考虑颗粒行为的液—固二相流体润滑研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实际的润滑状况下,由于摩擦副自身磨损和外部环境的影响,润滑油内部不可避免的会有固体颗粒进入,形成所谓的液-固二相流体润滑。固体颗粒与润滑油的作用、固体颗粒与摩擦副表面的作用等问题对润滑性能将产生重要的影响,因此,展开液-固二相润滑的研究具有十分重要的理论和实际意义。本文从理论利试验两方面对液-固二相流体润滑进行了研究。
     结合了考虑流变特性的雷诺方程、液-固二相流体的粘度、密度及油膜极限剪应力等流变参数的变化方程,同时引入颗粒承载和微凸体承载并考虑表面粗糙度的影响,建立了相应的分析模型平和方法。通过研究表明:考虑表面粗糙度的液-固二相流体润滑的研究更加符合实际,微凸体的颗粒以及流体的承载与平均油膜厚度、颗粒浓度、颗粒直径、颗粒屈服应力利表面弹性模草等有很大的关系。
     深入剑润滑微观尺度,针对多颗粒存在情况下的液-固二相流体润滑问题,引入颗粒的何置、大小、颗粒间拦巨离等参数,建立了润滑模型,并且运用有限元法进行求解,研究了颗粒分布对润滑油膜压力利承载的影响,研究发现颗粒的进入使得颗粒处的油膜压力有了明显的增加,颗粒分布对润滑油膜压力分布和油膜承载有明显的影响。
     基于欧拉-拉格朗日模型,针对颗粒的动态行为及其对液-固二相流体润滑的影响问题进行了深入的分析,研究发现:颗粒在润滑区域存在三种运动形态,即从润滑区域山口处逃逸、住润滑区域入口处回旋、从润滑区域入口处逃离润滑区域,颗粒的初始位置对颗粒的运动状态有很大的影响,摩擦副的速度利流体的粘度对颗粒在润滑区域的运动也有一定影响。
     在自行研制的端面摩擦磨损试验机上设计了相应的试验进行了试验研究。通过在润滑油中添加不同种类、大小利含量的颗粒分别进行试验,在线测量了润滑过程中摩擦系数和温度的变化情况。
     综上,论文分别从颗粒的静态行为和动态行为对液-固二相流体润滑进行了理论分析,并设计相应的试验进行探讨,研究了颗粒行为对液-固二相流体润滑的影响,对促进液-固二相流体润滑理论的发展和完善将起到重要作用。
It has been known for many years that various types of particles that come from wear and environment dispersed in oil during the operation of hydrodynamic tribological pairs and formed so called liquid-solid lubrication. Interactions between particles and oil, particles and bounding surfaces of tribological pairs will greatly affect the performance of tribological pairs. Therefore research on liquid-solid lubrication is significant both in theory and practice. This dissertation researches the liquid-solid lubrication both theoretically and experimentally.
     A mixed liquid-solid lubrication model is studied which considering rheological Reynolds equation, viscosity of liquid-solid lubricant equation, density of liquid-solid lubricant equation. The load carrying of spherical particle and the contacting equation of asperities of surface are also introduced in the model. The results show that it is closer to the reality to do research on liquid-solid lubrication considering surface roughness , the load carrying capacity of particles, asperities and oil has a great relation to average oil film thickness, particle concentration, particle diameter, particle yield stress, surface modulus of elasticity and so on.
     The effect of solid particles distribution on the liquid-solid lubrication is discussed. The governing lubrication equation for the liquid-solid lubrication is established with the consideration of particles location, diameter and the distance of particles. Based on finite element method, the modelling equation is solved numerically. It shows that a noticeable pressure build-up occurs near the particles, particles distribution have a big effect on pressure distribution and oil load capacity.
     Based on Eular-Lagrange model, liquid-solid lubrication considering moving particle behaviors is deeply studied. It is shown that: there are three kinds of particles movement forms in lubrication system, which are escaping form inlet, escaping from outlet and encircling near the inlet of lubrication area. The initial location of the particle has a big influence on particle movement, and the velocity of tribological pairs and the viscous of oil also have some influence on it.
