黄瓜白粉病抗性遗传分析和基因定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜白粉病(powdery mildew,PM)是由专性活体寄生真菌引起,在温室和大田都普遍发生的叶部病害;其病原菌主要包括瓜单囊壳(Podosp -haera xanthii)和二孢白粉菌(Golovinomyces cichoracearum)两属;中国以瓜单囊壳危害较为普遍。白粉病病原菌寄主广泛,可以感染黄瓜植株叶片、茎和花,在开花期感染白粉病可减少产量30~50%。培育和应用抗性品种是抵御黄瓜白粉病危害的根本途径。据文献报道,黄瓜高抗白粉病品种较少,利用常规育种技术选育抗性品种有很大的困难。为了分子标记辅助育种和抗性基因分离,本文对黄瓜白粉病抗性进行了遗传分析和抗性基因定位研究。
     1.应用温室喷雾接种法,对从国内外收集的120份黄瓜种质材料进行两次重复接种鉴定。接种菌为上海地区优势黄瓜白粉菌生理种,经单孢分离和纯化。共鉴定出高抗材料17份,耐病材料(中抗,中感)82份,高感病材料21份。高抗材料包括中国10份,中国台北、日本各2份,美国、荷兰、菲律宾各1份。本试验为培育黄瓜抗病品种和跨种植区引种,提供了良好的技术支持。
     2.以华北类型黄瓜自交系S94(感白粉病,母本)和欧洲温室型黄瓜自交系S06(抗白粉病,父本)为亲本材料,配置F6群体,构建了一张黄瓜分子标记遗传图谱。该图谱包括7个连锁群,含有257个标记,包括206个SRAP (sequence-related amplified polymorphism)标记,22个SSR(simple sequence repeat)标记,25个SCAR(sequence charact- erized amplified region)标记,1个STS(sequence tagged site)标记和3个形态学标记,图谱总长度1005.9cM,标记平均间距是3.9cM。
     3.对黄瓜自交系S94和S06及其由它们构建的130个F2:3家系,分别利用温室人工喷雾接种法(2005秋、2006春)和叶盘法(2005秋)进行白粉病抗性鉴定;并使用该群体对应的分子标记连锁图进行数量性状座位(quantita -tive trait loci,QTL)分析。使用复合区间定位方法共检测到5个白粉病抗性QTLs(pm1.1,pm1.2,pm2.1,pm2.2和pm5.1),分布于连锁群1、2和5,单个QTL的贡献率介于3.4%~45%之间。其中pm1.1,pm2.1和pm5.1在温室人工喷雾接种法和叶盘接种法都能检测到。
     4.同时还利用黄瓜自交系S94和S06及其由它们构建的224个F6:7家系的重组自交系(recombinant inbred lines,RIL)群体,分别在2005年秋和2006年春温室喷雾接种,进行白粉病抗性遗传分析;并在对应分子标记遗传图谱上,使用复合区间定位方法检测白粉病抗性QTLs。结果显示,在两种环境里共检测到黄瓜白粉病抗性的4个QTLs(rpm1.1、rpm2.1、rpm4.1和rpm6.1),分别分布于连锁群1、2、4和6上,单个QTL解释贡献率介于5.2%~21.0%之间,rpm4.1的表型贡献率最高(20.5%- 2005年秋,21.0% -2006年春)。其中rpm1.1、rpm2.1和rpm4.1在两种环境中均被稳定重复检测到,rpm6.1只在2005年秋被检测到。两种环境下检测的QTLs解释表型变异总和分别是52.0%(2005秋)和42.0%(2006春)。
     把F6:7与F2:3群体定位的白粉病QTL相比较发现,rpm1.1和rpm2.1分别与pm1.2和pm2.1附近的标记相同,应该为相同的QTL。但不同世代群体间相同的QTL,存在表型变化贡献率和加性等位基因来源方向不一致的现象。
     生产实践中,杀菌剂也被大量用于植物病害防治。使用杀菌剂,一方面增加了病原小种的变异率,另一方面表现出环境不友好和食品污染等问题。为了饮食健康,研究人员积极开发寻找高效、环保的控病措施。已有报道,Vitamin B1能作为激发子,诱导拟南芥、水稻和烟草产生抗病性。本研究对Vitamin B1作为激发子提高黄瓜白粉病抗性的作用机理进行了初步研究。
     1.通过考察Vitamin B1处理黄瓜幼苗白粉病发病的病情指数,确定50mmol/L Vitamin B1为最佳处理浓度,此浓度处理比对照水处理后的病情指数减少38%。
     2.用50mmol/L-Vitamin B1处理黄瓜感白粉病自交系S52第1片真叶,4h后第1片真叶接种黄瓜白粉病菌,分时间段取心叶提取叶片RNA,利用实时荧光定量PCR检测病程相关标记基因[病程相关蛋白-1a(pathoge-nesis-related protein-1a,PR-1a)基因、过氧化物酶(acidic peroxi -dase,POX)基因、脯氨酸裂解酶(phenylalanine amonia-lyase,PAL基因]与对照水处理0h相比的表达变化。结果发现3个基因72h内都表现出表达先快速增加,后降低的变化;表达量最大变化,分别出现在12h、48h和12h;分别是水对照的3.1、4.9和2.5倍。结果初步表明Vitamin B1预处理黄瓜自交系S52幼苗,能引起系统获得抗性(systemic acquired resistance,SAR)反应,使S52获得对白粉病的系统抗性。
Powdery mildew (PM), caused by Podosphaera xanthii (formerly known as Sphaerotheca fuliginea Schlech ex Fr.Poll.) or Golovinomyces cichoracearum (formerly known as Erysiphe cichoracearum DC ex M/erat.), limits the production of cucumber (Cucumis sativus L.) throughout the world. In China, Podosphaera xanthii has been identified as the primary cause of PM in both the greenhouse and field cucumber cultivation. The PM pathogens have a wide host range and are readily detached and borne by air currents. According to the investigation, the severe PM infection occurred before the flowering stage could reduce the output of the fresh cucumber fruits by 30% to 50%. Developing resistant cultivars would provide an economic and evironment-friendly control strategy. Although former studies have showed that the resistance or susceptibility to PM infection varies among the cucumber cultivars, up to now, there have been few evidences for the existence of the single gene-controlled high resistance to PM in the surveyed cucumber varieties. Thus, it would be a hard task to breed high resistance cucumber lines to PM by traditional breeding method. To research the principle of PM resistance and locate the resistance gene, which is very important for actualizing molecular-marker assisted selection breeding and cloning resistance gene in the future.
