介孔二氧化硅复合材料与铜属纳米材料的制备及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study on Synthesis and Properties of the Mesoporous SiO_2 Composites and Copper Nanomaterials
  • 作者:张小俊
  • 论文级别:博士
  • 学科专业名称:无机化学
  • 学位年度:2007
  • 导师:??
  • 学科代码:070301
  • 学位授予单位:中国科学技术大学
  • 论文提交日期:2007-05-01
摘要
介孔材料由于具有很高的比表面和孔洞率,孔壁上存在大量的不饱和键或悬空键而具有很高的活性,纳米微粒的表面活性也很高,且具有很多不同于块体材料的特性。将纳米颗粒组装到介孔固体中形成的介孔复合体,不但使纳米微粒的许多特性得到充分的发挥,而且由于孔壁和纳米微粒之间的相互作用,使复合体极易产生一些分散纳米微粒和介孔固体本身所不具备的物性。因此探索一种操作性强,对分散纳米粒子易于控制的制备方法对介孔复合体乃至纳米粒子的物性的全面考察都有着重要的意义。有鉴于此,本文主要做了以下几方面的工作:
     1.将sol-gel过程和γ-射线辐照相结合发展了一种制备介孔复合体的新方法,成功合成了纳米Cu/SiO_2及Cu_2O/SiO_2介孔复合体,并用XRD,电镜(TEM),XPS和紫外-可见光吸收测量等对复合体进行了表征,揭示了SiO_2基质对介孔中Cu微粒光学性质的影响,并将处理金属微粒光学性质的经典理论与量子效应相结合并借助于X-射线光电子能谱(XPS)对Cu/SiO_2介孔复合体的光学性质进行了分析和讨论,说明了材料的光学性质是Cu纳米粒子内在的量子尺寸效应和外在基质的影响(通过界面相互作用)共同调制的结果。
     2.考虑到基底和金属粒子之间的影响,将具有很好光学性质的TiO_2引入到SiO_2基底中,制备了SiO_2-TiO_2复合薄膜,然后利用Gamma辐照和水热还原的方法制备了不同的Cu/SiO_2-TiO_2介孔复合体,并且利用XRD,TEM,UV等对制备的介孔复合体进行了表征,结果证明,利用辐照方法制备的Cu/SiO_2-TiO_2介孔复合体中铜的粒径更小,分散性更好,也更均匀。在对其光学性质进行研究后,证明不但基质对金属粒子的光学性质有影响,且金属粒子对基质的光学性质也有影响。
     3.通过两步溶胶凝胶法成功制备了TiO_2/SiO_2介孔复合物,并且研究了在不同热处理温度下对甲基红的光降解作用。随着处理温度的升高,催化性能先升高后由小幅的下降。与相同条件下制备的TiO_2粉体的催化性能相比,在低温处理后,TiO_2/SiO_2介孔复合物的催化性能略小于TiO_2粉体,但在高温处理后,TiO_2/SiO_2介孔复合物的催化性能要远远的大于TiO_2粉体。因此,我们认为两步溶胶凝胶法制备的TiO_2/SiO_2介孔复合物可能在高温条件下具有良好的催化性能。
     4.利用抗坏血酸作为配位剂和还原剂,在表面活性剂PVP的辅助下,使用柠檬酸三钠作为助发泡剂,制备出了具有多孔结构的四方柱状结构的铜纳米棒,此种铜纳米棒具有较大的比表面,可望在金属催化性能上得到展示。
     5.利用草酸作为沉淀剂,成功的制备了10-100nmCuO纳米颗粒,并研究了其电化学性质。第一次放电的时候粒子越小,比表面越大,放电容量就越高;而第二次放电过程中,粒子越小,放电容量就越低。而通过XRD和SEM对放电后样品的研究证实,CuO颗粒基本都转变为Cu颗粒,且得到的Cu颗粒的粒径和制备出的CuO颗粒的粒径基本一致,因此,我们认为利用电化学方法,通过制备不同粒径的CuO纳米颗粒作为正极材料可以用来制备不同粒径的Cu纳米颗粒。
Mesoporous solids possess high surface energy and chemical activity, because of the high specific surface area, great porosity rate and a large number of unsaturated bonds existing on their pore walls. Nanoparticles also hold high activity attributed to the size dependent properties and quantum size effect. Mesoporous nanocomposites prepared by nanoparticles incorporated into the pores of the mesoporous solids, not only retain the excellent properties of the dispersed nanoparticles sufficiently, but also will exhibit many new peculiarities resulting from the interactions of the particles and the matrix, which didn't appear as either of them existed lonely. So it is significative to find an operable and easy sample nanoparticles preparation method in investigating the physical properties of the nanoparticles as well as the mesoporous composites. Based on the above, the work from five aspects below has been processed:
     1. The sol-gel process and theγ-ray irradiation were combined together to develop a new preparation method of mesoporous nanocomposite. We have successfully prepared the mesoporous SiO_2 composites with the small Cu_2O, Cu particles or clusters dispersed in the pores and were examined by x-ray diffraction (XRD), transmission electron microscope (TEM), x-ray photoelectron spectroscopy (XPS), and the optical absorption spectroscopy. The optical absorption of the Cu/SiO_2 mesoporous composite revealed the matrix's effect on the optical properties of the dispersed particles. The optical properties of the nanocomposites were analysed and discussed by combining the classical eletrodynamic theory and the quantum effects, and XPS were used to investigate the interaction between the Cu particles, and finally concluded that the optical properties of the CU/SiO_2 composite are collectively decided by the quantum size effect (QSE) and the effect from the matrix (through the interface interactions).
