青蒿琥酯、氧化苦参碱对L929肿瘤细胞免疫抑制作用影响及相关分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:肿瘤是当今严重威害人类生命健康的重大疾病,发病率和死亡率都很高。用药物治疗肿瘤,是肿瘤治疗的重要措施。中药是我国宝贵的医药资源,研究抗瘤中药是研究抗瘤药物的重要领域。研究不同中药制剂的不同抗瘤作用及其相关分子机制,是临床正确选择和使用这些抗瘤中药制剂的重要依据。肿瘤细胞来源于机体正常细胞的突变。机体免疫功能,特别是NK细胞和T细胞功能,在对肿瘤的免疫监视,防止肿瘤的发生发展中具有重要作用。肿瘤细胞分泌免疫抑制物质抑制机体免疫功能,即肿瘤细胞免疫抑制作用,特别是对NK细胞和T细胞功能的抑制,是肿瘤细胞逃避机体免疫监视的重要机制,在促进肿瘤的发生发展中具有重要作用。因此,肿瘤的发生发展,不仅与机体的免疫功能,同时也与肿瘤细胞的免疫抑制作用密切相关。迄今已知可为肿瘤细胞分泌的免疫抑制分子约有20余种,其中报道较多且免疫抑制作用较强的有转化生长因子-β1(TGF-β1)、前列腺素E2(PGE2)、血管内皮生长因子(VEGF)和白细胞介素-10(IL-10)等。由于肿瘤细胞分泌的免疫抑制分子可在肿瘤局部形成深度免疫抑制“黑洞”区,不但身在其中的免疫细胞严重受抑,即使功能正常甚至活化的免疫细胞一旦进入,也将成为功能受抑的“沉默”细胞,结果使免疫细胞无能对其攻击清除,应是肿瘤逃避免疫监视得以发生发展的重要机制。显然,研究抗瘤中药制剂对肿瘤细胞免疫抑制作用影响及其相关分子机制具有重要意义。
     本室前期研究发现,L929肿瘤细胞(小鼠成纤维母细胞瘤)培养上清有免疫抑制作用,提示其有免疫抑制分子分泌。青蒿琥酯和氧化苦参碱,是两个有一定抗瘤作用的市售中药制剂,但目前国内外尚无青蒿琥酯和氧化苦参碱对L929肿瘤细胞免疫抑制作用影响及相关分子机制的研究报道。为此,本研究拟在前期工作基础上,研究青蒿琥酯和氧化苦参碱对L929肿瘤细胞免疫抑制作用影响及相关分子机制,为进一步深入揭示这两种中药制剂的抗瘤机理,指导临床正确选择和合理使用,提供实验和理论依据。
     方法:分别以含选定浓度青蒿琥酯(ART)或氧化苦参碱(MOX)的培液培养L929肿瘤细胞24h后,洗涤去除中药制剂,细胞再用不含中药制剂的培液连续作两次24h的再培养,分别留取第一次和第二次再培养的细胞和培养上清。其中,经ART作用后第一次再培养的细胞称为A-C1,第二次再培养的细胞称为A-C2,相应的上清分别称为A-S1和A-S2;经MOX作用后再培养的细胞分别称为O-C1和O-C2,上清分别称为O-S1和O-S2。以不含中药制剂培液作同步对照培养的细胞分别称为C-C1和C-C2,上清分别称为C-S1和C-S2。实验研究这些上清对小鼠脾细胞MTT法测定的NK杀伤和ConA诱导转化,以及直接免疫荧光FCM法分析的CD4+、CD8+、IL-2Rα、CD3ε+ζ+和CD3ε-ζ+表达共7项免疫功能指标的影响;定量ELISA法测定这些上清中TGF-β1、PGE2、VEGF和IL-10共4种免疫抑制分子的含量;以β-actin作内参照,RT-PCR法检测细胞中受影响最大的免疫抑制分子或其胞内合成限速酶的mRNA表达,表达强度以相对表达系数RC表示。将这些上清免疫抑制作用变化与相应上清中免疫抑制分子含量变化列表进行专业比对分析,以最大相似性推测两者的关系,然后作单因素相关统计分析,确定中药制剂影响L929肿瘤细胞对不同免疫功能指标免疫抑制作用的相关免疫抑制分子;将受影响最大的免疫抑制分子的上清中含量与其相应细胞内mRNA或其胞内合成限速酶mRNA表达强度进行单因素相关统计分析,明确中药制剂下调该分子分泌是发生在基因转录水平还是基因转录后水平。
     结果:
     1 L929单纯肿瘤细胞培养上清对小鼠脾细胞免疫功能指标的影响