     Using end-face friction and wear tester made by our institute, an experiment of liquid-solid lubrication is designed, the effects of particle properties, sizes and concentration on liquid-solid lubrication are studied by online measurement of the friction pair's temperature and friction coefficient.
     In summary, both static behaviors and dynamic behaviors of particles on liquid-solid lubrication are studied in this dissertation, a proper experiment designed and carried out. The research results will play an important role on promoting the development of liquid-solid lubrication theory.
引文
[1]温诗铸,黄平.摩擦学原理[M].清华大学出版社,2002.
    [2]王伟,液-固二相润滑状态下活塞环-缸套摩擦及擦伤特性的研究[D].合肥工业大学硕士论文,2004,3.
    [3]刘焜,焦明华.机械产品创新与摩擦学设计[J].合肥工业大学学报,2005,28(9):989-993.
    [4]刘伟,刘焜,王伟.液-固二相流体润滑的研究及发展[J].合肥工业大学学报,2007,30(11):1421-1425
    [5]McKee S,Effect of Abrasive in Lubrication[J].J.of Soc.of Automotive Engr,1927,20:3-6.
    [6]Roach A E.Performance of oil-film bearings with abrasive-containing lubricant[J].Trans.ASME,1951,73:677-686.
    [7]Rylander H G.Effect of solid inclusions in sleeve-bearings oil supply[J].Mech.Lubr.Eng,1952,74:963-966.
    [8]Khonsari MM.On the modeling of multi-body interaction problems in tribology[J].Wear,1997,207:55-62.
    [9]Sayles R S,Hamer J C,Ioannides E.The effects of particulate contamination in rolling bearings-a state of the art review[J].IMechE J.Aerospace Engineering,1990,204:29-36.
    [10]Rylander H G.A theory of liquid-solid hydrodynamic film lubrication[J].ASLE Trans,1966,9:264-271.
    [11]Khonsari MM,Esfahanian.V.thermohydrodynamic analysis of solid-liquid lubricated journal beatings[J].ASME Journal of Tribology,1988,110(2):367-374.
    [12]Khonsari MM,Wang.S.H,Qi.Y.L.A Theory of Liquid-solid Lubrication in Elastohydrodynamic Regime[J].Journal of Tribology,1989,111(3):440-44.
    [13]Khonsari MM.,Wang.S.H,Qi.Y.L A Theory of Thermo-Elastohydrodynamic Lubrication of Liquid-Solid Lubricated Cylinders[J].ASME Journal of Tribology,1990,112(2):259-264.
    [14]Prawal Sinha.Effects of rigid particles in the lubrication of rolling contact beatings considering cavitation[J].Wear,1977,44(2):295-309.
    [15]J.Prakash,Prawal Sinha Theoretical effects of solid particles on the lubrication of journal bearings considering cavitation[J].Wear,1977,41(2):233-249.
    [16]A.E.Yousif,S.M.Nacy.Hydrodynamic behaviour of two-phase(liquid-solid) lubricants[J].Wear,1981,66:223-240.
    [17]A.E.Yousif,S.M.Nacy.The lubrication of conical journal bearings with bi-phase(liquid-solid)lubricants[J].Wear,1994,172:23-28.
    [18]Khaled ARA,Vafai K.Nonisothermal Characterization of Thin-Film Oscillating Bearings in the Presence of Ultrafine Particles[J].Numerical Heat Transfer Part a-Applications,2002Nov:42(6):549-564.
    [19]Dance SL,Maxey MR.Incorporation of Lubrication Effects into the Force-Coupling Method for Particulate Two-Phase Flow[J].Journal of Computational Physics,2003,189(1):212-238.
    [20]Dai F,Khonsari MM.On the solution of a lubrication problem with particulate solids[J].International Journal of Engineering Science,1991,29(9):1019-1033.
    [21]Dai F,Khonsari MM.On the mixture flow problem in lubrication of hydrodynamic bearing,samall solid volume fraction[J].Tribology Transactions,1992,35(1):45-52.
    [22]Dai F,Khonsari MM Analytical solution for a mixture of a Newtonian fluid and granules in hydrodynamic bearings[J].Wear,1992,156(2),327-344.
