胰腺缺血再灌注诱导大鼠肺损伤的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     在休克、胰腺手术、胰腺移植中,胰腺的缺血再灌注(I/R)损伤仍然是一个重要的临床问题。损伤的主要机制是产生大量氧自由基和缺血性炎症。许多研究表明,胰腺的I/R能增加血中白细胞数,氧自由基的生产,及细胞因子的释放,从而引起急性胰腺炎及全身炎症反应综合症。
     在全身炎症反应综合征中肺脏是首位受累的靶器官。因为,肺脏是唯一接受全部心脏排出量的器官,受循环中炎性细胞及介质的损伤最大,隔离在肺部的活化炎性细胞和炎性胰腺释放的蛋白酶都会诱发急性肺损伤。急性胰腺炎是胰酶在胰腺内被激活后引起胰腺组织自身消化的一种炎症反应性疾病,主要表现为血清淀粉酶和脂肪酶升高。急性胰腺炎相关性肺损伤(acute pancreatitis-associated lung injury, APALI)发病机制复杂,可通过某种机制导致胰腺酶的不适当激活,这种机制包括酶解作用衍生的催化剂激活炎性细胞,白细胞的释放,及氧化和亚硝化应激的发生,从而改变气道反应性。
     目前研究认为核因子κB(nuclear factor-KB)在其中扮演重要角色,其活化被认为是急性胰腺炎重要的早期事件。(NF-κB)是一种转录调节因子,在细胞因子介导的感染、炎症反应、氧化应激、细胞增生、细胞凋亡等过程中起重要作用。正常生理情况下,NF-κB以无活性的形式存在于多种细胞的胞质中,激活后促进多种细胞因子的基因转录,在炎症反应复杂的细胞因子网络中,NF-κB的活化可能是一个中心环节,研究表明NF-κB通过促进TNF-α、IL-6、IL-8、细胞间黏附分子(Intercellular adhesion molecular, ICAM)等基因的转录而参与肺损伤的发生,其中ICAM-1在胰腺炎引起的肺损伤中最受关注。ICAM-1属于免疫球蛋白超家族成员,其在人体内的分布十分广泛,炎症介质能明显上调血管内皮细胞和其它非造血细胞ICAM-1的表达。肺血管内皮上表达的ICAM-1结合活化的白细胞表面的整合素CDllb/8β是白细胞的黏附、游走、聚集过程中的关键环节,其过度表达可以促进局部炎性反应发生。
     巨噬细胞的作用越来越引起人们的重视。近年研究表明巨噬细胞活化可能是急性胰腺炎时发生肺损伤的的重要途径之一。活化的巨噬细胞可以释放许多生物活性物质,如细胞因子、花生四烯酸等,均为前炎性反应介质,可以介导PMN等释放多种炎症反应介质。巨噬细胞移动抑制因子(macro-phage migration inhibitory facter, MIF)具有抑制巨噬细胞游走,促进巨噬细胞的黏附和在炎症局部浸润的作用,并可刺激炎症细胞分泌TNF、IL-1等促炎性细胞因子。巨噬细胞炎症蛋-2(macrophage inflammatory protein 2, MIP-2)是大鼠ELR+(含谷-亮-精氨酸功能基序)CXC类趋化性细胞因子,在功能上和人类IL-8同源,是中性粒细胞的主要趋化细胞因子。本研究通过大鼠胰腺缺血再灌注模型,探讨大鼠胰腺缺血再灌注时,合并肺损伤、诱导气道高反应性中的作用;并探讨NF-κB与ICAM-1mRNA表达及MIF与MIP-2在胰腺缺血再灌注并发肺损伤中的作用。
     材料与方法
     一、动物模型和样品制备
     1、I/R动物模型
     通过阻断胃十二指肠动脉和脾动脉2小时,再灌注6小时诱导胰腺缺血。假手术组以相同的手术方法切开显露胃十二指肠动脉和脾动脉,但不夹闭血管。
     2、试验取材
     取右股静脉血作为血样。实验结束时向肺内注入5ml生理盐水,获取肺灌洗液。Sham组没有阻断动脉,其值作为未阻断的基础对照值。切取肺组织,-80℃冷冻保存。
     二、观察指标及测定方法
     1、胰腺缺血再灌注诱导的气道高反应性研究
     (1)收集血液样本离心后,使用Kodak Ektachem DT60分析器(罗切斯特,纽约)测量血浆中分离的淀粉酶含量,以IU/L表示。
     (2)高效液相色谱法测量血液中源自一氧化氮(NO)的亚硝酸盐和硝酸盐阴离子
     (3)通过分光荧光计测量血液中甲基胍。
     (4)白细胞计数测量肺灌洗液标本中的WBC。
     (5)通过酶联免疫测定血液中肿瘤坏死因子(TNF-α)的表达量。按试剂盒说明书进行操作。显色后用酶标仪(波长450nm)比色读数,根据标准曲线求出TNF-α数值。
     (6)全身体积描记法(Buxco co)测定气道对乙酰甲胆碱的反应变化。双室体描仪由头室和体室组成,各置一流量传感器,分别用于测量鼻部呼吸引起的气流变化和胸廓运动引起的气流变化。流量传感器感受到的流量变化转变成电信号,经放大器放大,转换成数字信号后,通过软件(BioSystem XA software with NAM analyzer)分析,计算出大鼠气道基线增强暂停系数(the baseline enhanced pause, Penh)。
     (7)实时监测PCR采用mRNA分离试剂盒分离肺组织中的mRNA;使用ABI公司7000型检测棱镜(应用生物系统公司)实时监测PCR扩增反应。通过实时聚合酶链反应测定肺组织中的iNOS的mRNA表达和肿瘤坏死因子(TNF-α)的表达。
     2、NF-κB与ICAM-1在I/R并发肺损伤的作用研究
     (1)组织病理学评分:取各组大鼠胰头部组织和右肺下叶组织经4%多聚甲醛固定、石蜡包埋、HE染色,光镜观察组织病理学变化并进行评分。
     (2)收集血液样本离心后,使用Kodak Ektachem DT60分析器(罗切斯特,纽约)测量血浆中分离的淀粉酶含量,以IU/L表示。
     (3)肺组织MPO检测按照试剂盒说明书操作。将肺组织机械匀浆后水浴、比色、参照如下公式计算:MPO(U/g)湿片=(测定管OD值-对照组OD值)/11.3×取样量(g)
     (4) Western Blot法检测肺组织ICAM-1蛋白表达,凝胶成像系统对结果照相及测定条带的面积和灰度值,以目的条带的面积×灰度值/Actin条带的面积×灰度值的比值代表蛋白的表达水平。
     (5)NF-κB相对活性检测:结果用Leica Q500Mc图像分析系统进行密度分析,以灰度值表示NF-κB相对活性变化。
