Au-Sn-X(X=Co,La,Er)体系的热力学优化与计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
因其优良的延展性、完美的抗腐蚀和抗氧化能力、优异的导电、导热性能等特点,Au-20Sn被广泛的应用于光电封装、航空航天等领域。但由于Au价格昂贵,因此如何添加其他合金组元以部分替代Au,是钎料发展的方向。
     近年研究发现,稀土元素(RE)能改善钎料的力学性能和润湿性能,净化钎缝晶界,提高钎缝的抗疲劳强度。因此,结合我国稀土元素资源丰富的优势,研究相关体系相图,对于设计新型Au-Sn基钎料具有重要意义。
     本文结合现有相图实验数据及第一性原理计算的化合物形成焓,采用CALPHAD技术优化计算了Au-Co、Au-La和Au-Er三个二元体系,修正了Au-Sn和Co-Sn两个二元系;外推优化了Au-Sn-Co体系;简单外推了Au-Sn-La三元体系;且初步分别建立了各个系统的自洽的热力学数据库,取得如下主要结果:
     1.利用相图计算(CALPHAD)方法,采用Thermo-Calc热力学软件包优化和计算了Au-Co、Au-La和Au-Er三个二元系。其中液相与端际相采用替代溶液模型,所有中间化合物均为化学计量比型,计算所得相平衡和热力学数据均与实验数据吻合较好。
     2.利用第一原理计算的化合物的形成焓,结合CALPHAD方法,采用Thermo-Calc热力学软件修正了Au-Sn二元系;为更好的拟合三元相关系,微调了Sn-Co二元系热力学参数。
     3.利用相图计算(CALPHAD)方法,采用Pandat热力学软件包外推优化了Au-Sn-Co和简单外推了Au-Sn-La两个三元系。根据实验数据,我们发现部分化合物中第三组元的溶解度增大了,Au-Sn-Co体系中出现一个满足化学计量比的三元化合物。计算所得相图数据与实验结果一致。
Due to the wonderful ductibility, excellent corrosion resistance, high electrical and heat conductivity, Au-20Sn eutectic sloder has been widely used in packaging of optoelectronic, aviation and spaceflight and so on. However, with the high price, the developing orientation of Au-Sn solder requires that the substitute be found to reduce the consumption of Au element.
     Recently, the reseach about substitute materials for noble elements in solder indicated that the rare earth metals can refine the mechanical performance, improve wettability, reduce the oxidization of solder, clean the grain boundary, and improve the fatigue intensity. Development of the relative phase relationship of solder is of much importance because of the abundant RE resources and its large markets.
     Combining the formation enthalpy of intermetallic compounds (IMCs) calculated by first principle approach with CALPHAD technique, Au-Co, Au-La and Au-Er binary systems are optimized, Au-Sn and Co-Sn binary system are modified, and Au-Sn-Co, Au-Sn-La ternary systems are calculated,
     1. Au-Co, Au-La and Au-Er binary systems are optimized by Thermo-Calc software using CALPHAD technique. Liquid and all the terminal solutions (Fcc, Bcc and Hcp) are modeled as substitutional solution. All the intermetallic compounds are treated as stoichemistric phases. Calculated thermodynamic data and equilibria data agree with the experiments.
     2. Based on the formation enthalpy of IMCs calculated by first-principle approach, the Au-Sn binary system are modified, and in order to fit well of the ternary system, the Sn-Co binary system are improved.
     3. Au-Sn-Co and Au-Sn-La ternary systems are calculated by Pandat software using CALPHAD technique. The solubility of ternary elements is added for some binary compounds, besides a stoichemistric ternary compound are added in Au-Sn-Co system. Calculated phase diagrams are identical with the experimental data.