     在以培液代替L929单纯肿瘤细胞培养上清的正常对照(C-nS)组,小鼠脾细胞NK杀伤率、ConA诱导转化的A值和CD4+、CD8+、IL-2Rα、CD3ε+ζ+、CD3ε-ζ+表达细胞百分率分别为65.39±0.87%、0.925±0.026、48.24±2.10%、19.23±0.60%、26.50±0.85%、21.67±1.29%和16.33%±0.18%。与C-nS组相比,在以不含中药制剂培液作同步对照培养的L929单纯肿瘤细胞培养上清(C-S1、C-S2)组,均可使所检测的这7项免疫功能指标明显受抑:C-S1组分别为60.97±3.86%(P<0.01)、0.440±0.038(P<0.01)、22.72±2.61%(P<0.01)、11.42±1.25%(P<0.01)、10.39±0.49%(P<0.001)、7.89±0.78%(P<0.001)和10.93%±0.16%(P<0.001),抑制率分别为8.34±4.55%、47.88%±1.89%、53.00±3.37%、40.71±4.65%、59.91%±0.77%、63.33±5.77%和33.05%±1.52% ; C-S2组分别为59.59±3.13%(P<0.01)、0.441±0.047(P<0.001)、21.89±2.18%(P<0.01)、12.15±0.65%(P<0.01)、9.76±0. 94%(P<0.001)、7.45±0.54%(P<0.001)和10.75%±0.59%(P<0.001);抑制率分别为9.79±3.95%、48.00%±2.16%、54.69±2.55%、36.85±1.41%、61.49±0.85%、65.63±0.87%和33.32%±0.25%;而C-S1组与C-S2组无统计学差异(均P>0.05)。
     2青蒿琥酯或氧化苦参碱作用后L929再培养上清对小鼠脾细胞免疫功能指标的影响
     经青蒿琥酯作用后的L929肿瘤细胞:⑴其第一次再培养上清(A-S1)与相应对照上清(C-S1)相比,除对CD8+表达的抑制作用无明显改变(P>0.05)外,对其余6项免疫功能指标的抑制作用均明显降低(分别为P<0.001,P<0.01,P<0.05,P<0.05,P<0.001,P<0.01);⑵其第二次再培养上清(A-S2)与A-S1相比:①对CD8+表达的抑制作用明显上升(P<0.05);②对CD3ε+ζ+表达的抑制作用明显回升(P<0.01),但未至相应对照C-S2水平(P<0.01);③对NK杀伤、ConA诱导转化和CD4+、IL-2Rα和CD3ε-ζ+表达的抑制均无显著变化(均P>0.05)。经氧化苦参碱作用后的L929肿瘤细胞:①其第一次再培养上清(O-S1)与相应对照上清(C-S1)相比,除对CD8+表达的免疫抑制作用无明显变化(P>0.05)外,对其余6项免疫功能指标的免疫抑制作用均明显降低(分别为P<0.05,P<0.01,P<0.05,P<0.05,P<0.001,P<0.01);②其第二次再培养上清(O-S2)与O-S1相比,除对CD3ε+ζ+表达的抑制作用明显回升外(P<0.05;但未至相应对照上清C-S2水平,P<0.01),对其余6项免疫功能指标(NK杀伤、ConA诱导转化和CD4+、CD8+、IL-2Rα和CD3ε-ζ+表达)的抑制作用均无显著变化(均P>0.05)。
     3青蒿琥酯或氧化苦参碱对L929肿瘤细胞4种免疫抑制分子分泌的影响
     未经中药制剂作用的L929肿瘤细胞可稳定分泌所测的4种免疫抑制分子(C-S1与C-S2相比,P>0.05),以TGF-β1及PGE2含量最高,分别为(198.15±3.23)pg/ml和(133.76±5.16)pg/ml,VEGF和IL-10含量较低,分别为(33.38±0.59)pg/ml和(27.31±0.37)pg/ml。
     经青蒿琥酯作用后的L929肿瘤细胞:①其第一次再培养上清(A-S1)与相应对照上清(C-S1)相比:4种免疫抑制分子的浓度均明显降低,分别为(99.05±8.02)pg/ml(P<0.001,降低50.01%)、(66.57±4.71)pg/ml(P<0.001,降低50.23%)、(21.03±0.87)pg/ml(P<0.01,降低36.99%)和(22.89±0.57)pg/ml(P<0.01,降低16.18%);②其第二次再培养上清(A-S2)与A-S1相比,除IL-10含量明显上升(P<0.05)外,其余3种分子含量无显著变化(均P>0.05)。
     经氧化苦参碱作用后的L929肿瘤细胞:①其第一次再培养上清(O-S1)与对照上清(C-S1)相比:4种免疫抑制分子的含量均明显降低(均P<0.01),分别为TGF-β1(91.35±9.62)pg/m(l降低53.89%),PGE2,(69.43±2.32)pg/ml(降低48.23%),VEGF(21.36±0.75)pg/ml (降低36.01%)和IL-10(22.84±0.33)pg/ml(降低16.37%)。②其第二次再培养上清(O-S2)与O-S1相比,4种免疫抑制分子含量均无显著变化(均P>0.05)。