     2. Based on the effect of the matrix on the nanoparticles, we introduced the TiO_2 that owns good optical properties to the SiO_2 matrix, and prepared the SiO_2-TiO_2 composite matrix. And then, we have successfully prepared various mesoporous SiO_2-TiO_2 composites with the Cu particles or clusters dispersed in the pores by theγ-ray irradiation and reductive methods. The structures of these composites were examined by x-ray diffraction (XRD), transmission electron microscope (TEM), x-ray photoelectron spectroscopy (XPS), and the optical absorption spectroscopy. The particles prepared byγ-ray irradiation are smaller, more dispersive and more symmetrical than those prepared by reductive methods. And the study of the optical properties told us not only the matrix made an effect on the optical character of the metal nanoparticles, but also metal nanoparticles made an effect on the optical character of the matrix.
     3. TiO_2/SiO_2 composite were synthesized successfully by two step sol-gel method and its effect on the optical degradation of methyl red under heat treatment at different temperatures was studied. With the temperature of heat treatment increasing, the catalytic capability improved at first and then decreased a little. Compared with the catalytic capability of TiO_2 powder prepared under the same conditions, the catalytic capability of TiO_2/SiO_2 composite with low temperature treatment is a little less than that of TiO_2 powder, but after the high temperature treatment, the catalytic capability of TiO_2/SiO_2 composite is much more than that of TiO_2 powder. So we think that two step sol-gel preparation of TiO_2/SiO_2 composite may have excellent catalytic capability under high temperature.
     4. With the existence of the PVP as surfactant, porous copper nanorods with rectangular cross sections of column shape have been successfully prepared with the ascorbic acid as ligand and reducer, and the trisodium citrate as the assistant vesicant. The resultant porous copper nanorods may provide interesting possibilities for further applications in catalyzing for the large surface area.
     5. Well-dispersed cupric oxide (CuO) nanoparticles with the size from 10 nm to 100 nm were successfully synthesized by thermal decomposition of CuC_2O_4 precursor. The electrochemical tests showed an interesting phenomenon that the larger average size and the smaller surface of the particles are, the smaller discharge capacity of the first time is, while that of the second time is larger. However, by the study of the discharged sample with the XRD and SEM, almost all the CuO particles have changed as Cu particles. So, we believe that electrochemical method can synthesize Cu particles with different sizes by using the CuO particles with different sizes as the positive electrode.
引文
[1] 师昌绪.跨世纪材料科学与技术若干热点问颢,自然科学讲展,9,1,(1999)
    [2] John B Wiley. Rapid Solide-State Precursor Synthesis of Materials, Science128, 1093, (1992)
    [3] A H Heuer.I nnovative Materials Processing Strategies: A Biomimetic Approach, Science, 128, 1098, (1992).
    [4] H Gleiter. Nanostructured Materials, Acta Metallurgia Sinica, 33,165, (1997).
    [5] 张立德,牟季美.纳米材料与纳米结构,北京:科学出版社,2001
    [6] 吴白芦.纳米技术与固体物理的新发展,现代科学仪器,1,34,(1998)
    [7] 解思深.纳米材料体系物理简介,现代科学仪器,1,17,(1998)
    [8] Richard Smalley. Brave New Nanoworld, ORNL Review, 2000
    [9] Bimigerr R, Herr U,Gleiter H.Trans Jpn Inst Metal Supple, 27, 43, (1986)
    [10] 徐国财等,纳米复合材料,北京:化学工业出版社,2002
    [11] Colvert P. Nature, 383,209, (1996)
    [12] Hiroshi A, Hiroto K. Journal of Polymer Scinece, Part B., 37, 209, (1999)
    [13] MinZhi Rong, MingQin Zheng, YongXiang Zheng, HanMin Zeng, R.Walter, K.Friedrich, Polymer, 42, 167, (2001)
    [14] MinZhi Rong, MingQin Zheng, YongXiang Zheng, HanMin Zeng, R.Walter, K.Friedrich, Polymer, 42, 3301, (2001)
    [15] P. HAJJI, L.DAVID, J. F. GRATD, J. P. PASCAULT, G.VIGIER, J. Polym.Sci. Part B, 37, 3172, (1999)
    [16] Timothy S. Haddad, Russell Stapleton, Hong G. Jeon, Polym. Prepr., 40, 496, (1999)
    [17] T.Agag, T. Koga, T. Takeichi, Polymer, 42, 3309, (2001)
    [18] Shang Xiuyong, Zhu Zikang, Yin Jie, Li Yong, Polymer Materials Science and Engineering, 17, 68, (2001)
    [19] E. Bourgeat-Lami, Ph.Espiard and A.Guyot, Polymer, 36, 4385, (1995)
    [20] Andrew J.Ruys, Yiu-Wing Mai, Mater. Sci.Eng A, 265, 202, (1999)
    [21] Kenneth A Mauritz, Materials Science and Engineering C, 6, 121, (1998)
    [22] Roland Herino, Materials S cience&Engineering B, 69, 70, (2000)
    [23] Timothyvon Werne, Ion M.Suehiro, Steven Farmer, Timothy E.Paten, Polym Mater. Sci
    [24] 张立德.科学,45,13,(1997)
    [25] 吴玉程,张立德.新材料产业,1,25,(1999)
    [26] D J Kester, C L Brodbeck, L Singer et al. Surface Coating Technology, 113, 268, (1999)
    [27] Joseph Yahalom. Surface Coating Technology, 105, 102, (1998)
    [28] 彭英才,何宇亮,稀有金属,23,42,(1999)
    [29] J C Hulteen. Nanostructured Materials, 9, 133, (1997)
    [30] 张立德,牟季美.物理,28,22,(1999)
    [31] 李民乾,物理,21,65,(1999)
    [32] X Xu, J W He, D W Goodman. Surface Science, 284, 103, (1993)
    [33] A Balandin, K Lin, X Lin. Journal of Applied Physics, 81, 2822, (1997)
    [34] K Prasad, A R Bally, P E Schmid et. al., Journal of Applied Physics, 36, 5695, (1997)
    [35] Y K Su, K J Gan, J SH. Journal of Applied Physics, 68, 5584, (1990)
    [36] AD Walser, I Sokolik, R Priestleyetal. Applied Physics Letter, 69, 1677, (1996)
    [37] Y Wang, A Suna, W Mahleretal.,Journal of Chemical Physics, 87, 7351, (1987).