     3、I/R并发肺损伤中MIF与MIP-2的表达及意义研究
     (1)组织病理学评分:取各组大鼠胰头部组织和右肺下叶组织经4%多聚甲醛固定、石蜡包埋、HE染色,光镜观察组织病理学变化并进行评分。
     (2)收集血液样本离心后,使用Kodak Ektachem DT60分析器(罗切斯特,纽约)测量血浆中分离的淀粉酶含量,以IU/L表示。
     (3)肺组织MPO检测按照试剂盒说明书操作。将肺组织机械匀浆后水浴、比色、参照如下公式计算:MPO(U/g)湿片=(测定管OD值-对照组OD值)/11.3×取样量(g)
     (4)RT-PCR法检测肺组织MIF mRNA的表达,采用Trizol一步法提取肺组织总RNA,紫外分光光度仪测定RNA浓度。用TC 21000数据图像分析系统分析各条带灰度值,得MIF/GADPH的灰度比值,即为MIF mRNA的相对表达值。
     (5)肺组织MIP-2含量测定:肺组织用10倍体积的预冷匀浆介质制成匀浆,一份用ELISA法检测MIP-2浓度,采用ELISA全自动检测仪按rMIP-2/GRO-βELISA试剂盒供应商提供的说明书设定反应步骤;一份用全自动生化分析仪测定蛋白含量。
     4、统计学分析
     采用SPSS 13.0软件进行统计学分析。对数据进行正态性检验后,用均数(Mean)和标准差(SD)描述正态分布数据的集中趋势和离散水平。组间各检测指标比较采用t检验,试验前后比较采用配对t检验,p值<0.05认为有统计学意义。
     结果
     1、胰腺缺血再灌注诱导的气道高反应性研究
     本实验研究发现I/R组小鼠血中的一氧化氮,羟自由基,淀粉酶,肿瘤坏死因子,白细胞浓度的显著升高。在缺血再灌注(I/R)后肺组织中iNOS和肿瘤坏死因子的mRNA的表达明显增加,肺功能的数据显示,胰腺的缺血/再灌注(I/R)诱导气道对乙酰甲胆碱的反应大量增加;与假手术组相比,I/R组中的PenH显著增加,而且灌洗液白细胞明显增加。
     2、NF-κB与ICAM-1在I/R并发肺损伤的作用研究
     I/R组大鼠胰腺和肺组织病理学评分分别为5.94±0.72和6.42±0.65;显著的高于Sham组大鼠病理评分(分别为:0.20±0.14和0.27±0.31)(p<0.05);Sham组大鼠血清中淀粉酶的水平为1198.4±121.7;I/R组大鼠血清中淀粉酶的水平为3719.6±523.8;两组间差异达到统计学意义(p<0.05)。与Sham组大鼠比较,胰腺缺血再灌注可显著的增高肺组织中MPO水平的表达(0.74±0.06)(p<0.05);Sham组大鼠肺组织中ICAM-1蛋白和ICAM-1 mRNA微弱表达,I/R组大鼠肺组织中ICAM-1蛋白和ICAM-1 mRNA表达增高,其表达水平分别为0.47±0.03和1.12±0.07;胰腺缺血再灌注后可使大鼠肺组织中NF-κB活性水平显著的增高。
     3、I/R并发肺损伤中MIF与MIP-2的表达及意义研究
     Sham组胰腺组织和肺组织病理评分分别为2.14±0.06和0.37±0.14;I/R组胰腺组织和肺组织病理评分分别为8.52±1.17和4.71±0.30;两组间病理评分差异达到统计学意义(p<0.05)。胰腺缺血再灌注可显著的增高血清中淀粉酶和肺组织中MPO水平的表达。sham组大鼠血清中MIF和肺组织中MIFmRNA表达微弱,,而I/R组大鼠血清中MIF和肺组织中MIFmRNA表达增高。Sham组大鼠肺组织中MIP-2活性水平为23.9±5.8;胰腺缺血再灌注后可使大鼠肺组织中MIP-2活性水平显著的增高(91.5±12.1)。
     结论
     1、胰腺I/R诱导全身炎症反应及肺内白细胞(WBC)的增加。再灌注组中气道的高反应性可能是因为气道炎症,后者增加肺内WBC的聚集及肺组织中iNOS的表达、肿瘤坏死因子、炎症介质的表达。
     2、胰腺缺血再灌注损伤可增高肺组织ICAM-1蛋白和ICAM-1基因水平表达。胰腺缺血2小时再灌注6小时后肺组织NF-κB水平增高。
     3、胰腺缺血再灌注损伤可增高血清和肺组织MIF和MIFmRNA基因水平表达。肺组织MIP-2含量增高,作为早期的促炎性细胞因子,MIP-2介导了肺损伤。
Introduction
     Ischemia-Reperfusion (I/R) injury to the pancreas remains an important clinical problem during shock, pancreatic surgery, and pancreas transplantation. Oxygen free radicals are involved in I/R-related pancreatic injury. Many studies have demonstrated that I/R of the pancreas induce systemic inflammatory responses by increasing the blood white blood cell count, oxygen radical production, and cytokine release. Acute pancreatitis can lead to inappropriate activation of pancreatic enzymes through a mechanism involving proteolytically derived activators by which inflammatory cells are activated, interleukin released, oxidative and nitrosative stress occur, changing airway reactivity. In this study, we characterized whether I/R of the pancreas induced inflammation reactivity changes in airways upon challenge with a cholinergic agonist.