引文
[1]H. H. Manko. Solder and soldering. New York:McGraw-Hill.1979.23-24
    [2]A. International, Electronic materials handbook, Packaging, Materials Park.1989,1:55-56
    [3]T. Sonoda, H. Nawafune, S. Mizumoto. Properties of bright Tin-Lead Alloy Deposits From Neutral Gluconate Baths. Plating and Surface Finishing,1995,3:66-99
    [4]K. Tu, K. Zeng. Tin-lead (SnPb) solder reaction in flip chip technology. Materials Science and Engineering R:Reports,2001, 34(1):1-58
    [5]庄瑞舫.锡和锡基合金镀层的可靠性研究.电镀与精饰,1997,19(4):4-8
    [6]L. Prasad, A. Mikula. Role of surface properties on the wettability of Sn-Pb-Bi solder alloys. Journal of Alloys and Compounds,1999, 282(1-2):279-285
    [7]隗东伟,付会琴.浅析Sn—Pb焊料合金的焊点质量和可靠性.活力,2006,5:280-281
    [8]N. Wade,杨宁.微合金化对Sn—Pb共晶焊料合金的蠕变强度和微结构的影响.锡业科技,2001,2(001):73-76
    [9]S. P. Yu, H. J. Lin, M. Hon, et al. Effect if process parameters on the soldering behavior of the eutectic Sn-Zn solder on Cu substrte. Journal of Materials Science-materials in Electronics 2000,11: 461-471
    [10]E. P. Wood. K. L. Nimmo. In search of new lead-free electronic solders. Journal of Electronic Materials,1994,24(8):709-713
    [11]E. RoHs, Directive 2002/95/Ec Of The European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.2003
    [12]Jeida. Report on researeh and development on lead-free soldering. [M]. Tokyo:Japan Electronic Industry Development Association, 2000
    [13]J. Kivilahti. The chemical modeling of electronic materials and interconnections. Journal of the Minerals, Metals and Materials Society,2002,54(12):52-57
    [14]K. Shimano, N. Sato, S. Takahashi. In Proc.6th Symposium on Micro-joining and Assembly Technology in Electronics 2000,313
    [15]沈骏.Sn-Ag系无铅焊料中金属间化合物的形成与控制:[博士学位论文].天津:天津大学,2005
    [16]K. Wassink, M. Verguld. Manufacturing techniques for surface mounted assemblies.1995, GB-Port Erin British Isles: Electrochemical Publications Ltd.17
    [17]吴鼓平.电子制造与封装中使用无铅焊料刻不容缓.Electronic Manufacturing china,2003,9:20-24
    [18]黄惠珍.Sn-9Sn无铅电子焊料及其合金化改性研究:[博士学位论文].南昌:南昌大学,2006
    [19]K. Suganuma, Y. Nakamura. Microstructure and strength of interface between Sn-Ag eutectic solder and Cu. Journal of the Japan Institute of Metals(Japan),1995,59(12):1299-1305
    [20]B. F. Dyson, T. R. Anthony, K. Turnbull. Interstitial diffusion of copper in tin. Journal of Applied Physics 1967,38(8):3408
    [21]H. Huang. Diffusion of Sb, Cd, Sn, and Zn in tin. Physicals Reviwe B,1974,9(1):1479-1488.
    [22]S. Chada. An improved numerical method for predicting intermetallic layer thickness developed during the foration of solder joints on Cu substrate. Journal of Electronic Materials,1999,28:1194-1202
    [23]夏阳华.无铅电子封装中的界面反应及焊点可靠性:[博士学位论文].上海:中国科学院研究生院上海微系统与信息技术研究所:2006
    [24]刘洋.微电子组装焊点可靠性及其铅污染问题的研究:[博士学位论文].哈尔滨:哈尔滨理工大学,2007
    [25]D. Suraski, K. Seeling. The current status of lead-free solder alloys. IEEE Trans on Electronics Packaging Manufacturing,2001, 24(4):244-248
    [26]罗道军.无铅焊料的选择与对策.电子工艺技术,2004,25(006):256-257
    [27]C. Wua, D. Q. Yua, L. Wang. Properties of lead-free solder alloys with rare earth element additions. Materials Science and Engineering R:Reports,2004,44:1-44
    [28]M. Abtew, G. Selvaduray. Lead-free solders in microelectronics. Material Science and Engineering,2000,27:95-141
    [29]郑子樵,材料学基础.长沙:中南大学出版社,2005,381-384