    [23]Dai F,Khonsari MM.A Continuum Theory of a lubrication Problem with Solid Particles[J].ASME Journal of Applied Mechanics,1993,60(1):48-60.
    [24]Dai F,Khonsari MM.Generalized Reynolds equation for solid-liquid lubricated beatings[J].ASME,Journal of Applied Mechanics,1994,61(2):460-466.
    [25]Dai F,Khonsari MM.On the lubrication mechanism of grain flows[J].STLE Tribol,1994,37:516-522.
    [26]Cowin S C.A theory for the flow of granular materials[J].Powder Technology,1974,9(2-3):61-69.
    [27]Savage S B.Mechanics of rapid granular flows[J].Advances in Applied Mechanics,1984,24:289-336.
    [28]Tomirnoto M,Mizuhara K.Effect of particles concentration on friction[C].Lubrication at the Frontier,Dowson,D,M.1999,Elsevier 36:789-795.
    [29]Mizuhara K,Tomimoto M,Yamamoto T.Effect of particles on lubricated friction[J].Tribology Transactions,2000,43(1):51-56.
    [30]Tomimoto M,Mizuhara K,Yamamoto T.Effect of friction modifier and EP additive on friction caused by solid particles in oil[C].Proceedings of the word tribology congress,Vienna,Austria,2001.
    [31]Tomimoto M,Mizuhara K,Yamamoto T.Effect of Particles on Lubricated Friction-Theoretical Analysis of Friction Caused by Particles in Journal Bearing[J].Tribology Transactions,2002,45(1):47-54.
    [32]Tomimoto M,Mizuhara K,Yamamoto T.Effect of Particles on Lubricated Friction-Verification of Dead Time Phenomenon and Friction Theory[J].Tribology Transactions,2002,45(1):94-102.
    [33] Tomimoto M. Experimental Verification of a Particle Induced Friction Model in Journal Bearings[J]. Wear, 2003,252(7-8), 749-762.
    [34] Nakahara T, Makino, Kyogoku K. Observation of liquid droplet behavior and oil film formulation in O/W type emulsion lubrication[J].ASME Journal of Tribology 1988, 110(2):348-353.
    [35] Abhay Kumar, Steven R Schmid, William R.D.Wilson. Particle behavior in two-phased lubrication[J]. Wear, 1997,206(1-2): 130-135.
    [36] Dowson D. Progress in Tribology: A Historical Perspective. New Directions in Tribology, 1997:1-20.
    [37] Gansheimer J. Molybdenum disulfide in oils and greases under boundary conditions [J]. ASME Journal of Lubrication technology, 1973,95:242-248.
    [38] Nakahara T. Effect of molybdenum sulfide dispersed oil on friction in Journal bearings[J]. Toraiborojisuto,1991,36(4):289-295.
    [39] Wan G T, Spikes H A. The behavior of suspended solid particles in rolling and sliding Elastohydrodynamic contacts[J]. Tribology Transaction, 1988,31 (1): 12-21.
    [40] Cusano C, Sliney H E. Dynamic of solid dispersions in oil during the lubrication of point contacts-Part I:Graphit[J]. ASLE transaction, 1982, 25:193-189.
    [41] Cusano C, Sliney H E. Dynamic of solid dispersions in oil during the lubrication of point contacts-Part II: Molybdenum Disulfide[J]. ASLE Transactions, 1982,25: 190-197.
    [42] Batz W J. Some investigation on influence of particle size on the lubrication effectiveness of Molybdenum Disulfide[J]. ASLE Transactions, 1972,15:207-215.
    
    [43] Rabinowicz E, Mutis A. Effect of abrasive particle size on wear[J]. Wear,1965,8:381-389.
    [44] Richardson R C. The wear of metals by relatively soft abrasives[J]. Wear, 1968,11:245-275.
    [45] Stock A H, Evaluation of Solid Lubricant Dispersions on a Four Ball Tester[J]. Lubrication Engineerings, 1966, 22:146-152.