     Some reports have indicated that intercellular adhesion molecule-1 (ICAM-1) plays an important role in the development and progression of acute pancreatitis complicated by acute lung injury, and the severity of the lung injury correlates well with the expression levels of ICAM-1 protein. ICAM-1, a single-chain transmembrane glycoprotein with a molecular weight of 80-110 KDa, consists of five Ig-like domains, a hydrophobic transmembrane domain and a short cytoplasmic C-terminal domain. Its ligand includes lymphocyte function-associated antigen-1 (LFA-1) and macrophage antigen-1 (Mac-1). Under physiological conditions, ICAM-1 is expressed at a low level in endothelial cells and epithelial cells or constitutively on the surface of alveolar cells, providing the underlying molecular basis for cell recognition, activation, proliferation, differentiation and motility, and thereby helping to stabilize the internal environment of the body. Moreover, ICAM-1 also plays a key role during pathological conditions, such as inflammatory reaction etc. For these reasons, a comprehensive and objective understanding of ICAM-1 is needed. It is obvious that NF-kappa B plays a critical role in the expression of ICAM-1. Therefore, research on the use of NF-kappa B inhibitor to alleviate inflammation response has become a hotspot. Calpain I inhibitor and pyrrolidine dithiocarbamate (PDTC) are antioxidants which are potent inhibitors of NF-kappa B. Calpain I inhibitor and pyrrolidine dithiocarbamate (PDTC) can lessen lung injury in rats with acute pancreatitis, decrease the activation of NF-kappa B as well as the expression of ICAM-1 protein, and can retain the soakage of inflammatory cells and mitigate the microvascular impairment of the lungs, which reduces the incidence rate of pneumonedema. After Hietaranta et al. first reported that MG132, a prosome inhibitor, could depress the activation of NF-kappa B in acute pancreatitis, some researchers demonstrated that MG132 also had the effect of protecting lung tissue in rats with acute pancreatitis which may be associated with the function of inhibiting NF-kappa B activation. The use of the NF-kappa B inhibitor may be considered as another effective path in the treatment of acute pancreatitis complicated by acute lung injury, and associated clinical research is required.
     MIF was originally identified as a cytokine derived from activated T cells. However, MIF is now considered to exert various biologic functions in macrophage activation. Moreover, MIF is thought to play a central role in exacerbation of inflammation and sepsis. Importantly, a recent report has suggested that gene expression of TLR-4 in macrophages can be upregulated by MIF. Thus, hyporesponsiveness of MIF-deficient macrophages to LPS has been demonstrated by a marked reduction in the activity of NF-κB and the production of TNF-a, which is strictly associated with downregulation of TLR-4. During AP, MIP-2 is involved in neutrophil activation and sequestration in the pancreas and lungs. MIP-2 is a potent rodent chemokine, homologous to GRO-b, which binds to the C-X-C chemokine receptor-2. We found that cerulein induced AP was associated with a significant increase in serum MIP-2 concentrations, and that leptin treatment substantially decreased the MIP-2 concentration. The effect of leptin administration on serum MIP-2 concentration is not clearly established. To the best of our knowledge, this is the first study demonstrating the effect of leptin on serum MIP-2 concentration. A decrease in the concentration of MIP-2 may therefore play an important role in reducing neutrophil adhesion and sequestration. Moreover, Ob-R is present in the pancreas and lungs.
     Material and Methods
     1. Animal samples
     (1) Experimental Design
     Animals were randomly divided into two groups:(1) The I/R group (n=8) underwent 2 hours of gastroduodenal and splenic artery occlusions followed by 6 hours of reperfusion. The rats were not given treatment except saline prior to clamping the arteries. (2) The sham group hosts (n=7) were prepared in the same manner as in the I/R group, but the vessels were not clamped.
     (2) Preparation of Animals
     Male Sprague-Dawley rats (300-350 g) were anesthetized with pentobarbitals the right femoral vein was cannulated for blood sampling. The gastroduodenal artery and the splenic artery were exposed and ischemia induced by clamping for 2 hours followed by 6-hour reperfusion.
     2. Experimental Methods
     (1) Quantification of Pancreatitis by Measuring Plasma Activities of Amylase
     Blood samples were collected for WBC measurement. After centrifugation, plasma was isolated for amylase measurement using a Kodak Ektachem DT60 analyzer (Rochester, NY) and expressed in IU/L.
     (2) Measurement of Nitric Oxide by High-Performance Liquid Chromatography
     High-performance liquid chromatography was used to measure blood levels of nitrite and nitrate anions derived from nitric oxide (NO).
     (3) Methylguanidine Measured by Spectrofluorometer
     We measured the levels of methylguanidine in blood as a reflection of I/R-induced hydroxyl radical production.
     (4) WBC Counts in Lung Lavages
     Lung lavages were performed with 5 mL saline at the end of the experiment. WBC in lavage samples were measured using a cell counter.
     (5) Quantitation of Tumor Necrosis Factor-a by Enzyme-Linked lmmunosorbent Assay
     The tumor necrosis factor-a (TNFa) concentrations in blood samples were measured separately with an enzyme-linked immunosorbent assay kit according to the manufacturer's instructions (Endogen, Woburn, MA).
     (6) Measurement of Bronchial Responsiveness to Methacholine
     Airway responses to methacholine challenge were measured by unrestrained. whole-body plethysmography (Buxco Co). Rats placed inside Plexiglas chambers underwent measurements of their respiratory rate and breathing volume using pressuresensitive transducers that had been calibrated for the experimental conditions. After an acclimation period of about 10 minutes, the baseline enhanced pause (Penh), a measure of airway resistance, was determined by exposing the animals to a saline aerosol and calculating Penh according to an algorithm developed by Buxco. Methacholine at specifically metered dose rates was then fed into the chambers and Penh measured again.
     (7) RNA Isolation and Real-Time Polymerase Chain Reaction
     Isolation of mRNA from lung tissues was performed using an mRNA Isolation Kit (QIAGEN RNeasy kits, QIAGEN Inc, Valencia, CA). The mRNA isolated from each lung tissue sample was reversely transcribed to cDNA following the manufacturer's recommendation. Polymerase chain reaction (PCR) primers and TaqMan-MGB probes were designed using Primer Express V.2.0 software (Applied Biosystems Inc, Foster City, CA) based on sequences from GenBank. TaqMan-MGB probes were labeled with 6-carboxy-fluorescein as the reporter dye. PCR reactions were monitored in real time using an ABI PRISM 7000 Sequence Detector (Applied Biosystems Inc).
     (8) ICAM-1 expression in lung tissue by Western blot
     Western blot analysis was performed as described previously. Briefly, proteins were separated by SDS-polyacrylamide gel electrophoresis (PAGE; 12% separating, 4% stacking) and transferred to NC membranes (Amersham Pharmacia Biotech, Inc., Piscataway, NJ). After the membranes were blocked in 5% nonfat dry milk in PBS buffer containing 0.1%, the protein signal was amplified and visualized via chemiluminescence using the ECL Western blotting detection system and Hyperfilm ECL autoradiograhpy film (Amersham Pharmacia Biotech, Inc.). Images were quantified using the Labworks v3.0.2 image scanning and analysis software.
     (8) Total MIF mRNA isolation and real time RT-PCR
     Total RNA was isolated using the acid guanidinium thiocyanate-phenol-chloroform method. The quality and quantity of the isolated RNA was determined before using the RNA. One microgram of total RNA was reverse transcribed using Advantage RT-for-PCR kit. Real-time RT-PCR was done using Smart Cycler (Cepheid, Sunnyvale, CA) in which 2μl cDNA,10μl Sybergreen Master mix, and 0.5μlof 20 μM gene-specific primers were used. The specificity and size of the PCR products were tested by adding a melt curve at the end of the amplifications and running it on a 2% agarose gel. All values were normalized to 18S expression.