     4青蒿琥酯和氧化苦参碱影响L929肿瘤细胞免疫抑制作用的相关分子分析
     专业和统计分析表明:①青蒿琥酯和氧化苦参碱下调L929肿瘤细胞对小鼠脾细胞ConA诱导转化及CD4+、IL-2Rα和CD3ε-ζ+表达的免疫抑制作用的相关分子是TGF-β1和PGE2 ;②青蒿琥酯下调L929肿瘤细胞对小鼠脾细胞NK杀伤的免疫抑制作用的相关分子是TGF-β1和PGE2;③氧化苦参碱下调L929肿瘤细胞对小鼠脾细胞NK杀伤的免疫抑制作用的相关分子是TGF-β1。
     5青蒿琥酯和氧化苦参碱对L929肿瘤细胞TGF-β1 mRNA和COX-2mRNA表达的影响
     在所测的L929肿瘤细胞分泌的4种免疫抑制分子中,受青蒿琥酯和氧化苦参碱影响最大的是TGF-β1和PGE2,而COX-2是PGE2的胞内合成限速酶,故测定TGF-β1 mRNA和COX-2 mRNA表达,可以揭示这两种中药制剂下调这两种免疫抑制分子分泌是发生在基因转录水平还是基因转录后水平。结果显示,未受中药制剂作用的L929肿瘤细胞可稳定高表达TGF-β1 mRNA和COX-2 mRNA(C-C1与C-C2相比,均P>0.05);中药制剂作用后再培养的L929肿瘤细胞(A-C1和A-C2、O-C1和O-C2)的TGF-β1 mRNA和COX-2 mRNA表达水平均显著降低(分别为:TGF-β1mRNA,P<0.001;COX-2 mRNA,P<0.005),其mRNA表达水平与上清中相应免疫抑制分子TGF-β1和PGE2含量之间呈显著正相关关系(分别为ART:r =1.000, P=0.000; r =0.992, P=0.008; MOX:r =0.997, P=0.003; r =0.995, P=0.005),表明两种中药制剂下调L929肿瘤细胞TGF-β1和PGE2的分泌是发生在基因转录水平。
     结论:
     1不经ART或MOX作用的L929肿瘤细胞,其培养上清可显著抑制所测小鼠脾细胞7项免疫功能指标(ConA诱导转化、NK杀伤及CD4+、CD8+、IL-2Rα、CD3ε+ζ+和CD3ε-ζ+表达);经ART或MOX作用后再培养的L929肿瘤细胞,其培养上清对这7项免疫功能指标的抑制作用显著降低。
     2不经ART或MOX作用的L929肿瘤细胞能稳定分泌所测4种免疫抑制分子(TGF-β1、PGE2、VEGF和IL-10);ART或MOX均能显著下调L929肿瘤细胞这4种免疫抑制分子分泌。
     3 ART下调L929肿瘤细胞对小鼠脾细胞ConA诱导转化、NK杀伤和IL-2Rα、CD4+及CD3ε-ζ+表达的免疫抑制作用的相关分子是TGF-β1和PGE2。
     4 MOX下调L929肿瘤细胞对小鼠脾细胞ConA诱导转化和IL-2Rα、CD4+及CD3ε-ζ+表达的免疫抑制作用的相关分子是TGF-β1和PGE2;下调L929肿瘤细胞对小鼠脾细胞NK杀伤的免疫抑制作用的相关分子是TGF-β1。
     5 ART和MOX下调L929肿瘤细胞TGF-β1和PGE2分泌与降低L929肿瘤细胞TGF-β1 mRNA和COX-2 mRNA表达相关。
Objective: Tumor is a kind of severe disease threatening the health and lives of human at present. The morbidity and mortality of patients with tumor are higher. Administrating drugs is an important measure in the process of treating tumors. The traditional Chinese drug (TCD) is a precious medicine resource in China. Investigating anti-tumor TCD is an important territory of investigating anti-tumor drugs. Studying the different anti-tumor effect and the related molecular mechanism of different traditional Chinese drug preparations (TCDP) is the important