    [38] 王铀,沈静妹.化工新型材料,1,8,(1998)
    [39] 生瑜,朱德钦,陈建定.高分子通报,4,9,(2001)
    [40] 何建立,刘长洪,李文冶.,清华大学学报,38,16,(1998).
    [41] 李戈扬,施映蓉,张流强等.,上海交通大学学报,33,159,(1999).
    [42] D R Ulrich, Journal of Non-crystalline solids, 121,465, (1990)
    [43] 徐政,倪宏伟,现代功能陶瓷,国防工业出版社,1998
    [44] Hiwatari Y, Kaneko Y, Mikami T, Ohara K, Asa F, Molecular Simulation 33, 133, (2007)
    [45] Zarpellon J, Jurca HF, Klein JJ, Schreiner WH, Mattoso N, Mosca DH, J. Electro. Soc. 152, C808, (2005)
    [46] Wang LZ (Wang, Lingzhi), Shao YF, Zhang JL, Anpo M, Microporous and Mesoporous Material 100, 241, (2007)
    [47] Jin CZ, Li G, Wang XS, Zhao LX, Liu LP, Liu HO, Liu Y, Zhang WP, Han XW, Bao XH, Chem. Mater. 19, 1664, (2007)
    [48] Porcheron F, Thommes M, Ahmad R, Monson PA, Langrnuir 23, 3372, (2007)
    [49] Lu AH, Li WC, Hou ZS, Schuth F, Chem. Comm. 10, 1038, (2007)
    [50] Selvaraj M, Kawi S, Microporous and Mesoporous Material, 98, 143, (2007)
    [51] Singh AP, Gandhi DD, Lipp E, Eizenberg M, Ramanath G, J. Appl. Phys. 100, 114504, (2006)
    [52] Bachari K, Cherifi O, Catal. Comm. 7, 926, (2006)
    [53] Feng K, Zhang RY, Wu LZ, Tu B, Peng ML, Zhang LP, Zhao D, Tung CH, J.Am. Chem. Soc. 128, 14685, (2006)
    [54] Selvaraj M, Lee TG, J. Phys. Chem. B 110, 21793, (2006)
    [55] Valiullin R, Naumov S, Galvosas P, Karger J, Woo HJ, Porcheron F, Monson PA, Nature 443, 965, (2006)
    [56] Kamala P, Pandurangan A, Catal. Lett. 110, 39, (2006)
    [57] Corma A, Diaz-Cabanas MJ, Moliner M, Rodriguez G, Chem. Comm. 29, 3137, (2006)
    [58] Vinu A, Srinivasu P, Miyahara M, Ariga K, J. Phys. Chem. B 110, 801, (2006)
    [59] Kim S, Marand E, Ida J, Guliants VV, Chem. Mater. 18, 1149, (2006)
    [60] Xu B J, Li HY, Hua WM, Yue YH, Gao Z, Microporous and Mesoporous Material, 88, 191, (2006)
    [61] Wang XQ, Ge HL, Jin HX, Cui YJ, Microporous and Mesoporous Material, 86, 335, (2005)
    [62] Salmas CE, Androutsopoulos GP, Langmuir, 21, 11146, (2005)
    [63] Vinu A, Sawant DP, Ariga K, Hossain KZ, Halligudi SB, Hartmann M, Nomura M, Chem. Mater. 17, 5339, (2005)
    [64] Tompsett GA, Krogh L, Griffin DW, Conner WC, Langmuir 21, 8214, (2005)
    [65] Yang YH, Lim S, Du GA, Chen Y, Ciuparu D, Haller GL, J. Phys. Chem. B 109, 13237, (2005)
    [66] Kustrowski P, Chmielarz L, Dziembaj R, Cool P, Vansant EF, J. Phys. Chem. B 109, 11552, (2005)
    [67] Kim YH, Lee DK, Cha HG, Kim CW, Kang YS, J. Phys. Chem. C 111, 3629, (2007)
    [68] Hillenkamp M, Di Domenicantonio G, Eugster O, Felix C, Nanotech. 18, 015702, (2007)
    [69] Babapour A, Akhavan O, Moshfegh AZ, Hosseini AA, Thin Solid Films 515, 771, (2006)
    [70] De S, De G, J. Mater. Chem. 16, 3193, (2006)
    [71] Pal S, De G, Chem. Mater. 17, 6161, (2005)
    [72] Chen YY, Wang CA, Liu HY, Qiu JS, Bao XH, Chem. Comm. 42, 5298, (2005)
    [73] Pan AL, Zheng HG, Yang ZP, Liu FX, Ding ZJ, Qian YT, Mater. Res. Bull. 38, 789, (2003)
    [74] Pan AL, Zheng HG, Yang ZP, Liu FX, Ding ZJ, Qian YT, J. Phys.-Cond. Matt. 15, 9, (2003)
    [75] Pan AL, Yang ZP, Zheng HG, Liu FX, Zhu YC, Su XB, Ding ZJ, Appl. Surf. Sci. 205,323, (2003)
    [76] E. manor, Nanostructured Materials, 8, 359, (1997)
    [77] C. T. Kresge et al. Nature 359, 710, (1992)
    [78] Hideki Masuda et al. Appl. Phys. Lett. 71, 2770, (1992)
    [79] D. R. Ulrich, J.Non-Crystal. Solids, 100, 174, (1988)
    [80] Jochen Fricke, J.Non-Crystal. Solids, 147, 356, (1992)
    [81] 曹立新,应用化学,15,1,(1998)