     (9) Level of MP-2 in Lung tissue
     Concentrations of MIP-2 in culture supernatants were determined by enzyme-linked immunosorbent assay (ELISA) using commercially available kits.
     3. Data Analysis
     Data were expressed as mean values±standard errors of the means. Comparisons within each group for a given parameter used paired Student t tests. Values of P<0.05 were considered statistically significant.
     Results
     1.Ischemia-Reperfusion of the Pancreas Induced Hyperresponsiveness of the Airways in Rats
     This protocol resulted in significant elevations of the blood concentrations of nitric oxide, hydroxyl radical, amylase, TNFa, and white cells among the I/R group. The mRNA expressions of iNOS and of TNFαin the lung tissues were significantly increased after I/R. Pulmonary function data showed that I/R of the pancreas induced significant increases in the responses to methacholine challenge:Penh was significantly increased in the I/R group compared with the sham group. Lavage white cells were significantly increased in the I/R group.
     2. Efect of NF-κB and Intercellular Adhesion Molecule-1 on Ischemia-Reperfusion of the Pancreas Associated Lung Injury in Rats
     The histologic scores of pancreas and lung in I/R group were 5.94±0.72 and 6.42±0.65 respectively, which was significantly higher than that in sham group (0.20±0.14 and 0.27±0.31, respectively)(p<0.05). The levels of amylase and myeloperoxidase activity were increase significantly in I/R group (3719.6±523.8, 0.74±0.06, respectively) than in sham group (1198.4±121.7). The overexpression of ICAM-1 protein and mRNA level was related with lung injury in I/R rats (0.47±0.03 and 1.12±0.07), comparing with the control group. The level of NF-κB activity also significantly increased. 3. Role of Macrophage Inflammatory protein 2 and Macrophage Migration Inhibitory Factor in Ischemia-Reperfusion of the Pancreas-associated Lung Injury
     The histologic scores of pancreas and lung in I/R group were 8.52±1.17 and 4.71±0.30 respectively, which was significantly higher than that in sham group (2.14±0.06 and 0.37±0.14, respectively) (p< 0.05).The levels of amylase and myeloperoxidase activity were increase significantly in I/R group. The overexpression of MIF protein and mRNA level was related with lung injury in I/R rats comparing with the control group. The level of MIP-2 in I/R group (91.5±12.1) was significantly hisher than that in sham group (23.9±5.8) (p< 0.05).
     Conclusion
     I/R of the pancreas induced systemic inflammatory responses and increased white cell sequestration in the lung. Hyperresponsive responses in the airways of the reperfusion group may be due to airways inflammation, which increased white cell sequesteration in the lung and the expressions iNOS and TNF-a inflammatory mediators in lung tissues.
引文
1 Toyama MT, Lewis MP, Kusske AM, et al:Ischaemiareperfusion mechanisms in acute pancreatitis. Scand J Gastroenterol Suppl,1996.219:20.
    2 Ishimaru K, Mitsuoka H, Unno N, et al:Pancreatic proteases and inflammatory mediators in peritoneal fluid during splanchnic arterial occlusion and reperfusion. Shock 22:467,2004
    3 Leindler L, Morschl E, Laszlo F, et al:Importance of cytokines, nitric oxide, and apoptosis in the pathological process of necrotizing pancreatitis in rats. Pancreas 29:157,2004
    4 Mitsuoka H, Kistler EB, Schmid-Schonbein GW:Generation of in vivo activating factors in the ischemic intestine by pancreatic enzymes. Proc Natl Acad Sci USA 97:1772,2000
    5 de Campos T, Deree J, Martins JO, et al:Pentoxifylline attenuates pulmonary inflammation and neutrophil activation in experimental acute pancreatitis. Pancreas 37:42,2008
    6 Folch E, Closa D, Prats N, et al:Leukotriene generation and neutrophil infiltration after experimental acute pancreatitis. Inflammation 22:83,1998
    7 Feddersen CO, Willemer S, Karges W, et al:Lung injury in acute experimental pancreatitis in rats. Ⅱ. Functional studies. Int J Pancreatol 8:323,1991
    8 Shields CJ, Delaney CP, Winter DC, et al:Induction of nitric oxide synthase is a key determinant of progression to pulmonary injury in experimental pancreatitis. Surg Infect (Larchmt) 7:501,2006
    9 Lomask M:Further exploration of the Penh parameter. Exp Toxicol Pathol 57(suppl 2):13, 2006
    10 Bhatia M:Inflammatory response on the pancreatic acinar cell injury. Scand J Surg 94:97, 2005
    11 Yu JH, Lim JW, Namkung W, et al. Suppression of cerulein induced cytokine espression by antioxidants in pancreatic acinar cells [J]. Lab Invest,2002,82(10):1359.
    12 陈海龙,李海龙,李树英等.核因子κB在大鼠重症急性胰腺炎肺损伤中的作用及不同药物的影响.中华急诊医学杂志,2007,16:373-377.
    13 Yang J, Murphy C, Denham W, et al. Evidence of a central role for p38 map kinase induction of tumor necrosis factor alpha in pancreatitis-associated pulmonary injury. Surgery,1999, 126:216-222.
    14 张喜平,吴承钧,李志军.重症急性胰腺炎并发肺损伤的研究进展[J].世界华人笑话杂志,2008,16(3):299-306.
    15 Pascher A, Klupp J:Biologics in the treatment of transplant rejection and ischemia/reperfusion injury:new applications for TNFalpha inhibitors? BioDrugs 19:211,2005
    16 Alsfasser G, Antoniu B, Thayer SP, Warshaw AL, FernAndez-del Castillo C. Degradation and inactivation of plasma turn or necrosis factor-alpha by pancreatic proteases in experim ental acute pan creatitis [J]. Pancreatology 2005; 5:37-43.
    17 Bhatia M, Brady M, Shokuhi S, Christm as S, Neoptolemos IP, Slavin I. Inflammatory mediators in acute pan creatitis [J]. J Pathol 2000; 190:117-125.
    18 Norman J. The role of cytokines in the pathogenesis of acute pan creatitis [J]. Am r Surg 1998; 175:76-83.
    19 Denham W, Yan g J, Fink G, Denham D, Carter G, Ward K, Norman J. Gene targeting demonstrates additive detrimental effects of interleukin 1 and tumor necrosis factor during pancreatitis [J]. Gastroenterology 1997; 113:1741-1746.