evidence of correctly selecting and using these TCDP clinically. Tumor cell is derived from mutation of normal cell in organism. The immune function of organism, especially the functions of natural killer cell (NK cell) and T cell, play an important role in immunologic surveillance against tumor and preventing the generation and development of tumor. That the tumor cells secrete immunosuppressive substances to inhibit immunofuctions, i.e the tumor-induced immunosuppression, especially to inhibit the immuofunctions of NK cells and T cells, was the important mechanism of making tumor escaping organism immunosurveillance and had important effect on promoting the generation and development of tumor. Thus, the generation and development of tumor is related not only to the immune function of organism, but also to immunosuppressive action induced by tumor cells closely. Up to now, it has been known that there are about twenty kinds of immunosuppressive molecules which could be secreted by tumor cells. Among these, those reported more frequently and having more intensive immunosuppression are transforming growth factorβ1 (TGF-β1), prostaglandin E2 (PGE2), vascular endothelial growth factor (VEGF) and interleukin-10 (IL-10). Tumor cells secrete these immunosuppressive molecules to form an extensive immunosuppressive“block hole”region in location of tumor, not only making that the immunocytes there are inhibited severely, but also that once the normal even activated immunocytes enter into there they would become function-inhibited“the silent cell”, resulting in that the immunocytes could not attack and eliminate the tumor cells, which should be an important mechanism that the tumor could escape immunosurveillance to generate and to develop. Obviously, it is of vital significance to study the effect of anti-tumor TCDP on the tumor-induced immunosuppression and the related molecular mechanism.