     1.By means of leaf-inoculation by two repetition test, the resistance of 120 germplasm of cucumber to cucumber powdery mildew were identified and evaluated with resistance index. The results indicated that among the tested 120 materials, high-resistant, mid-resistant and mid-susceptive, susceptive materials were 17, 82 and 21 strains, respectively. High-resistant materials come from ten of China cucumber materials, in addition, including each two from China Taiwan and Japan, each one contribute by America, Holland and Philippine. The important resistance disease informations about cultivating elicit cucumber variety were offered through the experiment.
     2.We constructed F6∶7 population from resistant line S06 as male parent cross with sensitive line S94(Northern China open-field type) as female parent. The linkage map used in this study using molecular marker technique constructed, includes 257 molecular markers [206sequence-related amplified polymorphisms (SRAP), 22 simple sequence repeats (SSR), 25sequence characterized amplification regions (SCAR), 1 sequence-tagged site (STS) and 3 morphologic traits ] with the total map length of 1005.9 cM and a mean marker interval of 3.9 cM, which is suitable for QTL analysis.
     3. PM is an economically important disease of cucumber caused by the obligate biotrophic pathogen, Podosphaera xanthii, in greenhouse and field. In this study, a resistant breeding line S06 and a susceptible cucumber inbred line S94 and their F2:3 populations were used to investigate PM resistance under seedling spray inoculation in two growing seasons and leaf disk infection in one season. QTL analysis was undertaken based on a constructed molecular linkage map of the corresponding F2 population using composite interval mapping. Five QTLs (pm1.1,pm1.2, pm2.1, pm2.2 and pm5.1) for PM resistance were identified and located on linkage groups (LG) 1, 2 and 5, explaining 3.4~45% of the phenotypic variation. Three consistent QTLs (pm1.1, pm2.1 and pm5.1) were detected under the three test conditions.
     4. S06 and S94 and their F6:7 populations were also used to investigate PM resistance under seedling spray inoculation in 2005/Autumn and 2006/Spring. QTL analysis was undertaken based on a constructed molecular linkage map of the corresponding F6 population using composite interval mapping. A total of four QTLs (rpm1.1, rpm2.1,rpm4.1 and rpm6.1) for PM resistance were identified and located on LG 1, 2, 4 and 6, explaining 5.2%~21.0% of the phenotypic variation. Three consistent QTLs (rpm1.1, rpm2.1 and rpm4.1) were also detected under the two test conditions.The rpm6.1 was only identified in 2005/Autumn. The total phenotypic variation explained by the QTLs was 52.0% and 42.0% in 2005/Autumn and 2006/Spring,respectively.
     According to the data from the two different generations collectively, only two QTLs were consistent on LG1 and LG2, respectively. The position of additive alleles and phenotypic variation of these QTLs were variance between F2:3 and F6:7.
     Disease control relies mainly on the extensive use of fungicides, with the risk of development of resistant pathogen strains. To obtain green food, the replacement of fungicides by effective and environmentally friendly methods is the major way forward. Vitamin B1 was also reported to have medicinal uses in Arabidopsis and rice. In the present experiment, we invest -igated the efficacy of Vitamin B1 which protected cucumber seedling against the cucumber powdery mildew fungus and the resistance disease mechanism for Vitamin B1 operation.