    20 Hartwig W, Werner J, Jimenez RE。et al. Trypsin and activetion of circulating trypsinogen contribute to pancreatitis-associated lung injury [J]. Am J Physiol,1999; 277:G1008-G1016.
    21 Liu HB, Cui NQ, W ang Q, et al. Sphingosine-1- phosphate and its analogue FTY720 diminish acute pulmonary injury in rats with acute necrotizing pancreatitis [J]. Pancreas,2008; 36:e10-15.
    22 Bhatia M, Brady M, Sbokuhi S, et al. Inflammatory m ediators in acute pancreatitis [J]. J Pathol 2008; 36:117-125.
    23 Matsuda T, Saito H, Fukatsu K, et al. Cytokine-modulated inhibition of neutrophil apoptosis at local site augments exudative neutrophil functions and reflects inflammatory response after surgery [J]. Surgery 2001; 129:76-85.
    24 张喜平,陆贝.核因子-κB在重症急性胰腺炎发病过程及MODS中的作用[J].医学研究杂志,2006,35(11):83-85.
    25 Surbatovic M, Jovanovic K, Radakovic S, et al. Pathophysiological aspects of severe acute pancreatitis associated lung injury[J]. Srp Arh Celok Lek,2005,133(1-2):76-81.
    26 Gukovsky I, Gukovskaya A S, Blinman T A, et al. Early NF-kappa-B activation is associated with hormone-induced pancreatitis [J]. Am J Physiol,1998,275(6 Pt 1):G1402-1414.
    27 Ethridge RT, Hashimoto K, Chung DH, et al. Selective inhibition of NF-κB attenuates the severity of cerulein induced acute panereatitis [J]. J Am Coil Surg,2002,195:497-505.
    28 Lundberg A, Fukatsu K, Gaber L, et al. Blocking pulmonary ICAM-1 expression ameliorates lung injury in established diet-induced pancreatitis [J]. Anna Surg,2001,233(2):213-220.
    29 Schmidt J, Rattner DW, Lewandrowski K, et al. A better model of acute pancreatitis for evaluating therapy [J]. Ann Surg,1992,215(1):44-56.
    30 程石,何三光,张佳林.肺泡巨噬细胞活化在急性坏死性胰腺炎大鼠肺损伤中的作用[J].中华外科杂志,2002,40(8):609-612.
    31 刘学民,刘青光,潘承恩等.血管内皮凋亡对大鼠重症急性胰腺炎肺损伤的影响[J].第四军医大学学报,2003,24(18):1677-1679.
    32 Panes J, Granger DN. Leukocyte-endothelial cell interactions:molecular mechanisms and mplications in gastrointestinal disease [J]. Gastroenterology 1998; 114:1066-1090.
    33 Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules [J]. Blood 1994; 84:2068-2101.
    34 Frossard JL, Saluja A, Bhagat L, Lee HS, Bhatia M, Hofbauer B, Steer ML. The role of intercellular adhesion molecule 1 and neutrophils in acute pan creatitis an d pan creatitis-assoc iated lung ury [J]. Gastroenterolpgy 1999; 116:694-701.
    35 Lundberg AH, Granger N, Russell J, Callicutt S, Gaber LW, et al. Temporal corelation of tumor necrosis factor-alpha release, upregulation of pulmonary ICAM-1 an d VCAM-1, neutrophil sequestration, and lung injury in diet-induced pancreatitis [J]. Gastrointest Surg 2000; 4:248-257.
    36 Rakonczay Z Jr, Hegyi P, Takacs T, McCarroll J, Saluja AK. The role of NF-kappaB activation in the pathogenesis of acute pancreatitis [J]. Gut 2008; 57:259-267.
    37 Xu P, ZhouXJ, ChenLQ, Chen J, XieY, Lv LH, Hou XH. Pioglitazone attenuates the severity of sodium taurocholate-induced severe acute pancreatitis [J]. Wbrld J Gastroenterol 2007; 13:1983-1988.
    38 Pereda J, Sabater L, Aparisi L, Escobar J, Sandoval J, Vifia T, Lopez-Rodas G, Sastre T. Interaction between cvtokines and oxdative stress in acute pan creatitis [J]. Curr Med Chera 2006;13:2775-2787.
    39 Letoha T, Somlai C, Takacs T, Szabolcs A, Jarrnay K, Rakonczay Z Jr, Hegyi Varga I, Kaszaki J, Krizbai I, Boros I, Duda E, KUSZ E, Penke B. A nuclear import inhibitory peptide ameliorates the severitv of cholecvstokinin-induced acute pancreatitis [J]. Wbrld r Gastroenterol 2005; 11:990-999.
    40 Zhang XP, Zhang L, Xu HM, Xu YP, Cheng QH, Wang JM, Shen HP. APPlication of Tissue M icroarrays to Study the Influence of Dexamethasone on NF-kappaB Expression of Pancreas in Rat with Severe Acute Pancreatitis [M]. Dig Dis Sci 2007.
    41 Algul H, Treiber M, Lesina M, Nakhai H, Saur D, Geisler F, Pfeifer A, Paxian S, Schmid RM. Pancreas-specific RelA/p65 truncation increases susceptibilitv of acini to inflammation-associated cell death following cerulein pancreatitis [J]. J Clin Invest 2007; 117:1490-1501.
    42 Xia SH, Fang DC, Hu CX, Bi HY, Yang YZ, Di Y. Effect of BN52021 on NFkappa-Bp65 expression in pancreatic tissues of rats with severe acute pancreatitis. World JGastroenterol 2007; 13:882-888.
    43 Ethridge RT, Hashimoto K, Chung DH, et al. Selective inhibition of NF KB attenuates the severity of cerulein induced acute panereatitis [J]. J Am Coil Surg,2002; 195:497-505.
    44 陈海龙,李海龙,李树英等.核因子-κB在大鼠重症急性胰腺炎肺损伤中的作用及不同药物的影响[J].中华急诊医学杂志,2007;16:373-377.
    45 阚氏海,余崇林,黄飞.核因子-K B激活与一氧化氮合酶mRNA表达在重症急性胰腺炎肺 损伤中的作用.解剖学杂志2008;31(6):771-776.
    46 Satoh A, Shimosegawa T, Kimura K, et al. Nitric oxide is over produced by peritoneal macrophages in rat taurocholate pancreatitis the mechanism of inducible nitric oxide synthase expression[J]. Pancreas,1998; 17(4):402-411.