    [30]A. Mortensen, B. Drevet, N. Eustathopoulos. Kinetics of diffusion-limited spreading of sessile drops in reactive wetting. Scripta Materiafia,1997,6:645-651
    [31]F. Yost. Kinetic of reactive wetting. Scripta materialia,2000,42: 801-806
    [32]S. Kalogeropoulou, C. Rado, N. Eustathopoulos. Mechanisms of reactive wetting:the wetting to Non-wetting case. Scripta Materialia,1999,7:723-728
    [33]C. Tai, K. L. Lin. Contact angle of 63Sn-37Pb and Pb-free solder on plating. Applied Surface Science,2003,14(2):243-258
    [34]田民波,马鹏飞.电子封装无铅化技术发展.印刷电路资讯,2004,3:231-233
    [35]刘静,张富文.微电子互连锡基无铅焊料的发展.稀有金属快报,2005,4: 6-12
    [36]庄鸿寿.无铅软钎料的新进展.电子工艺技术,2001,22(5):192-196
    [37]F. Guo, J. G. Lee, T. Hogan, et al. Electrical conductivity changes in bulk Sn, and eutectic Sn-Agin bulk and in joints, from aging and thermal shock. Journal of Materials Research,2005,2:364-374
    [38]L. Kehoe, G. Crean. Thermal conductivity and specific heat dererminations of a set of lead-free solder alloys. in Proceedings of the International Symposium and Exhibition on Advanced Packaging Materials Processes, Properties and Interfaces.1998
    [39]杨邦朝,任辉,苏宏.无铅焊料的研究(3)--物理性质与界面反应.印制电路信息,2005,9:56-59
    [40]G. Susheel. Stress relaxation in lead-free solder joints:[Doctor Degree Dissertation] Michigan:Michigan State University:,2001
    [41]W. Ren. Thermal mechanical property testing of new lead-free solder joints. Soldering and Surface Mount Technology,1997,10:37-40
    [42]汤佩钊,孙加林.节锡焊料的研究.昆明理工大学学报:理工版,2000,25(006):68-72
    [43]潘河庭,潘宏杰.无铅对成本和生产技术的挑战,2006春季国际PCB技术/信息论坛.2006
    [44]熊胜虎,黄卓,田民波,等.电子封装无铅化趋势及瓶颈电子元件与材料.电子元件与材料,2004,23(3):29-31
    [45]L. Shiau, C. Ho, C. Kao, et al. Reactions between Sn-Ag-Cu lead-free solders and the Au/Ni surface finish in advanced electronic packages. Soldering and Surface Mount Technology,2002,14(3): 25-29
    [46]刘泽光,陈登权,罗锡明,等.金锡钎料性能与应用.电子与封装,2004,4(2):24-26
    [47]W. Yang, R. Messler, L. Felton. Microstructure evolution of eutectic Sn-Ag solder joints. Journal of Electronic Materials,1994, 23(8):765-772
    [48]Y. Hirose, A. Kahn, V. Aristov, etal. Chemistry and electronic properties of metal-organic semiconductor interfaces:Al, Ti, In, Sn, Ag, and Au on PTCDA. Physical Review B,1996,54(19): 13748-13758
    [49]D. Flanders, E. Jacobs, R. Pinizzotto. Activation energies of intermetallic growth of Sn-Ag eutectic solder on copper substrates. Journal of Electronic Materials,1997,26(7):883-887
    [50]M. Amagai. Mechanical characterization of Sn-Ag-based lead-free solders. Microelectronics Reliability,2002,42(6):951-966
    [51]D. B. Masson, B. K. Kirkpatrick. Equilibrium solidification of Sn-Ag-Sb thermal fatigue-resistant solder alloys. Journal of Electronic Materials,1986,15(6):349-353
    [52]M. McCormack. New lead-free, Sn-Zn-In solder alloys. Journal of Electronic Materials,1994,23(7):687-690
    [53]Z. Mei, J. Morris. Characterization of eutectic Sn-Bi solder joints. Journal of Electronic Materials,1992,21(6):599-607
    [54]郑玉军,张启运.Sn-In-Zn三元系相图和无铅钎料成分的探讨.物理化学学报,1998,14(012):1098-1103
    [55]朱奇农.电子封装中表面贴装焊点的可靠性研究:[博士学位论文].上海:中国科学院上海冶金研究所,2000
    [56]A. Miric, A. Grusd. Lead-free alloys. Soldering and Surface Mount Technology,1998,1:19-25
    [57]K. Zeng, K. Tu. Six cases of reliability study of Pb-free solder joints in electronic packaging technology. Materials Science and Engineering,2002, (38):55-105