     1.Pre-treatment of the first leave of cucumber seedlings with Vitamin B1, four hours prior to inoculation with powdery mildew, reduced the disease index by over 38% at 50 mmol/L ,which was confirm prime treatment concentration.
     2.Using 50 mmol/L Vitamin B1 and powdery mildew(Podosphaera xanthii ) to dispose cucumber first true leaf and take hearts leaf RNA according to time level, pathogensis-related defense marker gene[pathogenesis-related protein-1a, (PR-1a) acidic peroxidase(POX), , phenylalanine ammol/Lonia -lyase (PAL) ]expression with contrast control(water treatment,0h) were checkout through real time's fluorescence PCR. Results showed that in inocul -ated plants that measured increases in POX, PR-1a and PAL expression appeared highest at 12h,48h and12h post treatment,respectively (an approxi -mate 3.1-fold increase in PR-1a expression, 4.9-fold increase in POX expre -ssion and 2.5-fold increase in PAL expression). The results showed that pre -treatment of cucumber seedlings with Vitamin B1 can gain resistance to powdery mildew through systemic acquired resistance (SAR) track.
引文
[1] Flor HH. The complementary genic systems in flax and flax rust. Advances in Genetics, 1956, 8: 29–54
    [2]Young ND. QTL mapping and quantitative disease resistance in plants. Annual Review Phytopathol, 1996, 34:479–501
    [3]McDonald BA, Linde C. The population genetics of plant pathogens and breeding strat -egies for durable resistance. Euphytica, 2002,124(2):163–180
    [4]方宣钧,吴为人,唐纪良.作物 DNA 标记辅助育种,北京: 科学出版社,2001
    [5]Grodzicker T, Williams J, Sharp P, et al. Physical mapping of temperature sensitive mutatitions of adenoviruses. Cold Spring Harbor Symp Quant Biol, 1975, 39:439-446
    [6]Mullis k, Faloona F, Scharf S, et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp Quan Biology, 1986,51:263-273
    [7]Williams JG, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers is useful as genetic markers. Nucl Acids Res, 1990, 18(22):6531-6535
    [8]Peakall R, Gilmore S, Keys W, et al. Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera, implications for the transferability of SSRs in plants.Mol Biol Evol, 1998,15(10):1275- 1287
    [9]Eujayl I, Sledge MK, Wang L,et al. Medicago truncatula EST-SSRs reveal crossspeciesgenetic markers for Medicago spp.Theor Appl Genet, 2004, 108 (3):414-422
    [10]Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation: a review.Mol Ecol, 2002, 11 (1):1-16
    [11]李明芳,郑学勤.开发SSR引物方法之研究动态.遗传,2004,26 (5):769-776
    [12]Danin-Poleg Y, Reis N, Tzuri G, et al. Development and characteri-zation of micro- satellite markers in Cucumis.L. Theor Appl Genet, 2001, 102(1): 61-72
    [13]Fazio G, Chung S M, Staub J.E. Development and characterization of PCR markers in cucumber (Cucumis sativus L.). J Amer Soc Hort Sci, 2002, 127: 545-557
    [14]Hirata M, Cai H, Inoue M, et al. Development of simple sequence repeat (SSR) markers and construction of an SSR-based linkage map in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet, 2006, 113 (2):270-279
    [15]Rajora OP, Rahman MH, Dayanandan S, et al. Isolation, characteri-zation, inheritance and linkage of microsatellite DNA markers in white spruce (Picea glauca) and their usefulness in other spruce species. Mol Gen Genet, 2001, 264(6):871-882.
    [16]Wang Y, Georgi LL, Zhebentyayeva TN,et al. High-throughput targeted SSR marker development in peach (Prunus persica).Genome,2002, 45(2):319-328
    [17]Lin ZX, Zhang XL, Nie YC, et al. Construction of a genetic Linkage map for cotton based on SRAP. Chinese Science Bulletin, 2003, 48(15):1676 -1679
    [18]Ferriol M, Pic/o B, Nuez F. Genetic diversity of a germplasm collection of Cucubita pepo using SRAP and AFLP markers. Theor Appl Genet, 2003, 107(2): 271-282
    [19]Budak H, Shearman RC, Parmaksiz I, et al. Molecular characterization of Buffal- ograss germplasm using sequence-related amplified polymorphism markers. Theor ApplGenet, 2004, 108(2):328-334
    [20]Sun SJ, Gao W, Lin SQ, et al. Analysis of genetic diversity in Ganoderma population with a novel molecular marker SRAP. Appl Microbiol Biotechnol, 2006, 72(3):537-543.