    47 Bohrer H, Nawroth PP. Nuclear factor kappaB-a new therapeutic approach [J]? Intensive Care Med,1998; 24:1129-1130.
    48 Granger J, Remick D. Acute pancreatitis:models, markers, and mediators [J]. Shock,2005, 24(suppll):45-51.
    49 Guo RF, W ard PA. Role of oxidants in lung injury during sepsis [J]. Antioxid Redox Signal, 2007,9(11):1991-2002.
    50 Gultekin FA, Kerem M, Tatlicoglu E, et al. Leptin treatment ameliorates acute lung in rats with cerulean-induced acute pancreatitis [J]. World J Gastroenterol,2007,13(21):2932-2938.
    51 Li N, Qiu HB, Yang Y, et al. Effect of rearuitment manenver on alveolar epithelium harrier in rat with acute lung injury [J]. Zhongguo Weizhong Bing ji Jiu Yi Xue,2007,19(2):90-94.
    52 Gao L, Flores C, FanMa S, et al. Macrophage migration inhibitory factor in acute lung inju ry: expression, biomarker, and associations [J]. Transl Res,2007,150(1):18-29.
    53 Matsuda N, Nishihira J, Takahashi Y, et al. Role of macrophage migration inhibitory factor in acute lung injury in mice with acute pancrea titis complicated by endotoxemia [J]. Am J Respir CellMol Biol,2006,35(2):198-205.
    54 Rahman SH, Menon KV, Holmfield JH, et al. Serum macrophage migration inhibitory factor is an early marker of pancreatic necrosis in acute pancreatitis [J]. Ann Surg,2007,245(2):28229.
    55 Kollmar O, Scheuer C, Menger MD. Macrophage inflammatory protein-2 promotes angiogenesis, cell migration, and tumour growth in hepatic metastasis [J]. Ann Surg Oncol, 2006,13(2):263-275.
    56 中华医学会呼吸病学分会,急性肺损伤和急性呼吸窘迫综合征的诊断标准(草案)[J].中华结核和呼吸杂志,2000,23(4):203-205.
    57 Sakai Y, Masamune A, Satoh A, et al. Macrophage migration inhibitory factor is a criticalm ediator of severe acute pancreatitis [J]. Gastroenterology,2003,124:725-736.
    58 Osman MO, Gesser B, Mortensen JT, et al. Prof iles of pro-inflammatory cytokines in the serum of rabbits after experimentally induced acute pancreatitis[J]. Cytok ine,2002, 17(1):53-59.
    59 Gao L, Flores C, Fan-Ma S, Miller EJ, Moitra J, Moreno L, et al. Macrophage migration inhibitory factor in acute lung injury:expression, biomarker, and associations [J]. Transl Res. 2007; 150(1):18-29.
    60 Rittirsch D, Flierl MA, Day DE, Nadeau BA, McGuire SR. et al. Acute lung injury induced by lipopolysaccharide is independent of complement activation [J]. J Immunol.2008; 180(11): 7664-72.
    61 Marsh LM, Cakarova L, Kwapiszewska G, von Wulffen W, et al. Surface expression of CD74 by type II alveolar epithelial cells:a potential mechanism for macrophage migration inhibitory factor-induced epithelial repair [J]. Am J Physiol Lung Cell Mol Physiol.2009; 296(3):L442-52.
    62 Serna H, Porras M, Vergara P. Mast cell stabilizer ketotifen [4-(1-methyl-4-piperidylidene)-4H-benzo [4,5] cyclohepta [1,2-b]thiophen-10(9H)-one fumarate] prevents mucosal mast cell hyperplasia and intestinal dysmotility in experimental Trichinellaspiralis inflammation in the rat [J]. Joural of Pharmacology and Experimental,2006,319(3):1104-1111.
    63 Moodley Y, Atienza D, Manuelpillai U, Samuel CS, et al. Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury [J]. Am J Pathol.2009; 175(1):303-313.
    64 Takahashi K, Koga K, Linge HM, Zhang Y, Lin X, et al. Macrophage CD74 contributes to MIF-induced pulmonary inflammation [J]. Respir Res.2009; 10:33.
    65 Calandra T, Bernhagen J, Metz CN, et al. MIF as a glucocorticoid-induced modulator of cytokine production [J]. Nature,1995; 377:68-71.
    66 Roger T, Chanson AL, Knaup-Reymond M, Calandra T. Macrophage migration inhibitory factor promotes innate immune responses by suppressing glucocorticoid-induced expression of mitogen-activated protein kinase phosphatase-1 [J]. Eur J Immunol.2005; 35(12):3396-3399.
    67 Chi H, Barry SP, Roth RJ, Wu JJ, Jones EA, Bennett AM, Flavell RA. Dynamic regulation of pro-and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses [J]. Proc Natl Acad Sci USA.2006; 103(7):2274-2279.
    68 Roger T, David J, Glauser MP, et al. MIF regulates innate immune responses through modulation of Toll-like receptor 4 [J]. Nature,2001,414:920-924.
    69 Doz E, Rose S, Nigou J, Gilleron M, Puzo G, Erard F, Ryffel B, Quesniaux VF. Acylation determines the toll-like receptor (TLR)-dependent positive versus TLR2-, mannose receptor-, and SIGNR1-independent negative regulation of pro-inflammatory cytokines by mycobacterial lipomannan [J]. J Biol Chem.2007; 282(36):26014-26025.
    70 West TE, Ernst RK, Jansson-Hutson MJ, Skerrett SJ. Activation of Toll-like receptors by Burkholderia pseudomallei [J]. BMC Immunol.2008; 9:46.
    71 Roger T, Froidevaux C, M artin C, et al. MIF regulates host responses to endotoxin through modulation of Toll-like receptor 4 [J]. J Endocrinol Res,2003,9:119-123.
    72 Gilleron M, Nigou J, Nicolle D, Quesniaux V, Puzo G. The acylation state of mycobacterial lipomannans modulates innate immunity response through toll-like receptor 2 [J]. Chem Biol. 2006; 13(1):39-47.
    73 Garay RP, Viens P, Bauer J, Normier G, Bardou M, Jeannin JF, Chiavaroli C. Cancer relapse under chemotherapy:why TLR2/4 receptor agonists can help [J]. Eur J Pharmacol.2007; 563(1-3):1-17.
    74 姜鹏,王建春,钱桂生.急性肺损伤大鼠肺组织PPARa mRNA表达的变化[J].中国误诊学杂志,2005,5(6):1008-1011.
    75 Kollmar O, Scheuer C, Menger MD. Macrophage inflammatory protein-2 promotes angiogenesis, cell migration, and tumour growth in hepatic metastasis [J]. Ann Surg Oncol, 2006,13(2):263-275.