    [58]P. Goodman. Current and Future Uses of Gold in Electronics. Gold Bulletin,2002,35(1):21-26
    [59]张振霞,李秀霞,赵嵩.金基焊料的典型应用分析及其可替代材料.真空电子技术,2009,12(004):81-82
    [60]J. Kim, C. Lee. Fluxless wafer bonding with Sn-rich Sn-Au dual-layer structure. Materials Science and Engineering A,2006, 417:143-148
    [61]范琳霞,荆洪阳,徐连勇.Au80Sn20无铅钎料的可靠性研究.电焊机,2006,36(22):16-19
    [62]李成功.材料科学技术百科全书.北京:中国大百科全书出版社,1995,593-594
    [63]J. F. Li, S. H. Mannan, M. P. Clode, et al., Interfacial reactions between molten Sn-Bi-X solders and Cu substrates for liquid solder interconnects. Acta Materialia,2006,54(11):2907-2922
    [64]J. Yoon, H. Chun, S. Jung. Reliability evaluation of Au-20Sn flip chip solder bump fabricated by sequential electroplating method with Sn and Au. Materials Science and Engineering A,2008,473: 119-125
    [65]周涛,汤姆·鲍勃,和马丁·奥德,金锡焊料及其在电子器件封装领域中的应用.电子与封装,2005,5(8):5-8
    [66]W. Pittroff. Au-Sn solder bumps with tungsten silicide based barrier metallization schemes. Journal of Application Physics, 1995,67(16):2367-2369
    [67]陈雪琴,周海.Au-Sn焊膏再流焊工艺.电子元器件应用,2002,4(7):46,58
    [68]C. H. Leet, K. L. Tait, D. D. Bacont, et al. Bonding InP laser diodes by Au-Sn of solder and tungsten-based barrier metallization schemes semicond. Science Techology,1994,9:379-386
    [69]A. Katz. Au-Sn/W and Au-Sn/Cr metallized chemical vapor deposited diamond heat sinks for InP laser device applications. Journal of Applied Physics 1994,75(1):563-576
    [70]D. G. Ivey. Microstructural characterization of Au/Sn solder for packaging in optoelectronic applications. Micron,1998,29(4): 281-287
    [71]郑子樵,李红英.稀土功能材料.北京:北京工业出版社,2003,1
    [72]李成功,材料科学技术百科全书.1995,中国大百科全书出版社:北京
    [73]Z. Yu, M. Chen. Rare earth elements and their applications, in Metallurgical Industry Press.1995,138
    [74]张小联,邓左民.熔岩电解法生产稀土金属发展现状及预测.新材料市场展望与技术进展,北京:清华大学出版社,2004,110
    [75]孙伟成,张滨茹.稀土Al—Si合金的变质机理研究.稀有金属,1992,16(003):189-195
    [76]D. Wenwen, S. Yangshan, M. Xuegang, et al. Microstructure and mechanical properties of Mg-Al based alloy with calcium and rare earth additions. Materials Science and Engineering A,2003, 356(1-2):1-7
    [77]M. Dudek, R. Sidhu, N. Chawla. Novel rare-earth-containing lead-free solders with enhanced ductility. Journal of the Minerals, Metals and Materials Society,2006,58(6):57-62
    [78]高彩茹,李晋霞,邰振中.稀土银合金铸态及再结晶组织的观察与分析.铸造,2001,20(5):266-269
    [79]郝虎,史耀武,夏志东,等.p,-I效中稀土Er对Sn-3 8Ag-0.7Cu无铅钎料显微组织演化的影响.稀有金属材料与工程,2008,37(11):1938-1941
    [80]Z. G. Chen, Y. W. Shi, Z. D. Xia, et al. Study on the Microstructure of a Novel Lead-Free Solder Alloy SnAgCu-RE and Its Soldered Joints. Journal of Electronic Materials,2002,31:1222-1228
    [81]陈志刚.SnAgCuRE钎焊接头蠕变行为的研究:[博士学位论文].北京:北京工业大学,2003
    [82]刘东起,陈伟.含稀土的锡铅焊料.有色金属与稀土应用,1996(001):39-41
    [83]D. Q. Yu, J. Zhao, L. Wang, Improvement on the microstructure stability, mechanical and wetting properties of Sn-Ag-Cu lead-free solder with the addition of rare earth elements. Journal of Alloys and Compounds,2004,376:170-175
    [84]郑子樵.材料科学基础.长沙:中南大学出版社,2005,185-187
    [85]宁远涛.贵金属与稀土金属的相互作用:(I)Au-RE系.贵金属,2000,21(1):42-52
    [86]陈文鹏,杨六光.稀土低锡合金焊料:KRE系列焊料研制.云南冶金:县乡矿业版,1990,20(001):20-22
    [87]柳春雷.部分无铅焊料体系的相平衡及界面反应研究:[硕士学位论文].长沙:中南工业大学,2003
    [88]J.O. Anderson, T. Helander, L. Hoglund, et al. THERMO-CALC & DICTRA, Computational Tools for Materials Science. CALPHAD,2002,26: 273-312