    [21]Wang G, Pan JS, Li XZ, ,et al. Construction of a cucumber genetic linkage map with SRAP markers and location of the genes for lateral branch traits. Science in China Ser. C Life Science, 2005, 43(3):213-220
    [22]Paran I, Michelmore RW. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet, 1993, 85(8):985-993
    [23]Olson M, Hood L, Cantor C, et al. A common language for physical mapping of the human genome. Science, 1989, 245(4925): 1434-1435
    [24]Kumar LS. DNA markers in plant improvement: an overview, 1999, 17(2-3):143-182
    [25]Moreno-Gonzalez J. Efficiency of generations for estimating Marker-Associated QTL effects by multiple regression. Genetics, 1993, 135(1):223–231
    [26]Kibota TT, Lynch M. Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature, 1996, 381: 694-696.
    [27]Lander ES, Botsein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps.Genetics, 1989, 121(1):185-199
    [28]Zeng ZB. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci.USA, 1993, 90(23):10972-10976.
    [29]Jansen RC.Interval mapping of multiple quantitative traits loci. Genetics, 1993,135:205-221
    [30]Zeng ZB.Precision mapping of quantitative trait loci.Genetics, 1994, 136:1457-1468
    [31]高用明, 万平. QTL 复合区间作图中标记筛选的效率及其影响因素研究.遗传学报, 2002, 29(6): 555-561
    [32]Kearsey M. The principles of QTL analysis (a minimal mathematics approach). J Exp Bot, 1998, 49(327):1619–1623
    [33]Rodolphe F, Lefort M. A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics, 1993, 134(4):1277-1288
    [34] Wang DL, Zhu J, Li JK, et al. User Manual for QTL Mapper Version 1.0. Texas A&M University.1999
    [35]Wang DL, Zhu J, Li ZK, et al. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theor. Appl. Genet, 1999, 99(7-8):1255-1264
    [36]Ribaut JM, Hoisington D.Marker assisted selection: new tool sand strategies.Trends in Plant Sci, 1998, 3(6):236-239
    [37]Dudley JW. Molecular markers in plant improvement: manipulation of genes affecting quantitative traits. Crop Science, 1993, 33:660-668
    [38]Lee M. DNA markers in plant breeding programs. Adv Agron, 1995, (55):265-344
    [39]Mohan M, Nair S, Bhagwat A, et al. Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breeding, 1997, 3(2):87-103
    [40]罗彦长, 王守海, 李成荃, 等. 应用分子标记辅助选择培育抗稻白叶枯病光敏核不育系 3418S. 作物学报,2003,29(3):402-407
    [41]Bergman CJ, Fjellstrom RG, Mcclung AM. Association between amylase content and a microsatellite marker across exotic rice germplasm.Abstracts 4th lnter.Rice Genetics Symposium IRRI.Los Banos,Philippines. 2000,22-27
    [42]Ming R, Brewbaker JL, Pratt RC, et al. Molecular mapping of a major gene conferring resistance to maize mosaic virus.Theor Appl Genet,1997,95(1-2):271-275
    [43]Young ND. A cautiously optimistic vision for marker-assisted breeding. Mol Breeding , 1999, 5(6):505-510
    [44]Giovanni CD, Orco PD, Bruno A, et al. Identification of PCR-base markers (RAPD, AFLP) linked to a novel powdery mildew resistance gene (ol-2) in tomato. Plant Science, 2004, 166(1):41–48
    [45]Millan T, Rubio J, Iruela M, et al. Markers associated with Ascochyta blight resistance in chickpea and their potential in marker-assisted selection. Field Crops Research, 2003, 84(3):373–384
    [46]Hasha CT, Raj AGB, Lindup S, et al. Opportunities for marker-assisted selection (MAS)to improve the feed quality of crop residues in pearl millet and sorghum.Field Crops Research, 2003, 84(1-2):79–88
    [47]Ioannidoua D, Pinela A, Brugidou C, et al. Characterisation of the effects of a major QTL of the partial resistance to Rice yellow mottle virus using a near isogenic–lineapproach.Physiological and Molecular Plant Pathology, 2003, 63(4):213-221
    [48]Widstrom NW, Butron A, Guo BZ, et al. Control of preharvest aflatoxin contaminat- ion in maize by pyramiding QTL involved in resistance to ear-feeding insectsand invasion by Aspergillus spp. Europ.Agronomy, 2003, (19):563-572
    [49]Kelly J D, Gepts P, Miklas PN, et al.Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. Field Crops Research, 2003, 82(2-3):135–154
    [50] W.Stuber C, Palacco M, Senior M. Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential. Crop Science, 1999, 39:1571-1583