     Previous studies in our laboratory showed that supernatant from cultured L929 tumor cells had immunosuppression, suggesting there was secretion of immunosuppressive molecules from L929 tumor cells. Artesunate and Oxymatrine are the two kinds of TCDP with some anti-tumor effect. But, so far, there has been no report about the effect of Artesunate and Oxymatrine on the immunosuppression induced by L929 tumor cells and the related molecular mechanism. Therefore, on the basis of previous studies, we study the effect of Artesunate and Oxymatrine on immunosuppression induced by L929 tumor cells and the related molecular mechanism in order to further find out their antitumor mechanism, to guide effectively selecting and rationally using them in clinical and provide the evidences of experiment and theory.
     Methods: After cultured in complete medium(CM)containing the selected concentration of ART or MOX for 24h and washing off ART or MOX, the L929 tumor cells were re-cultured in CM without ART or MOX for sequential two times of 24h re-culture. The cells and supernatants from the two times of re-cutured L929 tumor cells were harvested respectively. Of them, for the L929 tumor cells treated with ART the cells and supernatant of the first re-culture called A-C1 and A-S1, and the cells and supernatant from the second re-culture called A-C2 and A-S2 respectively; for the L929 tumor cells treated with MOX the cells and supernatant from the first re-culture called O-C1 and O-S1, and the cells and supernatant from the second re-culture called O-C2 and O-S2 respectively. The cells and supernatants harvested from the synchronistically cultured L929 tumor cells in CM without ART or MOX as corresponding control called C-C1, C-S1, C-C2 and C-S2 respectively. Then the effect of different supernatants on seven immunofunctions of murine splenocytes, including NK killing and ConA-induced transformation detected by MTT, and expression levels of CD4+, CD8+, IL-2Rα, CD3ε+ζ+ and CD3ε-ζ+ detected by FCM of direct immunofluorescence were determined. The concentrations of four immunosuppressive molecules, including TGF-β1, PGE2, VEGF and IL-10 in different supernatants were measured by quantitative ELISA. The mRNA expression of the immunosuppressive molecule or its cell-intrinic synthesis rate-limiting enzyme of the immunosuppressive molecule that among the detected four kinds of immunosuppressive molecules secreted by L929 tumor cells its secretion was affected more highly by ART or MOX was detected by RT-PCR usingβ-actin as intrinsic reference. The mRNA expression level was shown by the relative coefficient (RC). The correlations between the congcentrations of immunosuppressive molecules in supernatants and the immunosuppressions of corresponding supernatants were analysed based on professional and statistical analysis to determine the relative molecules that ART and MOX down-regulated the immunosuppression induced by L929 tumor cells. For the immunosuppressive molecule that the inhibitory effect of ART or MOX on its secretion from L929 tumor cells was more higher, using the single-analysis of correlativity the relative correlation between its supernatant' concentration and its mRNA expression or its synthysis rate-limiting enzyme mRNA expression was determined to estimate that the ART or MOX down-regulated the molecule' secretion happened at either gene transcription or post-transcription.