    [89]王江.无铅焊料与基材间界面反应热力学与动力学研究:[博士学位论文].长沙:中南大学,2008
    [90]乔芝郁,谢允安,曹战民,等.无铅锡基钎料合金设计和合金相图及计算.中国有色金属学报,2004,14(11):1789-1798
    [91]M. Zbigniew, G. Wladyslaw, K. Ishida, et al. Experimental wettability studies combined with the related properties from data bases for tin based alloys with silver, copper, bismuth and antimony additions. Journal of Materials,2004,56(11):207-208
    [92]Y. Takaku, I. Ohnuma, R. Kainuma, et al. Development of Bi-base high-temperature Pb-free solders with second-phase dispersion: Thermodynamic calculation, microstructure, and interfacial reaction. Journal of Electronic Materials,2006,35(11):1926-1932
    [93]G. Girchner, G. Larbo, B. Uhrenius. Distribution of chromium and manganese between ferrite and austenite using experimental measurements and thermodynamic calculations. Prakt. Metall.,1971, 8(11):641-654
    [94]H. Hasene, T. Nishizawa. Application of phase diagrams in metallurgy and ceramics Washington D. C.:NBS Special Pub. Nr.1978, 496:911-945
    [95]Z. P. Jin. A study of the range of stability of s phase in some ternary system. Journal of Metallurgy 1981,10(6):279-287
    [96]金展鹏,三元扩散偶及其在相图研究中的应用.中南矿冶学院学报,1984,15(1):27-35
    [97]J. C. Zhao. A diffusion-multiple approach for mapping phase diagrams, hardness elastic modulus. Journal of the Minerals, Metals and Materials Society,2002,54(7):42-45
    [98]J. C. Zhao. Reliability of the diffusion-multiple approach for phase diagram mapping. Journal of Materials Science,2004,39(12): 3913-3925
    [99]J. C. Zhao. The diffusion-multiple approach to designing alloys. Annual Review of Materials Science,2005.35(1):51-73
    [100]J. C. Zhao. Combinatorial approaches as effective tools in the study of phase diagrams and composition-structure-property relationships. Progress in Materials Science,2006,51(5):557-631
    [101]A. Kodentzov, S. Dunaev, E. Slusarenko. Determination of the phase diagram of the V---Ni---Cr system using diffusion couples and equilibrated alloys. Journal of the Less Common Metals,1987, 135(1):15-24
    [102]J. C. Zhao, Z. Jin. Determination of Phase Equilibria in the Ti--Fe--Co System at 900 degree. Zeitschrift fure Metallkunde,1990, 81(4):247-250
    [103]N. Saunders, A. Modwnik. CALPHAD--a comprehensive guide.1998, Lausanne Switzerland:Pergamon Press
    [104]N. Duan, J. Scheer, J. Bielen, et al. The influence of Sn-Cu-Ni (Au) and Sn-Au intermetallic compounds on the solder joint reliability of flip chips on low temperature co-fired ceramic substrates. Microelectronics Reliability,2003,43:1317-1327
    [105]T. Yamamoto, S. Sakatani, S. Kobayashi, et al. Reactivity between Sn-Ag Solder and Au/Ni-Co Plating to Form Intermetallic Phases. Materials transactions,2005,46(11):2406-2412
    [106]K. M. Liu, Y. Takaku, I. Ohnuma, et al. Experimental investigation and thermodynamic calculation of phase equilibria in the Sn-Au-Ni system. Journal of Electronic Materials,2005,34(5):670-679
    [107]F. J. Kresse. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B,1996, 54(16):11169-11186
    [108]G. Kresse, J. Furthmuller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science,1996,6(1):15-50
    [109]S. L. Chen, S. Daniel, F. Zhang, et al. On the calculation of multicomponent stable phase diagrams. Journal of Phase Equilibria, 2001,22(4):373-378