    [46] Elwell R C. Foreign object damage in journal bearings[J]. Lubrication Engineerings. 1978, 14(4): 187-192.
    [47] Bartz W J, Oppelt J, Lubricating Effectiveness of Oil-Soluble Additives and Molybdenum Disulfide Dispersed in Mineral Oil[J]. Lubrication Engineerings, 1980, 36:579-585
    [48] Chandrasekaran.S, Khemchandani.M.V, Sharma.J.P. Effect of abrasive contaminants on scuffing[J]. Tribology International,1985,18(4):219-222.
    [49] Xuan.J.L, Hong.I.T, Fitch.E.C. Hardbess effect on three-body abrasive wear under wear fluid film lubrication[J].ASME, Journal of Tribology, 1989,111:35-40.
    [50] Dwyer-Joyce.R.S, Sayles.R.S,Loannides.E. An investigation into the mechanisms of closed three-body abrasive wear[J].Wear,1994,175:133-142.
    [51]Chinas-Castillo F,Spikes H A,The Behavior of Cooloidal Solid Particles in Elastohydrodynamic Contacts[J].Tribology Transactions,2000,43:387-394.
    [52]Nikas GK,Sayles RS,Ioannides E.Thermoelastic Distortion of Ehd Line Contacts During the Passage of Soft Debris Particles[J].Journal Of Tribology-Transactions Of The Asme,1999,121(2):265-271.
    [53]Nikas GK.Mathematical analysis of the entrapment of solid spherical particle in non-conformal contacts[J].ASME,Journal of Tribology,2001,123(2):83-93.
    [54]Khonsari M M,Booser E R.Effect of Contamination on the Performance of Hydrodynamic Beatings.Proceedings Of The Institution Of Mechanical Engineers Part J-Journal Of Engineering[J].Tribology,2006 Aug,220(J5):419-428.
    [55]R.I.Trezona,D.N.Allsopp,I.M.Hutchings,Transitions Between Two-body and Three-body Abrasive Wear:Influence of Test Conditions in the Microscale Abrasive Wear Test[J].Wear,1999,225-229:205-214.
    [56]Stachowiak G B,Stachowiak G W,The Effects of Partical Characteristics on Three-body Abrasive Wear[J].Wear,2001,249:201-207.
    [57]Williams J A,Hyncica A M,Abrasive Wear in Lubricated Contacts[J].J.Phys.D:Apply.Phs,1992,25:81-90.
    [58]温诗铸.润滑科学的研究进展[J].摩擦学进展,2000,1:1-5.
    [59]雒建斌.摩擦学及表面科学与技术,机械学科“十一五发展战略”研讨会.2004.
    [60]刘维民.纳米颗粒及其在润滑油脂中的应用[J].摩擦学学报,2003,23(4):265-267.
    [61]宋宝玉,朱宝库,李新元,齐毓霖.含PTFE粉的二相流体润滑剂对接触疲劳寿命的影响[J].机械设计与制造,1990,(03):21-23.
    [62]宋宝玉,李新元,李柏松,齐毓霖,金芝珊,刘洪.含石墨的节能添加剂对接触疲劳寿命的影响[J].哈尔滨工业大学学报,1990,23(05):67-71.
    [63]Song Baoyu,Li Xinyan,Qi Yulin,Tribology Property of the Two-Phase Lubricant[J].Journal of Harbin Institute of Technology,1991,23(2) 113-118.
    [64]宋宝玉,李新元,齐毓霖,金芝珊,刘洪.润滑油中微细碳粉颗粒对45-#钢接触疲劳寿命影响的研究[J].摩擦学学报,1991,21(4):223-228.
    [65]程西云,蒋菘,韦云隆.润滑油中磨屑尺寸对滑动摩擦副咬死性能影响的实验研究[J].润滑与密封.1999,4:12-14.
    [66]曲建俊,宋宝玉,齐毓霖,含超细颗粒固液二相流对PSZ陶瓷与钢摩擦磨损特性的影响[J].润 滑与密封,2000,6:44-46.
    [67]刘焜,王超.液-固二相流体润滑状态下表面形貌的变化[J].安徽工业大学学报,2002,19(3):195-196.