     Results:
     1 The effect of supernatants from cultured L929 tumor cells on the immunofunctions of murine splenocytes
     In the normal control group replacing supernatant from cultured L929 tumor cells with CM, i.e C-nS group, the detected values of the seven kinds of murine splenocytes' immunofunctions were 65.39±0.87% (NK killing rate), 0.925±0.026 ( A value of ConA-induced transformation),48.24±2.10%(CD4+cells),19.23±0.60% (CD8+ cells),26.50±0.85%(IL-2Rα+cells),21.67±1.29% (CD3ε+ζ+ cells) and 16.33%±0.18% (CD3ε-ζ+ cells). Compared with the C-nS group, the supernatants(C-S1 and C-S2) from synchronistically cultured L929 tumor cells treated without ART or MOX as corresponding control inhibited all of the seven immunofunctions apparently:①in C-S1 group the detected values of the seven kinds of murine splenocytes' immunofunctions respectively were (60.97±3.86)% (NK killing rate ,P<0.01), 0.440±0.038 (A value of ConA-induced transformation, P<0.01), (22.72±2.61)% (CD4+cells, P<0.01), (11.42±1.25)% (CD8+ cells,P<0.01), (10.39±0.49)% (IL-2Rα+cells,P<0.001), (7.89±0.78)% (CD3ε+ζ+cells,P<0.001) and (10.93%±0.16)% (CD3ε-ζ+ cells,P<0.001),and the corresponding inhibitory rate respectively were (8.34±4.55)%, (47.88%±1.89)%, (53.00±3.37)%, (40.71±4.65)%, (59.91%±0.77)%, (63.33±5.77)% and (33.05%±1.52)%;②in C-S2 group the detected values of the seven kinds of murine splenocytes' immunofunctions respectively were (59.59±3.13)% (P<0.01), 0.441±0.047 (P<0.001), (21.89±2.18)%(P<0.01),(12.15±0.65)%(P<0.01),(9.76±0. 94)%(P<0.001), (7.45±0.54)%(P<0.001) and( 10.75%±0.59 ) % ( P<0.001), and the corresponding inhibitory rate respectively were (9.79±3.95)%,(48.00%±2.16)%,(54.69±2.55)%,(36.85±1.41)%,(61.49±0.85)%,(65.63±0.87)%, (33.32%±0.25)%; while the C-S1 group compared with C-S2 groups these values had no changes (P>0.05).
     2 The effect of supernatant from L929 treated with ART or MOX on the immunofunctions of murine splenocytes
     For L929 tumor cells after treated with ART:⑴The first re-culture' supernatant (A-S1) compared with C-S1, the inhibitory effect of A-S1 on the others six immunofunctions except for CD8+ (P>0.05) decreased greatly (P<0.001,P<0.01,P<0.05,P<0.05,P<0.001,P<0.01, respectively);⑵The second re-culture' supernatant (A-S2) compared with A-S1:①The inhibition of CD8+ expression increased greatly(P<0.05);②The inhibitory effect on CD3ε+ζ+ expression increased significantly(P<0.01),but had not reached the level of C-S2 (P<0.01);③The inhibitory effect on the NK killing rate , A of ConA-induced transformation and expression of CD4+,IL-2Rαas well as CD3ε-ζ+ had no changes (All P>0.05).
     For L929 tumor cells after treated with MOX:①The first re-culture' supernatant (O-S1) compared with C-S1, the inhibitory effect on the others six immunofunctions except for CD8+ (P>0.05) decreased greatly (P<0.05,P<0.01,P<0.05,P<0.05,P<0.001,P<0.01, respectively);②The inhibitory effect on CD3ε+ζ+expression increased markedly(P<0.05),but had not reached the level of C-S2 (P<0.01);③The inhibitory effect on the NK killing rate , A of ConA-induced transformation and the expression of CD4+ ,CD8+,IL-2Rαas well as CD3ε-ζ+ had no changes (All P>0.05).
     3 The effect of ART and MOX on secretion of four kinds of immunosuppressive molecules from L929 tumor cells
     The L929 tumor cells treated without any TCDP secrete the four kinds of immunosuppressive molecules steadily (C-S1 VS C-S2, all P>0.05), the concentrations of TGF-β1 and PGE2 were more higher(:198.15±3.23)pg/ml and(133.76±5.16)pg/ml respectively, and the concentrations of VEGF and IL-10 were relatively lower: (33.38±0.59)pg/ml and(27.31±0.37)pg/ml respectively. For L929 tumor cells after treated with ART:①The first re-culture' supernatant (A-S1) compared with corresponding C-S1: the concentrations of TGF-β1, PGE2, VEGF and IL-10 in A-S1 decreased greatly:(99.05±8.02)pg/ml( P <0.001, decreased 50.01%), PGE2(66.57±4.71)pg/ml(P <0.001, decreased 50.23%), VEGF(21.03±0.87)pg/ml(P <0.01, decreased 36.99%)and IL-10(22.89±0.57)pg/ml(P <0.01, decreased 16.18%)respectively;②The second re-culture' supernatant (A-S2) compared with A-S1, the concentration of IL-10 increased highly(P<0.05), and the others had no changes(All P>0.05).