    [82] L. L. Hench and J. K. West, Chem. Rev., 90, 33, (1990)
    [83] X. Li and T. A. King, Ceramic Industries International, 7, 31, (1993)
    [84] J. Belloni, M. O. Deleourt Nouv. J. Chim.6, 507, (1982)
    [85] J. L. Marignier, J. Belloni, M. O. Delcourte t.al .Nature.317,344, (1985)
    [86] 朱英杰,中国科技大学博士论文,(1994)
    [87] Y. Zhu, Y. Qian et al. Mater. Sci. Eng. B 23,116, (1994)
    [88] Y Zhu, Y Qian et al. Mater. Trans. JIM 36, 80, (1995)
    [89] Y Zhu, Y Qian et al. Nanostructured.Mater.48, 915, (1994)
    [90] Y Zhu, Y. Qian et al. Mater.Lett. 26,81, (1996)
    [91] Y. Zhu,Y. Qiane tal. J. Alloys. Comp. 221, 4, (1995)
    [92] Liu HR, Ge XW, Xu XL, Zhang ZC, Zhang MW, Rad. Phys. Chem. 55, 357, (1999)
    [93] Kumar M, Rad. Phys. Chem. 64, 99, (2002)
    [94] Abd El-Khalek AM, Radiation Effects and Defects In Solids 157, 417, (2002)
    [95] SHABAN AM, KAMAL M, Radiation Effects and Defects In Solids 133, 5, (1995)
    [96] Y J. Zhu, Y T. Qian, M. W Zhang Mater.Res.Bull.29, 377, (1994)
    [97] Y. D. Y in, X. Xu, X. Ge Chem. Comm.16, 1641, (1998)
    [98] Z. P. Qiao, Y Xie. et al. J. Colloid. Interface. Sci. 214, 459, (1999)
    [99] S. M. S. Akhtar, G. R. Freeman J. Phys.Chem.75, 2756, (1971)
    [100] P. N. Moorthy, J. J. Weiss Nature.201, 1317, (1964)
    [101] F. Johnston J. Phys.Chem. 79, 419, (1975)
    [102] Y. Xie, Z. P. Qiao, Y. T. Qian Adv. Mater.11, 1512, (1999)
    [103] Z. P Qiao, Y Me J. Mater.Chem. 9, 1001, (1999)
    [104] Z. P. Qiao, Y. Me Radiat. Phys. Chem.58, 287, (2000)
    [105] L. Tonks. Phys. Rev. 38, 1219, (1931)
    [106] G. Mie Ann. Phys. 25, 377, (1908)
    [107] Kreibig U, Vollmer M 1995 Optical Properties of Metal Clusters (Springer, Berlin)
    [108] C. Kittet, Introduction to Solid State Physics (John Wiley&Sons, New York, 1983)
    [109] H. Frohlich Physica. 4, 406, (1937)
    [110] A. W Maue. Z. Physik. 94, 717, (1935)
    [111] N. D. Lang, W. Kohn Phys. Rev. B. 1, 4555, (1970)
    [1] IchiroT ,Tsuneo M. Journal of noncrysteal line solids, 181, 77, (1995)
    [2] 张立德,中国粉体技术,6,1,(2000)
    [3] A Heilmann. European Physics Journal B 3,455, (1998)
    [4] N N Parvathy. Nanostructured materials, 8, 929, (1997)
    [5] S. S. Kistler. J. Phys. Chem. 36, 52, (1932)
    [6] A. Venkateswara Rao, N. N. Parvathy J. Mater.Sci. 28, 3021, (1993)
    [7] M. Prassas,J. Philippou,J. Zarzycki. J. Mater.Sci. 19,1656, (1984)
    [8] C.J. B rinder,et al. J. Non-Cryst.Solid.70, 301,(1985)
    [9] R.K.D wived,et al. J. Mater.Sci.Lett. 5,373, (1986)
    [10] S.WhitakerIn Adv.In Drying. 1, 23, (1980)
    [11] M.J. Wilsonetal.Real Time Monit. Silica Gel Drying Behavior.A, 2, (1989)
    [12] L.C.Klein, G. J. Garvey In Ultrastructure Processing of Ceramics,Glass and Composites; L. L. Hench, D.R.Ulrich, Eds:Wiley;New York, p88(1984)
    [13] P. H. Tewari, A. J. Hunt, K.D.Loftus. Mater.Lett.3, 363, (1985)
    [14] Geffcken L, Hench, J K West., Chemical Review, 90, 33, (1990)
    [15] Stober U, Donald R., Journal of non-crystallinesolids, 121,465, (1990)
    [16] Jochen Fricke, Journal of non-crystallinesolids, 147, 356, (1992)
    [17] 曹立新,应用化学,15,1,(1998)
    [18] Donald R, Ulrich., Journal of non-crystallinesolids, 100, 147, (1988)
    [19] J Livage., Acta materials, 46, 743, (1998)
    [20] TK limova. Science, 33, 1981, (1998)
    [21] Aeschlimann M, Bauer M,Bayer D,Brixner T,de Abajo FJ,Pfeiffer W ,Rohmer M, Spindler C,Steeb F. Nature. 446, 301, (2007)
    [22] Mazilu M, Dholakia K Optics Express 14, 7709, (2006)