    [68]王伟,刘焜,丁曙光.活塞环-缸套动态摩擦力测量系统设计[J].合肥工业大学学报,2004,27(1):40-43.
    [69]刘焜,张斌,王伟,焦明华.液-固二相流体润滑下缸套-活塞环擦伤特性研究[J].材料保护,2004,37(7):56-57.
    [70]刘焜,刘小君,王伟,丁曙光.液-固二相流体润滑的实验研究[C].机械科技的前沿与挑战学术研讨会论文集,宜昌2003,10:98-99.
    [71]刘焜,刘小君,桂长林.内燃机活塞环-缸套擦伤的理论分析与试验模拟[J].内燃机学报,1999,17(2):198-201.
    [72]Liu Kun,Liu Xiaojun,Wang Wei,Zhang Bin.Tribological properties of piston ring-cylinder liner in liquid-solid lubrication[C].Proceedings of Nordtrib'04,2004.
    [73]Liu Kun,Liu Xiaojun,Wang Wei,Jiao Minghua.Experimental investigation on the particle effect in piston ring-cylinder lubrication[J].Chinese Journal of Mechanical Engineering,2006,2(19):191-194.
    [74]Liu Xiaojun,Liu Kun,Jiao Minghua,Wang Wei.Effect of nano-particles on the tribological and thermal properties of piston ring-cylinder liner[J].Tsinghua Science and Technology,2004,9(3):286-289.
    [75]孟凡明,张优云.运动颗粒对活塞环润滑的影响[J].内燃机学报,2004,22(2):169-175.
    [76]孟凡明,张优云.污染颗粒对活塞环腔体压力的影响[J].内燃机工程,2004,25(4):24-26.
    [77]孟凡明,张优云.污染颗粒-活塞环-缸套接触数值研究[J].内燃机学报,2005,23(6):562-566.
    [78]王伟,刘焜,焦明华.活塞环-缸套液固二相润滑研究[J].内燃机学报,2005,23(2):176-181.
    [79]王伟,焦明华,刘焜.固相特性对液-固二相热流体润滑的影响研究[J].哈尔滨工业大学学报(增刊),2006(38):197-200.
    [80]王伟,刘焜,张寰,焦明华.颗粒含量对液固二相流体润滑特性影响的试验研究[J].润滑与密封,2006(5):18-21.
    [81]胡雄海,汪玖根,章维明.污染对滑动轴承性能的影响[J].农业机械学报,2001,32(6):99-102.
    [82]张锋,宋宝玉,曲建俊,王黎钦.纳米添加剂在润滑剂中的应用现状[J].润滑与密封,2006,7:190-195.
    [83]沈明武,雒建斌,温诗铸,金刚石纳米颗粒对薄膜润滑性能的影响[J].机械工程学报,2001,37(1):14-18.
    [84]宋宝玉,曲建俊,姜立标,王熙宁.齐毓霖.含纳米金刚石微粒润滑剂抗接触疲劳性能的研究[J].机械工程学报,2004,40(9):154-157.
    [85]宋宝玉,曲建俊,张锋,殷玉龙,齐毓霖.含碳纳米管二相流体润滑剂对钢-钢接触疲劳性能的影响[J].摩擦学学报,2003,23(6):541-545.
    [86]张家玺,刘焜,胡献国,纳米金刚石颗粒对发动机润滑油摩擦学特性的影响[J].摩擦学学报,2002,22(1):44-48.
    [87]黄伟九,彭成允,王应芳等,纳米ZrO2作为润滑油添加剂的摩擦学性能研究[J].潭矿业学院学报,2001,16(4):28-31.
    [88]胡泽善,王立光等,纳米硼酸铜颗粒的制备及其用作润滑油添加剂的摩擦学性能[J].摩擦学学报,2000,20(4):293-295.
    [89]王艳辉,臧建兵,王明智,纳米金刚石在摩擦副界面的减摩耐磨机理探讨[J].金刚石与磨料磨具工程,2001,4(124):4-10.