     For L929 tumor cells after treated with MOX:①The first re-culture' supernatant (O-S1) compared with corresponding C-S1: the concentrations of TGF-β1, PGE2,VEGF and IL-10 in O-S1 decreased greatly: TGF-β1(91.35±9.62)pg/ml(decreased 53.89%), PGE2(69.43±2.32)pg/ml(decreased 48.23%), VEGF(21.36±0.75)pg/ml (decreased 36.01%)and IL-10(22.84±0.33)pg/ml(decreased 16.37%)(all P<0.01)respectively;②The second re-culture' supernatant (O-S2) compared with O-S1, the concentrations of the four kinds of immunosuppressive molecules had no changes(all P>0.05).
     4 The analysis of related molecules to the effect of ART and MOX on the immunosuppression induced by L929 tumor cells
     The professional and statistical analysis demonstrated:①The related molecules to that ART and MOX down-regulated immunosuppression induced by L929 tumor cells on the ConA-induced transformation and the expression of CD4+,IL-2Rαand CD3ε-ζ+of murine splenocytes were TGF-β1 and PGE2.②The related molecules to that ART and MOX down-regulated immunosuppression induced by L929 tumor cells on the NK killing were TGF-β1and PGE2.③The related molecules to that MOX down-regulated immunosuppression induced by L929 tumor cells on the NK killing was TGF-β1.
     5 The effect of ART and MOX on the expression of TGF-β1 mRNA and COX-2mRNA in L929 tumor cells
     In all the detected four kinds of molecules secreted by L929 tumor cells the secretions of TGF-β1 and PGE2 were affected more higher by ART and MOX. The COX-2 was cell-intrinic synthesis rate-limiting enzyme of PGE2. Detecting the expression of TGF-β1 mRNA and COX-2 mRNA could reveal that the two kinds of TCDP down-regulated the secretions of TGF-β1 and PGE2 happened at either gene transcription or post-transcreption. The results demonstrated①In the L929 tumor cells treated without any TCDP, TGF-β1 mRNA and COX-2 mRNA were expressed highly and steadily (C-C1 VS C-C2 , all P>0.05);②In the L929 tumor cells treated with ART and MOX , the expression of TGF-β1 mRNA and COX-2 mRNA were decreased significantly(A-C1 vs C-C1,O-C1 vs C-C1,A-C2 vs C-C2 and O-C2 vs C-C2: TGF-β1 mRNA,P<0.001; COX-2 mRNA,P<0.005). That ART and MOX down-regulated the secretion of TGF-β1 and PGE2 from L929 tumor cells was positively related to down-regulating the transcription of TGF-β1 mRNA and COX-2 mRNA significantly(after treated with ART : r =1.000, P=0.000; r =0.992, P=0.008; after treated with MOX : r =0.997, P=0.003; r =0.995, P=0.005). Demonstrating that the two kinds of TCDP down-regulated the secretion of TGF-β1 and PGE2 from L929 tumor cells happened at gene transcription.
     Conclusion:
     1 The supernatants from cutured L929 tumor cells treated without ART or MOX could inhibit all of the detected seven immunofunctions (ConA-induced transformation, NK killing, and expression of CD4+,CD8+, IL-2Rα, CD3ε+ζ+andCD3ε-ζ+) of mouse splenocytes significantly. The immunosuppressive effect of supernatants from cutured L929 tumor cells treated with ART or MOX on all of the detected seven immunofunctions was reduced markedly.
     2 The L929 tumor cells treated without ART or MOX could secrete all of the detected four immunosuppressive molecules(TGF-β1,PGE2,VEGF and IL-10)steadily. The secretion of the detected four kinds of immunosuppressive molecules from L929 tumor cells treated with ART or MOX was down-regulated greatly.