    [23] Hou DL,Du ZX,Yue CX,Liu QH. J. Of Alloys and Compouds 429, 40, (2007)
    [24] Ingrosso C,Petrella A,Cosma P,Curri ML,Striccoli M,Agostiano A. J.Phys.Chem.B 110, 24424, (2006)
    [25] Radev L,Khristova M,Mehandjiev D,Samuneva B, Catal. Lett. 112, 181, (2006)
    [26] Aslan K,Wu M,Lakowicz JR,Geddes CD,J. Am. Chem. Soc. 129, 1524, (2007)
    [27] Tada H,Takao A,Akita T,Tanaka K,CHEMPHYSCHEM 7, 1687, (2006)
    [28] Canario AR, Esaulov VA, J. Chem. Phys. 124, 224710, (2006)
    [29] De S,De G,J. Mater. Chem. 16, 3193, (2006)
    [30] Pal S, De G Chem.Mater. 17, 6161, (2005)
    [31] Chen YY, Wang CA, Liu HY, Qiu JS, Bao XH, Chem. Comm. 42, 5298, (2005)
    [32] Sarkar DK, Cloutier F, El Khakani MA, J.Appl. Phys. 97, 084302, (2005)
    [33] Dutta, A.; Das, D.; Grilli, M. L.; Di Bartolomeo, E.; Traversa, E.; Chakravorty, D. J. Sol-Gel Sci. Technol. 26, 1085, (2003)
    [34] Paulose, P. I.; Jose, G.; Thomas, V.; Jose, G.; Unnikrishnan, N. V.;Warrier, M. K. R. Bull., Mater. Sci. 25, 69, (2003)
    [35] Stepanova M, Dew SK, Soshnikov IP, Appl. Phys. Lett. 86, 073112, (2005)
    [36] Mohanan, J. L.; Brock, S. L., Chem. Mater. 15, 2567, (2003)
    [37] Pietrzyk P, J. Phys. Chem. B 109, 10291, (2005)
    [38] Taggart G. B., Computational Mater. Sci. 2, 143, (1994)
    [39] Gu B L, Cui F Z, Computational Mater. Sci. 2, 156, (1994)
    [40] 杨庆生,杨卫,力学进展,27,177,(1997)
    [41] 方岱宁,周储伟,力学进展,28,173,(1998)
    [42] 杨庆生,复合材料学报,10,4,(1993)
    [43] 陈浩然,计算结构力学及应用,11,3,(1994)
    [44] 冼杏娟,力学进展,22,464,(1992)
    [45] Cox H L, J. Appl. Phys., 3, 72, (1952)
    [46] 查振林,罗亚田,北方环境,29,30,(2004)
    [47] Fujishima A, Rao TN, Tryk R D, J. Photochem. Phobio., 1, 1, (2000)
    [48] Stefchev P, Blaskov V, Machkova M, et al., Inorg. Mater., 3, 531, (2001)
    [49] 陈中颖,余刚,张彭义等,环境科学,23,40,(2002)
    [50] Hiromi Yamashita, Shinichi Kawasaki, Yuichi Ichihashi, Masaru Harada, Masato Takeuchi, Masakazu Anpo, J. Phys. Chem., B 102, 5870, (1998)
    [51] Cai W P, Zhong H C, Zhang L D, J. Appl. Phys., 83, 1705, (1998)
    [52] Kreibig U, Genzel, Surface Science, 156, 678, (1985)
    [53] Menning M, Mater Sci. & Eng. B, 9, 421, (1991)
    [54] Thomas L, Paul M, Arnim H, J Phys. Chem., 97, 679, (1993)
    [55] Cai W P, Zhang L D, J Phys. Condens Mater., 9, 7257, (1997)
    [56] Hiromi Yamashita, Shinichi Kawasaki, Yuichi Ichihashi, Masaru Harada, Masato Takeuchi, and Masakazu Anpo, J Phys. Chem. B, 102, 5870, (1998)
    [1] 师昌绪.跨世纪材料科学与技术若干热点问题,自然科学进展,9,1,(1999)
    [2] John B Wiley. Rapid Solide-State Precursor Synthesis of Materials, Science128, 1093, (1992)
    [3] A H Heuer.I nnovative Materials Processing Strategies: A Biomimetic Approach, Science, 128, 1098, (1992).
    [4] H Gleiter. Nanostructured Materials, Acta Metallurgia Sinica, 33,165, (1997).
    [5] 张立德,牟季美.纳米材料与纳米结构,北京:科学出版社,2001
    [6] 吴白芦.纳米技术与固体物理的新发展,现代科学仪器,1,34,(1998)
    [7] 解思深.纳米材料体系物理简介,现代科学仪器,1,17,(1998)
    [8] Richard Smalley. Brave New Nanoworld, ORNL Review, 2000
    [9] 张立德.纳米材料研究的新进展及在21世纪的战略地位,中国粉体技术,6,1,(2000)
    [10] Charles R., Science, 266, 1961, (1994)
    [11] 吴玉程,张立德.实现纳米材料功能与应用:纳米涂层材料的发展,新材料产业,1,25,(1999)
    [12] C Cannas. Journal of Physics Chemical B, 102, 7721, (1998)
    [13] S Satucci, P Picozzi.Thin solid films, 113, 243, (1984)
    [14] M G Hapase, M KGharapurey, A B Biswas, Surface science, 9, 87, (1968)
    [15] Chernov A A. Modern crystallography, NewYourk: Springer, 56, (1984)
    [16] BrusL E.IE EEJ ouranl:Q uantumE lectronic,1986,Q E-22:1909.