    [51]Jean-Marcel R, Javier B, Kate D, et al. Marker-assisted selection in maize: strategies, examples and costs.Plant&Animal Genome IX Conference, Town&Country Hotel,San Diego,CA, ,2001,13-17
    [52]Steele KA, Price AH, Shashidhar HE, et al. Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet, 2006, 112(2):208-221
    [53]Asins MJ. Present and future of quantitative trait locus analysis in plant breeding. Plant Breeding, 2002, 121(4):281-291
    [54]Couson A, Sulston J, Brenner S, et al. Toward a physical map of the genome of the nemat-ode caenorhabditis elegans. Proc Nat Acad Sci USA, 1986, 83(20):7821-7825
    [55]Martin GB, Brommonschenkel SH, Chunwongse J, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 1993, 262(5138): 1432-1436
    [56]Song WY, Wang GL, Chen LL, et al. A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science, 1995, 270(5243):1804-1806
    [57]Frary A, Nesbitt TC, Grandillo S, et al. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289(5476):85-88
    [58]Wang XS, Roy IL, Nicodeme E, et al. Using advanced intercross lines for high resolu- tion mapping of HDL cholesterol quantitative trait loci. Genome Research, 2003, 13(7): 1654-1664
    [59]Fridman E, Pleban T, Zamir D. A recombination hotspot delimits a wild-specie squantitative locus for tomato sugar content to 484bp with in an invertase gene. Proceeding of the National Academy of Science of the United Sates of America, 2000, 97(9):4718-4723
    [60]Ren ZH, Gao JP, Li LG, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2005, 37(10), 1141-1146
    [61]Song XJ, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase.Nature Genetics, 2007, 39(5):623-630
    [62]李怀智.我国黄瓜栽培的现状及其发展趋势. 蔬菜,2003,8: 3-4
    [63]侯锋.黄瓜. 天津,天津科学技术出版社, 1999,32-76
    [64]侯喜林,史公军.“十五”期间我国蔬菜分子育种研究进展.中国蔬菜,2005 (9): 34-40
    [65]孙玉河,李文琴,马德华.我国黄瓜生产的现状、问题和发展趋势.天津农业科学,2003,9(3):54-56
    [66]顾兴芳,张圣平,王烨. “十五”期间我国蔬菜科研进展(四) 我国黄瓜育种研究进展.中国蔬菜,2005,(12):1-7
    [67] Sitterly WR. Powdery Mildew of Cucurbits. In: D.M. Spencer, Editor, The Powdery Mildews, Academic Press, London, 1978, 359–379
    [68]冯东昕, 李宝栋. 主要瓜类作物抗白粉病育种研究进展.中国蔬菜, 1996, (1):15-20
    [69]戴芳澜. 中国真菌总汇.北京,科学出版社, 1979
    [70]屈振淙. 长春地区黄瓜白粉病菌的鉴定. 吉林农业大学学报,1981,(2): 32~34
    [71] Barnes WC, Epps WM . Powdery mildew resistance in South Carolina cucumbers. Plant Disease Report.1956, 40:1093
    [72]Munger H. Dominant genes for resistance to powdery mildew in cucumber. Cucurbit Genet. Coop, 1979, 2:10-15
    [73]毛爱军,张峰,张海英,等.两个黄瓜品种对白粉病的抗性遗传分析. 植物保护科学, 2005, (06):302-321
    [74]Morishita M, Sugiyama K, Saito T, et al. Powdery mildew resistance in cucumber. Japan Agricultural Research Quarterly, 2003, 37(1): 7-14
    [75]Sakata Y , Kubo N, Morishita M, et al. QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.). Theor Appl Genet, 2006, 112(2): 243-250
    [76]张桂华, 杜胜利, 王鸣等.与黄瓜抗白粉病相关基因连锁的AFLP标记的获得.园艺学报,2004,31(2):189-192
    [77]McGrath MT. Fungicide resistance in cucurbit powdery mildew: experiences and challenges. Plant Disease, 2001, 85(3):236-245
    [78]Shanmugasundarum S,Williams PH,Peterson CE. Inheritance of resistance to powdery mildew in cucumber. Phytopathology, 1971, 61(10):1218-1221
    [79]Serquen FC, Bacher J , Staub JE. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L.) using random-amplified polymorphic DNA markers. Molecular Breeding, 1997, 3(4): 257–268
    [80]Mliki A, Staub JE, Sun ZY. Genetic diversity in African cucumber (Cucumis sativus L.) provides potential for germplasm enhancement. Genetic Resources and Crop Eolution, 2003, 50(5)461-468
    [81]Yuan XJ, Li XZ, Pan JS ,et al. Genetic linkage map construction and location of QTLs for fruit-related traits in cucumber. Plant Breeding: 2007(in press)
    [82]朱正歌,贾继增,孙宗修. 水稻 AFLP 指纹银染法显带研究.中国水稻科学, 2002, 16(1):71-73
    [83]潘俊松.黄瓜性型的遗传分析与基因定位.[博士论文].上海交通大学,2006
    [84]Danin-Poleg Y, Reis N, Tzuri G,et al.Development and characterization of micro-satellite markers in Cucumis. Theor Appl Genet, 2001, 102(1): 61-72
    [85]Fazio G, Chung SM, Staub J E. Development and characterization of PCR markers incucumber (Cucumis sativus L.). J Amer Soc Hort Sci, 2002, 127:545-557
