Calanoda). Fishery Bulletin,1973,71:965-1010
    [225]孟凡,毛兴华,黄凤鹏,俞建銮,张锡烈,马兆党,李钦亮.东海黑潮锋面涡旋区浮游动物的分布.生态学报,1995,15(3):296-304
    [226]郭炳火,汤毓祥,陆赛英,孟凡,费尊乐,林葵,李宝华.春季东海黑潮锋面涡旋的观测与分析.海洋学报,1995,17(1):13-23
    [227]Whittaker R H. Evolution and measurement of species diversity. Taxon,1972,21:213-251
    [228]朱启琴.长江口、杭州湾浮游动物生态调查报告.水产学报,1988,12(2):111-123
    [229]徐兆礼,王云龙,白雪梅,陈亚瞿.长江口浮游动物生态研究.中国水产科学,1999,6(5): 55-58
    [230]Warwick R M, Clarke K R. New'biodiversity'measures of reveal a decrease in taxonomic distinctness with increasing stress. Marine Ecology Progress Series,1995,129:301-305
    [231]Clarke K R, Warwick R M. A taxonomic distinctness index and its statistical properties. Journal of Applied Ecology,1998,35:523-531
    [232]Clarke K R, Warwick R M. A further biodiversity index applicable to species list:variation in taxonomic distinctness. Marine Ecology Progress Series,2001,216:265-278
    [233]陈亚瞿,郑国兴,朱启琴.长江口区浮游动物初步研究.东海海洋,1985,3(3):53-61
    [234]陈亚瞿,徐兆礼,杨元利.黄海南部及东海中小型浮游桡足类生态学研究Ⅱ.种类组成及群落特征.水产学报,2003,27(增刊):9-15
    [235]王克,王荣,左涛,高尚武.长江口及邻近海区浮游动物总生物量分析.海洋与湖沼,2004,35(6):568-576
    [236]陈洪举.长江口及其邻近海域浮游动物群落生态学研究.中国海洋大学硕士论文,青岛:中国海洋大学,2007
    [237]黄宗国.中国海洋生物种类与分布(增订版).北京:海洋出版社,2008
    [238]何德华,杨关铭.1986年春季东海黑潮及其邻近海区浮游桡足类的分布特征Ⅰ.平面分布.黑潮调查研究论文选(一).北京:海洋出版社,1990.249-265
    [239]孟凡,黄凤朋,马兆党,李钦亮.黑潮及其邻近海域浮游动物的初步报告.黑潮调查 研究论文选(一).北京:海洋出版社,1990.97-105
    [240]孟凡,黄凤朋,李钦亮,马兆党.1987年夏季东海黑潮区的浮游动物.黑潮调查研究论文选(二).北京:海洋出版社,1990.92-98
    [241]孟凡,黄凤朋,马兆党,李钦亮.东海北部黑潮区浮游动物的种类组成和分布.黑潮调查研究论文选(三).北京:海洋出版社,1991.150-161
    [242]Bradford J M, Jillett J B. A revision of generic definitions in the Calanidae (Copepoda, Calanoida). Crustaceana,1974,27:5-16
    [243]Geletin Y V. The ontogenetic abdomen formation in copepods of genera Eucalanus and Rhincalanus (Calanoida, Eucalanidae) and new system of these copepods, Issledovaniua Fauny Morei,1976,18:75-93 (in Russian)
    [244]Bradford J M. Euchaeta marina (Prestandrea) (Copepoda, Calanoida) and two closely related new species from the Pacific. Pacific Scientific.1974,28:159-169
    [245]Bottger-Schnack R. Taxonomy of Oncaeidae (Copepoda, Poecilostomatoida) from the Red Sea. I.11 species of Triconia gen. nov. and a redescription of T. similis (Sars) from Norwegian waters. Mitteilungen Hamburgisches Zoologisches Museum und Institut,1999,96:37-128
    [246]Shih C T, Chiu T S. Copepod diversity in the water masses of the southern East China Sea north of Taiwan. Journal of Marine Systems,1998,15:533-542
    [247]Rutherford S, D'Hondt S, Prell W. Environmental controls on the geographic distribution of zooplankton diversity. Nature,1999,400:749-753
    [248]Woodd-Walker R S, Ward P, Clarke A. Large-scale patterns in diversity and community structure of surface water copepods from the Atlantic Ocean. Marine Ecology Progress Series, 2002,236:189-203
    [249]Purvis A, Hector A. Getting the measure of biodiversity. Nature,2000,405:212-219
    [250]Warwick R M, Clarke K R. Taxonomic distictness and environmental assessment. Journal of Applied Ecology,1998,35:532-543
    [251]Warwick R M, Clarke K R. Practical measures of marine biodiversity based on relatedness of species. Oceanography and Marine Biology:An Annual Review,2001,39:207-231
    [252]Guo Y Q, Warwick R M, Zhang Z N, Mu F H. Freeliving marine nematodes as a pollution indicator of the Bohai Sea. Journal of Environmental Sciences,2002,14(4):558-562
    [253]Hall S J, Greenstreet S P. Taxonomic distinctness and diversity measures responses in marine fish communities. Marine Ecology Progress Series,1998,166:227-229
    [254]徐宾铎,金显仕,梁振林.黄海鱼类群落分类学多样性的研究.中国海洋大学学报,2005,35(4):629-634
    [255]Danielopol D L, Gross M, Piller W E. Taxonomic diversity of Middle Miocene Ostracod assemblages-A useful tool for Palaeoenvironmental characterization of the Hainburg area (Vienna Basin). Joannea Geol. Palaont.,2007,9:25-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700