    [17] BrusL E.Journal of chemical physics, 79, 5566, (1983)
    [18] Fujishima A, Honda A. Nature, 238, 37, (1972)
    [19] Daimon T, Nosaka Y, J. Phys. Chem. C, 111, 4420, (2007)
    [20] Pillai SC, Periyat P, George R, McCormack DE, Seery MK, Hayden H, Colreavy J, Corr D, Hinder SJ., J. Phys. Chem. C, 111, 1605, (2007)
    [21] Ge L, Xu MX, Fang HB, Thin Solid Films 515, 3414, (2007)
    [22] Hilal HS, Majjad LZ, Zaatar N, El-Hamouz A, Solid State Sciences 9, 9, (2007)
    [23] Pore V, Ritala M, Leskela M, Areva S, Jarn M, Jarnstrom J, J Mater. Chem. 17, 1361, (2007)
    [24] Kemell M, Pore V, Tupala J, Ritala M, Leskela M, Chem. Mater. 19, 1816, (2007)
    [25] Liu ZY, Sun DD, Guo P, Leckie JO, CHEMISTRY-A EUROPEAN JOURNAL 13, 1851, (2007)
    [26] Sleiman M, Conchon P, Ferronato C, Chovelon JM, Appl. Catal. B-Envir., 71,279, (2007)
    [27] Macak JM, Zlamal M, Krysa J, Schmuki P, Small, 3, 300, (2007)
    [28] Du MH, Feng J, Zhang SB, Phys. Rev. Lett., 98, 066102, (2007)
    [29] Thomas AG, Flavell WR, Mallick AK, Kumarasinghe AR, Tsoutsou D, Khan N, Chatwin C, Rayner S, Smith GC, Stockbauer RL, Warren S, Johal TK, Patel S, Holland D, Taleb A, Wiame F, Phys. Rev. B, 75, 035105, (2007)
    [30] Hoffmann M R, Martin S T, ChoiW, et.al. Chem Rev, 9, 69, (1995)
    [31] Linsebigler A L,Lu G Q,Yates J T. Chem Rev, 95,735, (1995)
    [32] Hagfeldt A, Gratzel M. Chem Rev, 95, 49, (1995)
    [33] A. Eremenkoa, N.Smimova etal. Journal of Molecular Structure, 117, 553, (2000)
    [34] Mao-ping Zheng, Ming-yuan Go etal. Materials Science and Engineering B, 87, 197, (2001)
    [35] Dong-Seok Seo, Jong-Kook Lee etal. Materials Leters, 51, 115, (2001)
    [36] Nobuaki Negishi, Koji Takeuchi,Thin Solid Films, 392, 249, (2001)
    [37] Ghicov A, Schmidt B, Kunze J, Schmuki P, Chem. Phys. Lett., 433, 323, (2007)
    [38] Yu HG, Yu JG, Cheng B, Liu SW, Nanotech., 18, 065604, (2007)
    [39] Shankar K, Mor GK, Prakasam HE, Yoriya S, Paulose M, Varghese OK, Grimes CA, Nanotech., 18, 065707, (2007)
    [40] Xu Y, Chen WK, Liu SH, Cao MJ, Li JQ, Chem. Phys., 331,275, (2007)
    [41] Yahiro H, Miyamoto T, Watanabe N, Yamaura H, Catal. Today, 120, 158, (2007)
    [42] Song L, Qiu RL, Mo YQ, Zhang DD, Wei H, Xiong Y, Catal. Commun., 8, 429,(2007)
    [43] Tang JW, Quan HD, Ye JH, Chem. Mater. 19, 116, (2007)
    [44] Abazovic ND, Comor MI, Dramicanin MD, Jovanovic DJ, Ahrenkiel SP, Nedeljkovic JM, J Phys. Chem. B, 110, 25366, (2006)
    [45] Tran TH, Nosaka AY, Nosaka Y, J Phys. Chem. B, 110, 25525, (2006)
    [46] F. Adil, M.Christian, S. Bemard,etal, Phys. Rev., 47, 717, (1993)
    [47] Tanaka K, Capule MFV, Hisanaga T.Chem Phys Lett, 187, 73, (1991)
    [48] 张立德,牟季美,纳米材料和纳米结构2001第一版
    [49] Ohko Y, Tryk DA, Hashimoto K, etal..J of Physical Chemistry B, 102, 2699, (1998)
    [50] OhkoY, HashimotoK, Fujishima A. J of Physical Chemistry A, 43, 8057, (1997)
    [51] Liu K R,Han Q,Chen J S, etal. Journal of Northeastern University, 24, 1064, (2003)
    [52] Hiroaki I, Hirotoki M, Atsushi T, etal. Journal of Sol-Gel Science and Technology, 10, 45, (1997)
    [53] Toshihiro K, Taku U. J Am Ceram Soc, 82, 3248, (1999)
    [54] Lowell R M, David A, Alexander D M, etal. Journal of Sol-Gel Science and Technology, 8, 619, (1997)
    [55] Li J Y, Chen C C, Zhao J C, et al. Applied Catalysis B:Environmental, 37, 331, (2002)
    [56] Liu, Z., Sun, D. D., Guo, P., Leckie, J. O. Nano Lett. DOI: 10.1021/n1061898, (2006)