    [86]Ritschel PS, Lins TCD,Tristan RL, et al. Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (Cucumis melo L.). BMC Plant Biology, 2004, 4(9):11-14
    [87]Lander ES, Green P, Abrahamson J, et al. MAPMARKER, an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations, 1987, 1:174-181
    [88]Wang S, Basten CJ, Zeng ZB. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC, 2006
    [89]Perchepied L, Bardin M, Dogimont C, et al. Relationship between loci conferring downy mildew and powdery mildew resistance in melon assessed by quantitative trait loci mapping. Phytopathology, 2005, 95 (5):556-565
    [90]Nicot PC, Bardin M, and Dik AJ. Basic methods for epidemiological studies of po-wdery mildew: Culture and preservation of isolates, production and delivery of inoculums, and disease assessment. Pages 83-99 in: The Powdery Mildews: A Comprehensive Treatise. R. R.Bélanger, W. R. Bushnell, A. J. Dik, and T. L. W. Carver, eds.The American Phytopathological Society, St. Paul, MN.2002
    [91]Wang S, Basten CJ, and Zeng ZB. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlca rt/WQTLCart.htm), 2007
    [92]Bradeen JM, Staub JE, Wye C, et al. Towards an expanded and integrated linkage map of cucumber (Cucumis sativus L.). Genome 2001, 44: 111-119
    [93]Dijkhuizen A, Meglic V, Staub JE, et al. Linkages among RFLP, RAPD, isozyme, disease resistance, and morphological markers in narrow and wide crosses of cucumber. Theor Appl Genet, 1994, 89(1):42-48
    [94]Fazio G, Staub JE,Stevens MR. Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet, 2003, 107(5):864-874
    [95]Staub JE, Meglic V. Molecular genetic markers and their legal relevance for cultivar discrimination ,a case study in cucumber. Hort Technology, 1993, 3:291-300
    [96]Epinat C, Pitrat M, Bertrand F. Genetic analysis of resistance of five melon lines to powdery mildews. Euphytica, 1993, 65(2): 135-144
    [97]Ron C. A leaf disk assay for detection of resistance of melons to Sphaerotheca Fuligiea race 1. Plant Disease, 1993, 77(5)513-5
    [98]Harrys P, Ron C. Powdery mildew-resistant summer squash hybrids having higher yields than their susceptible commercial counterparts. Euphytica, 2002, 124(1):121-128
    [99]Zijlstra S, Jansen RC, Groot SPC. The relationship between powdery mildew (Sphaerotheca fuliginea) resistance and leaf chlorosis sensitivity in cucumber (Cucumis sativus .L) studied in single seed descent lines. Euphytica, 1995, 81(2):193-198
    [100]Grumet R, Kabelka E, McQueen S, et al. Characterization of sources of resistance tothe watermelon strain of Papaya ringspot virus in cucumber: allelism and co-segregation with other potyvirus resistances. Theor Appl Genet, 2000, 101(3):463-472
    [101]Crute IR, Pink DAC. Genetics and utilization of pathogen resistance in plants. Plant Cell, 1996, 8(10):1745-1755
    [102] Lande R, Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics, 1990, 124: 743-756
    [103] Zou JH, Pan XB, Chen ZX, et al. Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L). Theo Apple Genet, 2000, 101(4): 569-573
    [104]Charles CB, Kathleen RR. Powdery mildew resistance in the U.S.national plant germ- plasm system cucumber collection. HortScience, 2005, 40(2):416-420
    [105]Chen HL, Wang SP, Xing YZ, et al. Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. Proc Natl Acad Sci USA, 2003, 100(5): 2544-2549
    [106]Cherif M, Harrabi M.Transgressive segregation for resistance to Pyrenophora teres in barley. Plant Pathology 1993, 42(4):617-21
    [107]Thomas WTB, Powell W, Waugh R, et al. Detection of quantitative trait loci for agr-onomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.). Theor Appl Genet, 1995, 91(6-7):1037-47
    [108]Darvishzadeh R, S.Poormohammad K , Dechamp-Guillaume G, et al. Quantitativetrait loci asso-ciated with isolate specific and isolate nonspecific partial resistance to Phoma macdonaldii in sunflower. Plant Pathology, 2007, 56(5):855-861
    [109]Sohei K, Etsuko A, Mitsuru O, et al. Localization, validation and characterization plant type QTLs on chromosomes 4 and 6 in rice. Field Crops Res.2006, 96(1):106-112