    76 Hoyd CM, Rankin SM. Chemokines in allergic airway disease [J]. Curr Opin Pharmaeol,2003, 3(4):443-448.
    77 Moraes TJ, Zurawska JH, Downey GP. Neutrophil granule contents in the pathogenesis of lung injury [J]. Curr Opin Hematol,2006,13(1):21-27.
    78 Pastor CM, Rubbia-Brandt L, Hadengue A, et al. Role of maerophage inflammatory peptide-2 in eerulein-induced acute pancreatitis and pancreatitis-associated lung injury [J]. Lab Invest, 2003,83(4):471-478.
    1 杨秀红,张连元,孙树勋,等.一氧化氮在大鼠肢体缺血再灌注后肺损伤中的作用.生理学报,2002,6,54(3):234-238.
    2 郑晓春,陈彦青,黄风怡,等.抗坏血酸对肠缺血再灌注损伤后大鼠肺的保护作用.中华麻醉学杂志,2005,8:606-607.
    3 Murry C E, Jennings R B, Reimer K A. Preconditioning with ischemia:A delay of lethal cell injury in ischemic myocardium. Circulation,1986,74:1124.
    4 Pang CY, Addison P, Forrest CR, et al. Global protection against skeletal muscle infarction by non-invasive remote preconditioning. Circulation,2002,106(suppl Ⅱ):131-133.
    5 Weinbrenner C, Nelles M, Herzog N, et al. Remote preconditioning by infrarenal occlusion of the aortaprotects the heart from infarction:a newly identified non-neuronal but PKC-dependent pathway. Cardiovasc Res,2002,15,55(3):590-601.
    6 Ates E, Genc E, Erkasap N,et al. Renal protection by brief liver ischemia in rats.Transplantation,2002,15;74(9):1247-1251.
    7 Mounsey R A, Pang C Y, Forrest C. Preconditioning:A new technique for improved muscle flap survival. Otolaryngol. Head Neck Surg,1992,107:549.
    8 Kuntscher MV, Kastell T, Altmann J, et al. Acute remote ischemic preconditioning Ⅱ:the role of nitric oxide.Microsurgery,2002,22(6):227-231.
    9 Murry CE, Richard VJ, Reimer KA, et al. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res,1990,66: 913-931
    10 Nakano A, Heusch G, Cohen MV,et al. Preconditioning one myocardial region does not neccessarily precondition the whole rabbit heart. Basic Res Cardiol,2002,97(1):35-39.
    11 卢彦珍,董传仁,张友云,等.非创伤缺血预处理对大鼠缺血再灌注心肌的作用.中国病理生理杂志,1999,15(3):252-255.
    12 Moses MA, Addison PD, Neligan PC,et al.Inducing late phase of infarct protection in skeletal muscle by remote preconditioning:Efficacy and mechanism. Am J Physiol Regul Integr Comp Physiol,2005,22(9):567-571.
    13 Birnbaum Y, Hale S L, Kloner R A.Ischemic preconditioning at a distance reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit. Circulation,1997,96(5):1641-1646.
    14 Oxman T,Arad M,Klein R,et al.Limb ischemia preconditions the heart against reperfusion tachyarrhythmia. Am J Physiol,1997,10:1707-1712.
    15 Berrin Gunaydin,Iclal Cakaci,Halim soncul,et al. Does remote organ ischemia trigger cardiac preconditioning during coronary artery surgery? Pharmacological Research,2000,41(4): 493-496.
    16 Konstantinov IE, Arab S, Li J,et al. The remote ischemic preconditioning stimulus modifies gene expression in mouse myocardium. Thorac Cardiovasc Surg,2005 130(5):1326-1332.
    17 Waldow T, Alexiou K, Witt W,et al. Protection against acute porcine lung ischemia/reperfusion injury by systemic preconditioning via hind limb ischemia.Transpl Int,2005,18(2):198-205.
    18 Xia Z,Herijgers P,Nishida T, et al.Remote preconditioning lessens the deterioration of pulmonary function after repeated coronary artery occlusion and reperfusion in sheep.Can J Anaesth,2003,50(5):481-488.
    19 Stenzel-Poore MP, Stevens SL, Xiong Z, et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia:similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet,2003,362:1028-1037.
    20 Zapletal C, Maksan S.M, Lehmann T, et al. Ischemic preconditioning improves liver microcirculation after ischemia/reperfusion. Transplant,1999,31:3260.
    21 Islam C F, Mathie R T,Dinneen M D, et al. Ischaemia-reperfusion injury in rat kidney:The effect of preconditioning. Br J Urol,1997,79:842-846.
    22 Yoshizumi T, Yanaga K, Soejima Y, et al. Amelioration of liver injury by ischaemic preconditioning. BrJ Surg,1998,85:1636-1640.
    23 Pang CY, Yang RZ, Zhong A, et al. Acute ischaemic preconditioning protects against skeletal muscle infarction in the pig. Cardiovasc Res,1995,29:782-788.
    24 Rajesh K. Kharbanda, BSc, et al. Ischemic preconditioning prevents endothelial injury and systemic neutrophil activation dDuring ischemia-reperfusion in humans in vivo.Circulation 2001,27(3):1624-1630.
    25 Kuntscher MV, Kastell T, Sauerbier M, et al.Acute remote ischemic preconditioning on a rat cremasteric muscle flap model. Microsurgery,2002,22(6):221-226.
    26 Kuntscher MV, Hartmann B, Germann G. Remote ischemic preconditioning of flaps:a review.Microsurgery,2005,25(4):346-352.
    27 Loukogeorgakis SP, Panagiotidou AT, Broadhead MW, et al. Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system.Am Coll Cardiol,2005,46(3):450-456.
    28 Hiraiwa K. Novel findings from an animal tourniquet shock model.Nippon Hoigaku Zasshi, 2003,57(2):125-134.
    29 Gage AT, Stanton PK. Hypoxia triggers neuroprotective alterations in hippocampal gene expression via a heme-containing sensor. Brain Res,1996,719(1-2):172-178.
    30 Juhaszova M, Zorov DB, Kim SH,et al. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest,2004,113:1535-1549.
    31 Maulik N, Engelman RM, Rousou JA,et al. Ischemic preconditioning reduces apoptosis by upregulating anti-death gene Bcl-2. Circulation,1999,100(suppl II):369-375.
    32 Liem DA, Verdouw PD, Ploeg H,et al. Sites of action of adenosine in interorgan preconditioning of the heart.Am J Physiol Heart Circ Physiol,2002,283(1):29-37.