    [57] An, X., Meng, G., Wei, Q., Kong, M., Zhang, L. J. Phys. Chem. B., 110, 222, (2006)
    [58] Marugan, J. Lopez-Munoz, M.-J. Gernjak, W. Malato, S. Ind. Eng. Chem. Res., 45, 8900, (2006)
    [59] Liu, Z., Davis, R. J.J. Phys. Chem., 98, 1253, (1994)
    [60] Davis, R. J., Liu, Z. Chem. Mater., 9, 2311, (1997)
    [61] Nakagawa, Y., Ono, O.; Miyata, H., Kubokawa, Y. J. Chem. Soc.,Faraday Trans., 79, 2929, (1983)
    [62] Sohn, J. R., Jang, H. J. J. Catal.,132, 563, (1991)
    [63] Davis, R. J., Liu, Z. Chem. Mater., 9, 2311, (1997)
    [64] 高濂,郑珊,张青红,纳米氧化钛光催化材料及其应用北京化学工业出版社,2003
    [65] 何建波,张鑫,魏风玉等,应用化学,16,57,1999
    [66] Tsai S J, Cheng S, Catal. Today, 33, 227, (1997)
    [67] K. Tanaka, N. Minamikawa, Appl. Phys. Lett. 86, 12, (2005)
    [68] W.H. Koo, S.M. Jeoung, S.H. Choi, Thin Solid Films 468, 123, (2004)
    [69] B. Ghosh, S. Banerjee, D. Chakravorty, J. Nanosci. Nanotechnol. 4, 849, (2004)
    [70] H.G. Guo, X.M. Zhang, M.H. Cui, Mater. Res. Bull. 40, 1713, (2005)
    [71] E. M. Vogel, J. Am. Ceram. Soc. 72, 719, (1989)
    [72] C. Flytzanis, F. Hache, M.C. Klein, D. Ricar, P. Rossingnol, Prog. Opt. 29, 321, (1991)
    [73] W. P. Cai, L. D. Zhang, Phys. Condens. Matter 8, 591, (1996)
    [74] T. Hayakawa, S. T. Slevan, M. Nogami, Appl. Phys. Lett. 74, 1513, (1999)
    [75] H. Amekura, N. Umeda, Y. Sakuma, Appl. Phys. Lett. 87, (Art. No. 013109), (2005)
    [76] H. Liu, E.Y. Jiang, H. L. Bai, J. Appl. Phys. 95, 566l, (2005)
    [77] T. Hayakawa, S.T. Selvan, M. Nogami, Appl. Phys. Lett. 74, 1513, (1999)
    [78] I.K. Battisha, H.H. Afify, I.M. Hamada, J. Magn. Magn. Mater 292, 440, (2005)
    [79] I. Grozdanov, Mater. Lett. 19, 281, (1994)
    [80] M. Y. Shen, T.Yokouchi, S.Koyama, T.Goto, Phys.Rev. B. 56, 13066, (1997)
    [81] W. Shi, K. Lim, X. Liu, J. Appl. Phys. 81, 2822, (1997)
    [82] J. P. Espinos, J. Morales, A. Barrnco, A. Caballero, J.P. Holgado, A. R. Gonzalez-Elipe, J. Phys. Chem., B 106, 6921, (2002)
    [83] Jay A. Switzer, Run Liu, Eric W. Bohannan, Frank Ernst, J. Phys. Chem., B 106, 12369, (2002)
    [84] Lidia Armelao, Davide Barreca, Gregorio Bottaro, Chem. Mater. 10, 1021, (2004).
    [85] I. Grozdanov, Mater. Lett., 19, 281, (1994)
    [1] 训兴厚,徐绍龄等,无机化学丛书第六卷——卤素铜分族锌分族,科学出版社,1995年12月第1版
    [2] Frietsch M., Zudock F. Sensors and Actuators B., 65,379, (2000)
    [3] R.W.Vook, et al, Thin Solid Film., 305, 286, (1997)
    [4] Jose A Rodriguez, Sanjay Chaturvedi, Surface Science., 415, 1065, (1998)
    [5] 刘卫,莫易敏,邵建人.,国外建材科技.,24,59,(2003)
    [6] J.-W. Lim, K. Mimura, et. al., Nuclear Instruments and Methods in Physics Research B, 206, 371, (2003)
    [7] Xuchuan Jiang, Thurston Herricks, Nano Leters., 12, 1333, (2002)
    [8] N. Arul Dhas, C. Paul Raj, et. al, Chemical Materials.,10, 1446, (1998)
    [9] Fendler J.H.Dekany, Nanoparticles in Solids and Solutions[M]. Netherlands: Kluwer Academic Publishers. 1996, p. 191
    [10] C.Y.Wang,Y Zhou,et.al, Journal of Colloid and Interface Science, 220, 468, (1999)
    [11] Quan Li, Chunrui Wang, Chemical Physics Leters, 375,525, (2003)
    [12] J.L. Simonds, Phys. Today, 48, 26, (1995)
    [13] Huang, M.H., Mao, S, Feick H, Yan H.Q, Wu Y.Y, Kind H, Weber E, Russo.R, Y ang, P.D. Science, 292, 1897, (2001)
    [14] Huang. M. H, Wu. Y.Y, Feick. H, Tran, N, Weber, E, Yang, P. D. Adv. Mater., 13, 11, (2001)
    [15] L.Schmidt-Mende, A. Fechtenk Otter, K. Mullen, E. Moons, R.H.Friend, J. D Mackenzie, Science, 293, 119