    [110]庄杰云,樊叶杨,吴建利,等. 应用两种定位法比较不同世代水稻产量性状 QTL 的检测结果.遗传学报, 2001, 28(5):458-464
    [111]莫惠栋. 数量性状遗传基础研究的回顾与思考—后基因组时代数量遗传领域的挑战.扬州大学学报(农业与生命科学版), 2003, (2):24-31
    [112]潘学彪,张亚芳,左示敏,等. 作物重要数量性状基因鉴定与应用的若干问题.扬州大学学报(农业与生命科学版), 2005, (2):50-55
    [113] Broman KW, Speed TP. A review of methods for identifying QTLs in experimental crosses. In: Seillier-Moiseiwitsch F, ed.Statistics in Molecular Biology and Genetics. IMS Lecture Notes-Monograph Series, 1999, 33(1): 114—142
    [114]Davrasi A. Experimental strategies for the genetic dissection of complex traits in Animal models. Nat Genet, 1998, 18(1):19-24
    [115]Darvasi A, Weinerb A, Minke V, et al. Detecting makrer-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics, 1993, 134:943-951
    [116]Davrasi A, Pisant-Shalom A. Complexities in the genetic dissection of quantitative trait loci.Trends in Genetics, 2002, 18(10):489-491
    [117]Michelmore RW. Isolation of disease resistance genes from crop plants. Current opinion in biotechnology, 1995, 6(2):145-152
    [118]Kuc J, Richmond S. Aspects of the protection of cucumber against Colletotrichum lagenarium by Colletotrichum lagenarium. Phytopathology, 1977, 67: 533-536
    [119]马桂珍.植物真菌性病害诱导抗性研究进展.河北农业技术师范学院学报, 1997, 11(3), 55-59
    [120]张元恩.植物诱导抗病性研究进展.生物防治通报, 1987, (3):88-90
    [121] Darvill AG, Albersheim P. Phytoalexins and their elicitors. Ann.Rev.Plant Physiol, 1984, 35:243-275
    [122]Wildon DC, Thain JF, Minchin PEH, et al. Electrical signaling and systemic proteinase inhibitor induction in the wounded plant. Nature, 1992, 360:62-65
    [123]Vallelian BL, Schweizer P, Mosinger E, et al. Heat-induced resistance in barley to powdery mildew(Blumeria grminis f.sp.hordei)is associated with a burst of active oxygen species.Physiol Mol Plant Pathol, 1990, 52(3):185-199
    [124]商鸿生.小麦对条锈病的高温抗病性研究.中国农业科学, 1998 ,31(4):46-50
    [125]宋从凤,黄迎春,潘小玫,等.植物病害的系统获得抗性.世界农业, 1998, (2):36-38
    [126]梁永超,王岩,谢学东,等.磷酸盐诱导黄瓜系统抗病中主要酶活性的变化.南京农业大学学报, 1999, 22(2), 50-54
    [127]Reuveni M, Agapov A, Reuveni R.A foliar spray of micronutrient solutions induces local and systemic protection against powdery mildew(Sphaerotheca fuliginea)in cucumber plants. European Journal of Plant Pathology, 1997, 103(7):581-587
    [128]Gottstein H D, Kuc J. Induction of systemic resistance to anthracnose in cucumber by phosphates.Phytopathology, 1989, 79:176-179
    [129]Reuveni R, Agapov V, Reuveni M.Foliar spray of phosphates induces growth increase and systemic resistance to Puccinia sorghi in maize. Plant Pathol, 1994, 43(2):245-250
    [130]Walters DR, Murray DC. Induction of systemic resistance to rust in Vicia faba by phosphates and EDTA: effects of calcium.Plant Pathol, 1992, 41(4):444-448
    [131]Cherif M, Aselin A, Belanger RR. Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology, 1994, 84(3):236-242
    [132]Hell M, M.Bostock R. Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Annals of Botany, 2002, 89(5):503-512
    [133]Malamy J, P.Carr J, F.Klessig D, et al. Salicylic acid: a likely endogenous signal in tthe resistance response of tobacco to viral inoculation.Science,1990,250(4983):1002- 1004
    [134]Métraux J P, Signer H, Ryals J, et al. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science, 1990, 250(4983):1004-1006
    [135]Richard MB. Signal crosstalk and induced resistance: Straddling the line between cost and benefit .Annual Review of Phytopathology, 2005, 43:545-580.
    [136]Durrant WE, Dong X. Systemic acquired resistance. Annual Review of Phytopathol- ogy, 2004, 42:185-209
    [137]Dean RA, Kuc J. Induced systemic protection in cucumbers: The source of the "signal".Physiol. Mol. Plant Pathol, 1986b, 28:227-233
    [138] Sáenz P, Salvador B, Simón-Mateo C, et al. Host-specific involvement of the HC protein in the long-distance movement of potyviruses. Jounal of Virology, 2002, 76(4): 1922-1931
    [139]Meuwly P, Molders W, Buchala A, et al. Local and systemic biosynthesis of salicylic acid in infected cucumber plants. Plant Physiology, 1995, 109 (3):1107-1114.