    [110]L. C. Liu, H. S. Liu, K. Ishida, et.al, Thermodynamic modeling of the Au-In-Sn system. Journal of Electronic Materials,2003,32(11): 1290-1296
    [111]V. Grolier, R. Schmid-Fetzer. Experimental Study of Au-Pt-Sn Phase Equilibria and Thermodynamic Assessment of the Au-Pt and Au-Pt-Sn Systems. Journal of Electronic Materials,2008,37(3):264-278
    [112]A. Jena, M. Bever. On the thermodynamic properties of the phases zeta and AuSn in the system Au-Sn. Metallurgical and Materials Transactions B,1979,10(4):545-549
    [113]M. Jiang, J. Sato, I. Ohnuma, et al. A thermodynamic assessment of the Co-Sn system. CALPHAD,2004,28(2):213-220
    [114]L. Liu, C. Andersson, J. Liu. Thermodynamic assessment of the Sn-Co lead-free solder system. Journal of Electronic Materials,2004, 33(9):935-939
    [115]H. Okamoto, T. B. Massalshi, T. Nishizawa, et al. The Au-Co (Gold-Cobalt) system. Journal of Phase Equilibria,1985,6(5): 449-454
    [116]J. Korb,T. Jantzen.2004, GTT-Technologies. Unpublished work
    [117]A. Dinsdale. SGTE data for pure elements. CALPHAD,1991,15(4): 317-425
    [118]W. Wahl. Cobalt-Gold Alloys. Zeitschrift fur Anorganische und Allgemeine Chemie 1910,66:60-72
    [119]U. Hashimoto. Relation Between the A119 Trans-formation of Cobalt and Some Additional Elements. Journal of the Japan Institute of Metals(Japan),1937,1:177-190.
    [120]E. Raub, P. Walter. Die Legierungen des Goldes mit Kobalt und Eisen. Zeitschrift fur Metallkunde,1950,41:234-238
    [121]A. Grigor'ev, E. Sokolovskaya, M. Maksimova. Study of Alloys of the System Gold-Cobalt. Zhurnal Neorganicheskoi Khimii 1956,1(5): 1047-1051
    [122]L. Weil. The Precipitation of Cobalt in Au-Co. Zeitschrift fur Physikalische Chemie,1958,16:368-371
    [123]P. Taskinen. Activities and Phase Equilibria in Au-Co Alloys at 1073-1673 K. Scandinavian Journal of Metallurgy,1984,13(1): 39-45
    [124]J. W. Klement. Solid Solutions in Gold-Cobalt and Copper-Cobalt Alloys. Trans. Met. Soc. AIME,1963,227(8):965-970
    [125]V. Berezutskiy, V. Eremenko, G. Lukashenko. Some Thermodynamic Properties of Au-Co Melts. Izvestia Akademii nauk SSSR. Metally 1975,30(2):54-56
    [126]A. Kubik, C. B. Alcock. A Thermodynamic Study of Solid Iron-Gold and Cobalt-Gold Alloys by the Use of Solid Oxide Electrolytes. Met. Sci. J.,1967,1(1):19-24
    [127]S. Wang, J. M. Toguri. Activity Determination of Cobalt in Cobalt-Gold Alloys. Canadian Journal of Chemistry,1973,51(14): 2362-2365
    [128]L. Topor,O. J. Kleppa. Thermochemistry of Binary Liquid Gold Alloys: The Systems Au-Ni, Au-Co, Au-Fe, and Au-Mn. Metallurgical Transactions B,1984,15(9):573-580
    [129]B. Prede, E. Zehnpfund. Thermodynamic Study of the Gold-Iron and Gold-Cobalt Systems. Zeitschrift fur Metallkunde,1973,64(11): 782-786
    [130]A. Neumann. The ternary system Au---Co---Sn and the crystal structure of AuCo2 (1-a) Sn4. Journal of Alloys and Compounds,1996, 240(1-2):42-50
    [131]P. E. Blochl. Projector augmented-wave method. Physical Review B, 1994,50:17953-17979
    [132]G. Kresse, J. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B,1999,59: 1758-1775
    [133]J. P. Perdew, J. A. Chevary, S. H. Vosko, et al. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation. Physical Review B,1992, 46:6671-6687