    33 Hashimi MW, Thornton JD, Downey JM,et al. Loss of myocardial protection from ischemic preconditioning following chronic exposure to R(-)-N6-(2-phenylisopropyl) adenosine is related to defect at the adenosine A1 receptor. Mol Cell Biochem,1998,186(1-2):19-25.
    34 Mitchell MB, Meng XZ, Ao L et al. Preconditioning of isolated rat heart is mediated by protein kinase C. Circ Res,1995,76(1):73-81
    35 Moses MA, Addison PD, Neligan PC, et al. Mitochondrial K-ATP channels in hindlimb remote ischemic preconditioning of skeletal muscle against infarction.Am J Physiol Heart Circ Physiol,2005,288 (2):559-567.
    36 Seifalian AM, Chaloupka K, Lohn JW,et al. The effect of pretreatment with ischaemic preconditioning or cromakalim on perfusion in skeletal muscle during ischaemia-reperfusion injury. Int Angiol,2001,20(2):174-180.
    37 Konstantinov IE, Li J, Cheung MM, et al. Remote ischemic preconditioning of the recipient reduces myocardial ischemia-reperfusion injury of the denervated donor heart via a Katp channel-dependent mechanism. Transplantation,2005,79(12):1691-1695.
    38 M W Broadhead,R K Kharbanda,M J Peters,et al. K-ATP channel activation induces ischemic preconditioning of the endothelium in humans in vivo. Circulation,2004,12:2077-2082.
    39 Wang B H, Ye C, Stagg C A, et al. Improved free musculocutaneous flap survival with induction of heat shock protein. Plast Reconstr Surg,1998,101:776-781.
    40 Kume M, Yamamoto Y, Saad S,et al. Ischemic preconditioning of the liver in rats:Implications of heat shock protein induction to increase tolerance of ischemia-reperfusion injury. J Lab Clin Med,1996,128:251-257.
    41 Lille S,Su C Y,Schoeller T, et al. Induction of heat-shock protein 72 in rat skeletal muscle does not increase tolerance to ischemia-reperfusion injury. Muscle Nerve,1999,22:390-395.
    42 Peralta C, Closa D, Hotter G, et al. Liver ischemic preconditioning is mediated by the inhibitory action of nitric oxide on endothelin. Biochem Biophys Res Commun,1996,229: 264-266.
    43 Vega VL,Maldonado M,Mardones L,et al. Inhibition of nitric oxide synthesis aggravates hepatic oxidative stress and enhances superoxide dismutase inactivation in rats subjected to tourniquet shock. Shock,1998,9(5):320-328.
    44 Kuntscher MV, Juran S, Altmann J, et al. Role of nitric oxide in the mechanism of preclamping and remote ischemic preconditioning of adipocutaneous flaps in a rat model. Reconstr Microsurg,2003,19(1):55-60.
    45 Gunji H, Kurisaki E, Suto M, et al. Nitric oxide synthase expressions in mice skeletal muscle subjected to ischemia/reperfusion injury. Leg Med.2003,Suppl 1:217-220.
    46 Petrishchev NN, Vlasov TD, Sipovsky VG, et al.Does nitric oxide generation contribute to the mechanism of remote ischemic preconditioning? Pathophysiology,2001,7(4):271-274.
    47 Nakano A, Liu GS, Heusch G, et al Exogenous nitric oxide can trigger a preconditioned state through a free radical mechanism, but endogenous nitric oxide is not a trigger of classical ischemic preconditioning. J Mol Cell Cardiol,2000,32:1159-1167.
    48 Kuntscher MV, Juran S, Altmann J,et al. Role of nitric oxide in the mechanism of preclamping and remote ischemic preconditioning of adipocutaneous flaps in a rat model.Reconstr Microsurg,2003,19(1):55-60.
    49 Schoemaker RG, van Heijningen CL. Bradykinin mediates cardiac preconditioning at a distance. Am J Physiol Heart Circ Physiol,2000,278(5):1571-1576.
    50 Tomasz Brzozowskia, Peter C, Konturekb, et al. Ischemic preconditioning of remote organs attenuates gastric ischemia-reperfusion injury through involvement of prostaglandins and sensory nerves.European Journal of Pharmacology,2004, Volume 499(1-2):201-213.
    51 Pain T, Yang XM, Critz SD, et al. Opening of Mitochondrial KATP Channels Triggers the Preconditioned State by Generating Free Radicals. Circ Res,2000,87:460-466
    52 Liu J, Ginis I, Spatz M, et al. Hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF-α and ceramide. Am J Physiol Cell Physiol,2000,278(1):144-153.
    53 Mizusawa I, Abe S, Kanno K, et al. Expression of cytokines, neurotrophins, neurotrophin receptors and NOS mRNA in dorsal root ganglion of a rat tourniquet model. Leg Med, 2003,5 Suppl 1:271-274.
    54 Li G, Labruto F, Sirsjo A,et al. Myocardial protection by remote preconditioning:the role of nuclear factor kappa-B p105 and inducible nitric oxide synthase.Eur J Cardiothorac Surg,2004,26(5):968-973.
    55 Wolfrum S, Nienstedt J, Heidbreder M,et al. Calcitonin gene related peptide mediates cardioprotection by remote preconditioning.Regul Pept,2005,127(1-3):217-224.
    56 Brzozowski T,Konturek PC,Pajdo R, et al. Importance of brain-gut axis in the gastroprotection induced by gastric and remote preconditioning.J Physiol Pharmacol,2004,55(1):165-177.
    57 Patel HH, Moore J, Hsu AK, et al.Cardioprotection at a distance:mesenteric artery occlusion protects the myocardium via an opioid sensitive mechanism. Mol Cell Cardiol,2002,34(10): 1317-1323.
    58 Markus V.Kiuntscher, Eva U,et al. Ischemic preconditioning by brief extremity ischemia before flap ischemia in a rat model. Plastic and Reconstructive Surgery,2002,109:2398-2404.
    59 Babuccu O, Peksoy I, Hosnuter M, et al. Evaluation by scintigraphy of hindlimb ischemia in a rat model. J Reconstr Microsurg.2004,20(5):405-410.
    60 Gerard A.Rongen MD,Wim J G, et al. Annexin A5 scintigraphy of forearm as a novel in vivo model of skeletal muscle preconditioning in humans. Circulation,2005,1:173-178.
    61 Kristiansen SB, Henning O, Kharbanda RK, et al.Remote preconditioning reduces ischemic injury in the explanted heart by a KATP channel-dependent mechanism. Am J Physiol Heart Circ Physiol,2005,288(3):1252-1256.
    62 Addison PD, Neligan PC, Ashrafpour H, et al. Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction.Am J Physiol Heart Circ Physiol,2003,285(4):1435-1443.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700