    [16] Piers Andrew, William L.Barnes, Science, 290, 785
    [17] H. Kawanoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature,, 389, 939 (1997)
    [18] Wang X, Li Y D, J.Am.Chem.Soc., 124, 2880, (2002)
    [19] Tanori J, Pileni M. P., Langmuir, 13,639, (1997)
    [20] Pileni M.P., Gulik Krzywicki T, Tanori J, Fiiankembo A, Dedieu J C, Langmuir, 14, 7359,(1998)
    [21] Chen P, Wu X, Lin J, Tan K L, J. Phys. Chem. B,103, 4559, (1999)
    [22] Lisiecki I, Sack-Kongehl H,Weiss K, Urban J, Pileni M P, Langmuir,16,8802, (2000)
    [23] Lisiecki I, Sack-Kongehl H,Weiss K, Urban J, Pileni M P, Langmuir,16,8807, (2000)
    [24] Gao T, Meng G, Wang Y, Sun S, Zhang L, J. Phys-Condens.Mater., 14, 355, (2002)
    [25] Toimil Molares M E, Hohberger E M, Schaeflein Ch, Blick R.H, Neumann R, T rantmann C, Appl. Phys. Lett., 82, 2193, (2003)
    [26] Monson C F, Woolley A T, Nano Lett., 3,359, (2003)
    [27] Molares, M. E. T, Buschmann, V, Dobrev, D. Adv Mater, 13, 62, (2001)
    [28] Molares, M. E. T, Brotz J, Bushmann V., Dobrev D, Neumann R, Scholz R, Schuchert I U, Trautmann C. Vetter, J. Nucl. Instr. and Meth.B, 185, 192, (2001)
    [29] Liu Z W, Bando Y, Adv. Mater., 15, 303, (2003)
    [30] Yen M Y, Chiu C W, Hsia C H, Chen F R, Kai J J, Lee C Y, Chiu H T, Adv. Mater., 15,235, (2003)
    [31] Wang, Y. L, Herricks T, Xia Y N, Nano Lett., 3, 116, (2003)
    [32] Jana N. R, Gearheart L, Murphy C. J., Chem. Commun., 617, (2001)
    [33] El-Sayed, M. A. Ace. Chem.Res., 34, 257, (2001)
    [34] Murphy C.J, Jana N.R, Adv. Mater., 14, 80, (2002)
    [35] Jiang X, Xie,Y, Lu J, Zhu L, He W, Qian,Y. J. Mater. Chem.,11,1775, (2001)
    [36] Huang L, Wang H, Wang Z, Mitra A, Bozhilov K.N, Yan Y. Adv. Mater., 14, 61, (2002)
    [37] M. A. EI-Sayed, Ace. Chem. Res. 34, 257, (2001)
    [38] I. Lisieeki, F. Billoudet, M.P. Pileni, J. Phys. Chem. 100, 4160, (1996)
    [39] N. Arul Dhas, C. Paul Raj, A. Gedanken, Chem. Mater. 10, 1446, (1998)
    [40] 吴俊涛,周琼,甄红宇,王甲坤,吴其晔,橡胶工业,7,387,(1999)
    [41] X. Cao, F. Yu, L. Li, Z. Yao, Y. Xie, J. Cryst. Growth, 254, 164, (2003)
    [42] N. Anal Dhas, C. Paul Raj, A. Gedanken, Chem. Mater., 10, 1446, (1998)
    [43] G Tunell, T. Posnjak, C. J. Ksanda, Z. Kristallogr, 90, 120, (1935)
    [44] S. Asbrink L, J. Norrby, Acta Crystallogr. B, 26, 8, (1970)
    [45] M. Frietsch, F. Zudock, J. Goschnick, M. Bruns, Sens.Actuators.B, 65, 379, (2000)
    [46] T. Maruyama, Sol.Energy Mater.Sol.Cells, 56, 85, (1998)
    [47] L. Andrews, B. Liang, J. Li, B. E. Bursten, J Am.Chem.Soc., 125, 3126, (2003)
    [48] Y. Jiang, S. Decker, C. Mohs and K. J. Klabunde, J. Catal., 180, 24, (1998)
    [49] R. Ao, L Kummerl, D. Haarer, Adv. Mater., 7, 495, (1995)
    [50] 钟晓(摘译),可广泛应用的纳米氧化铜抗菌剂,化工新型材料,12,46,(2003)
    [51] 祖延兵,董庆华,武汉大学学报,41,185,(1995)
    [52] Matsuda Y, Teraji K., Denki Kagaku, 44, 363, (1976)
    [53] 刑雪坤,肖明,化学学报,,42,22,(1984)
    [54] Congkang Xu.,Mater.research bulletin, 37, 2356, (2002)
    [55] 洪伟良等,深圳大学学报(理工版),17,66,(2000)
    [56] 贾殿赠等,科学通报,43,172,(1998)
    [57] 罗元香,陆路德等,无机化学学报,18,1211,(2002)
    [58] 李冬梅,无机材料学报,16,1207,(2001)
    [59] 周根陶等,化学物理学报,10,381,(1997)
    [60] Zhong-shan Hong, Yong Cao. Mater.Letters, 52, 34, (2002)
    [61] Hui Wang, Jin-Zhong Xu. J.Crystal Growth, 244, 88, (2002)
    [62] Minhua Cao. Chem,Comm., 188, (2003)
    [63] Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY, J Phys. Chem. B, 108, 5547, (2004)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700