    [140]Métraux JP, Boller T. Local and systemic induction of chitinase in cucumber plants in response to viral, bacterial and fungal infections.Physiol Mol Plant Pathol, 1986, 28(2):161-169
    [141]Nawrath C, Métraux JP. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell, 1999, 11(8):1393-1404
    [142]Madamanchi NR, Kuc J. Induced systemic resistance in plants, pages 347-363, in:" The Fungal Spore and Disease Initiation in Plants and Animals", GT Cole, and HC Hoch, eds., 1991
    [143]王军.植物诱导抗病性的研究进展.华南农业大学学报,1994,5(4):122-123
    [144]Kogel KH, Beckhove U, Dreschers J, et al. Acquired resistance in barley. The resis -tance mechanism induced by 2, 6-dichloroisonicotinic acid is a phenocopy of a genetic -ally based mechanism governing race-specific powdery mildew resistance. PlantPhysiology, 1994, 106(4):1269-1277
    [145]Kubo M, Sato T. Utilization of high temperature stree as plant resistance activators for control of summer greenhouse cucumber diseases. Acta Horticulturae, 2002, 61(1): 171-177
    [146]刘士旺, 吴学龙,郭泽建.拟南芥的抗病信号传导途径.植物病理学报, 2003, 33(2):104-109
    [147]Arimura G, Ozawa R, Nishioka T, et al. Herbivore–induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant Journal, 2002, 29(1):87-98
    [148]Martinez C, Blanc F, Le Claire E, et al. Salicylic acid and ethylene pathways are differentially activated in melon cotyledons by active or heat–denatured cellulase from Trichoderma longibrachiatum. Plant Physiology, 2001, 127(1):334-344
    [149]Hammerschmidt R, Métraux JP, Van Loon LC. Induced resistance:a summary of papers presented at the first international symposium on induced resistance to plant diseases.European Journal of Plant Pathology, 2004,107(1): 1-6
    [150]彭霞薇,张洪勋,白志辉. 草酸青霉菌果胶酶诱导黄瓜抗黑星病研究.植物病理学报, 2004,34(1):69-71
    [151]刘凤权,王金生. 水杨酸诱导水稻幼苗抗白叶枯病研究. 植物保护学报, 2000, 27(1):47-52
    [152]刘芹,原梅生. 绿色农业绿色效益绿色经营.中国供销合作经济, 2002, (9):45
    [153]朱校奇,蔡立湘,澎新德等. 湖南省农产品质量安全的现状与建议. 湖南农业大学学报. 2005, 6(6):23-25
    [154]周丽华.“无公害蔬菜生产安全标准”的制定与实施.农业质量标准, 2003,(2): 11
    [155]邸彦珍.如何解决无公害蔬菜生产中存在的三大问题. 河北农业, 2005, (9):04-09
    [156]史清亮,杨晶秋,张莜秀.无公害蔬菜的生产关键技术与规范管理措施. 山西农经, 2003,(1): 53
    [157]李茂生, 孙航. 无公害蔬菜生产技术规范. 农民致富之友, 1999, (7): 13
    [158]田家怡,潘怀剑,窦慧. 滨州地区发展“无公害“蔬菜生产的措施与建议. 滨州教育学院学报, 2000, 6(1):33
    [159]张巨勇. 发展我国无公害蔬菜的思考. 当代生态农业, 2000, (Z2): 34-36
    [160]陈学好, 陈振泰. 无公害蔬菜发展现状与前景展望. 现代商贸工业, 2001,(2): 42
    [161] Ahn IP, Soonok K , Lee YH. Vitamin B1 functions as an activator of plant disease resistance.Plant Physiology, 2005, 138(3):1505-1515
    [162] Ahn IP, Soonok K , Lee YH, et al. Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiol, 2006, 143(2) :838-848
    [163]Dong H, Beer SV. Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology, 2000, 90(8):801–811
    [164]Gottstein HD, Kuc J. Induction of systemic resistance to anthracnose in cucmber by phosphates. Phytopathology, 1989, 79(2):176-179
    [165]郭萍,李落叶,曹远林,等.一氧化氮在寡糖素诱导的小麦对条锈菌系统获得抗性中的时序性. 生物化学与生物物理进展, 2002, 29(5):786-789
    [166]Katz VA, Thulke OU, Conrath U. A benzothiadiazole primes parsley cells for augmented elicitation of defence responses.Plant Physiology, 1998, 117(4):1333-1339
    [167]Thulke O, Conrath U. Salicylic acid has a dual role in the activation of defence -related genes in parsley.The Plant Journal, 1998, 14(1):35-42
    [168]Cools HJ, Ishii H. Pre-treatment of cucumber plants with acibenzolar-S-methyl systemically primes a phenylalanine ammonia lyase gene (PAL1) for enhanced expression upon attack with a pathogenic fungus. Physiological and Molecular Plant Pathology, 2002, 61(5):273-280
    [169]董汉松. 植物诱导抗病性原理和研究. 北京: 科学出版社, 1995
    [170]Fofana B, J.Mcnally D, Labbé C, et al. Milsana-induced resistance in powdery mildew- infected cucumber plants correlates with the induction of chalcone synthase and chalcone isomerase. Physiological and Molecular Plant Pathology, 2002, 61(2): 121-132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700