    [90]张朝辉,温诗铸,锥建斌.Characteristics of Lubrication at Nanoscale in Two-Phase Fluid Svstem[J].SCIENCE IN CHINA(Series B),2002,45(2):166-172.
    [91]张朝辉,雒建斌,温诗铸,薄膜润滑中的微极流体效应[J].力学学报,2004,36(2):209-212
    [92]卢立新,固液两相流体纯滚动线接触弹流完全数值解[J].南方冶金学院学报,1994,9(15):188-174
    [93]卢立新,张和豪,固液两相流体弹流润滑[J].润滑与密封,1994,2:28-34
    [94]Bair S,Winer WO.Rheological model for elastohydrodynamic contacts based on primary laboratory data[J].ASME J Lub Tech 1979,101(3):258-265.
    [95]Wang SH,Zhang HH.Combined effects of thermal and non-newtonian character of lubricant on pressure,film profile,temperature rise,and shear-stress in EHL[J].ASME J Trib,1987,109(4):666-670.
    [96]HAMMER J C,SAYLES R S,IONNIDES E.Particle deformation and counterface damage when relatively soft particles are squashed between hard anvils[J].Tribology Transactions,1989,32(3):281-288.
    [97]Greenwood JA,Tripp JH.The contact of nonminally fiat surface[J].Proc Inst Mech Engrs 1971,(185):625-633.
    [98]Rohde SM.A mixed friction model for dynamically loaded contacts with application to piston ring lubrication[C].Porceedings of the 7th Leeds-Lyon Symposium on Tribology,980:262-267.
    [99]Raimondi AA,Boyd J.A solution for the finite journal bearing and its application to analysis and design,Ⅲ[J].ASLE Trans,1958,1(1):194-209.
    [100]Jacobson BO,Hamrock BJ.Non-Newtonian fluid model incorporated into elastohydrodynamic lubrication of rectangular contacts[J].ASME Journal of Tribology,1984,106:275-284.
    [101]Trachman EG.Cheng HS.Thermal and non-Newtonian effects on traction in EHL contact[J].Proc Inst Mech Eng,1972,117:142-148.
    [102]Kang Y S,Farshid S.Debris Effects on EHL Contact[J].ASME Journal of Tdbology,2000,122(4):711-720.
    [103]刘伟,焦明华,王伟,刘焜.颗粒分布对润滑油膜压力影响的研究[J].哈尔滨工业大学学报,2006,38(增刊):272-282.
    [104]刘伟,刘小君,王伟,刘焜.考虑颗粒分布影响的液-固二相流体润滑研究[J].中国机械工程,2007,38(24):2993-2997.
    [105]林建中.流-固两相拟序涡流记稳定性[M].清华大学出版社,2003.
    [106]Morsi S A,Alexander A J,An investigation of particle trajectories in two-phase flow systems[J].Journal of fluid mechanic,1972,55(2):193-208.
    [107]Haider.A,Levenspiel.O.Drag coefficient and terminal velocity of spherical and nonspherical particles[J].Powder Technology,1989,58:63-70.
    [108]Ounis.H,Ahmadi.G,McLaughlin.J.B.Brownian Diffusion of submierometer particles in the viscous sublayer[J].Journal of Colloid and Interface Science,1991,143(1):266-277.
    [109]A.Li,G.Ahmadi.Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow[J].Aerosol Science and Technology,1992,16:209-226.
    [110]Saffman P G.The Lift on a Small Sphere in a Slow Shear Flow[J].J.Fluid Mech,1965,22:385-400.
    [111]Tabakoff.W,Wakeman.T.Measured particle rebound characteristics useful for erosion prediction.American Society of Mechanical Engineers(Paper),1982,82-GT-170.
    [112]杨昌明.轴流泵间隙流动数值模拟与试验研究[D].西安交通大学博士论文,2003.
    [113]张玉明计算机控制系统分析与设计[M]北京:中国电力出版社,2000,8.
    [114]黄飞.端面摩擦磨损试验在线检测系统的研究[D].合肥工业大学硕士论文,2002,3.
    [115]王晓松.HDM-10端面摩擦磨损试验机数字化智能测控技术研[D].合肥工业大学硕士论文,2004,9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700