    [134]J. P. Perdew, Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B,,1992, 45:13244-13249
    [135]H. J. Monkhorst, J. D. Pack. Special points for Brillouin-zone integrations. Physical Review B,1993,13:5188-5192
    [136]S. Lidin, A. Larsson. A survey of superstructures in intermetallic NiAs-Ni2In-type phases. Journal of Solid State Chemistry,1995, 118(2):313-322
    [137]H. Okamoto. Au-Sn (gold-tin). Journal of Phase Equilibria,1993, 14(6):765-766
    [138]栗慧.微量稀土元素对SnAgCu系无铅焊料性能与组织的影响.常州工学院学报,2008,21(4):12-16
    [139]Z. M. Du, C. P. Guo, D. Lue. Thermodynamic assessment of the Au-Pr system. Journal of Alloys and Compounds,2004,364(1-2):117-120
    [140]G. Canneri. The alloys of lanthanides. Metall. Ital,1931,23: 803-823
    [141]P. E. Rider, K. A. Gschneidner Jr.,0. D. McMasters. Gold-Rich Rare-Earth-Cold Sold Solutions. Trans Metall AIME,1965,233: 1488-1496
    [142]0. D. McMasters, K. A. Gschneidner, Jr., G. Bruzzone, et al. Stoichiometry, Crystal Structures and some Melting Points of the Lanthanide-Gold Alloys. Journal of Less-Common Metallics,1971,25: 135-160
    [143]S. Steeb, E. Gebhardt, H. Reule. uber die intermetallischen Verbindungen der Seltenen Erdmetalle mit Ag, Au, Pd und Pt. Monatshefte fur Chemie/Chemical Monthly,1972,103(3):716-735
    [144]J.M. Moreau, E. Parthe. the Crystal structures of the Rare-Earth Hexauurides RAu6. Acta Crystallographica Section B,1974,30: 1743-1748
    [145]W. Johnson, S. Poon, P. Duwez. Amorphous superconducting lanthanum-gold alloys obtained by liquid quenching. Physical Review B,1975,11(1):150-154
    [146]T. B. Massalski, ed. Binary alloy phase diagrams. ASM International. OH, Metals Park,1990
    [147]K. Fitzner, W. Jung,O. Kleppa. Thermochemistry of Binary Alloys of Transition Metals:The Me-Sc, Me-Y, and Me-La (Me=Ag, Au) Systems. Metallurgical Transactions A,1991,22:1103-1111
    [148]S.V. Meschel,O. J. Kleppa, Thermochemistry of some binary alloys of gold with the lathanide metals by high temperature direct synthesis calorimetry. Journal of Alloys and Compounds,2004,263: 237-242
    [149]V. Sadagopan, B. Giessen, N. Grant. Crystal chemistry of Au-rich binary alloy phases with the heavy rare earths. Journal of the Less Common Metals,1968,14(3):279-290
    [150]A. Saccone, D. Macci, S. Delfino, et al. Alloying behavior of the rare earth metals with gold:the Ho-Au, Er-Au and Tm-Au systems. Intermetallics,2002,10(9):903-913
    [151]R. Alqasmi, H. Schaller. Thermodynamics of gold-erbium alloys. Journal of Alloys and Compounds,2000,305(1-2):183-187
    [152]Y.R. Wu, W. Hu, S. Han. Theoretical calculation of thermodynamic data for gold-rare earth alloys with the embedded-atom method. Journal of Alloys and Compounds,2006,420(1-2):83-93
    [153]H. Okamoto, T. Massalski. Binary alloy phase diagrams requiring further studies. Journal of Phase Equilibria,1994,15(5):500-521
    [154]H. L. Lukas, S. G. Fries, B. Sundman. Computational Thermodynamics: the Calphas Method. New York:Cambridge University Press,2007, 114-116
    [155]M. Huang, X. P. Su, P. Zhang, et al. A thermodynamic assessment of the La-Sn system. Journal of Alloys and Compounds,2000,309(1-2): 147-153
    [156]H. Okamoto, T.B. Massalski. Thermodynamically improbable phase diagrams. Journal of Phase Equilibria,1991,12(2):148-168

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700