     3 The related immunosuppressive molecules that ART down-regulated the immunosuppressive effect of L929 tumor cells on the ConA-induced transformation, NK killing and expression of CD4+, IL-2Rαand CD3ε-ζ+ of murine splenocytes were TGF-β1and PGE2.
     4 The related molecules that MOX down-regulated the immunosuppressive effect of L929 tumor cells on expression of CD4+, IL-2Rαand CD3ε-ζ+ of murine splenocytes were TGF-β1 and PGE2. The related molecule that MOX down-regulated the immunosuppressive effect of L929 tumor cells on murine splenocytes’NK killing was TGF-β1.
     5 That ART and MOX down-regulated the secretion of TGF-β1 and PGE2 from L929 tumor cells was positively related to down-regulating the expression of TGF-β1 mRNA and COX-2 mRNA significantly.
引文
1 李嘉,刘善超,刘英菊,等,肿瘤标志物与诊断技术.大学化学,2004,19(1):1-9
    2 曾益新. 肿瘤学. 人民卫生出版社,2003,第二版
    3 孙燕,石远凯. 临床肿瘤内科手册.人民卫生出版社,2007,第 5 版
    4 Ahmadzadeh M, Rosenberg SA. TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J Immunol, 2005, 174(9): 5215-5223
    5 Weber F, Byrne SN, Le S, et al. Transforming growth factor-beta1 immobilises dendritic cells within skin tumours and facilitates tumour escape from the immune system. Cancer Immunol Immunother, 2005, 54(9): 898-906
    6 Pockaj BA, Basu GD, Pathangey LB, et al. Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 over-expression and prostaglandin E2 secretion in patients with breast cancer. Ann Surg Oncol, 2004,11(3): 328-339
    7 Wang H, Xie X, Lu W, et al. Ovarian carcinoma cells inhibit T cell proliferation: suppression of IL-2 receptor beta and gamma expression and their JAK-STAT signaling pathway. Life Sci, 2004, 74(14): 1739-1749
    8 杨萍,程爱明,李程. 恶性肿瘤患者 T 细胞亚群和 NK 活性及 sIL-2R 检测分析. 肿瘤防治杂志,2004,11(1):79-81
    9 Sarah G.Harris, Josue Padilla, Laura Koumas et al. Prostaglandins as modulators of immunity.Trends in Immunology,2002, 23(3):144-150
    10 Kim ES, Kim MS, Moon A. Transforming growth factor (TGF)-beta in conjunction with H-ras activation promotes malignant progression of MCF10A breast epithelial cells. Cytokine, 2005, 29(2): 84-91
    11 Weber F, Byrne SN, Le S, et al. Transforming growth factor-beta1 immobilises dendritic cells within skin tumours and facilitates tumour escape from the immune system. Cancer Immunol Immunother, 2005, 54(9): 898-906
    12 Knottenbelt C, Mellor D, Nixon C, et al. Cohort study of COX-1 and COX-2 expression in canine rectal and bladder tumours. J Small Anim Pract, 2006, 47(4): 196-200
    13 Xiaoyan Cui , Seok-Chul Yang , Sherven Sharma, et al.IL-4 regulates COX-2 and PGE2 production in human non-smallcell lung cancer Biochemical and Biophysical Research Communications , 2006,343: 995-1001
    14 Naoki Oka , Akio Soeda , Akihito Inagaki ,et al. VEGF promotes tumorigenesis and angiogenesisof human glioblastoma stem cells. Biochemical and Biophysical Research Communications , 2007,360: 553-559
    15 SredniB,WeilM,KhomenokG,etal. Ammonium trichloro (dioxoethyene- o,o’) tellurate (AS101)sensitizes tumors to chemotherapy by inhibiting the tumor interleukin 10 autocrine loop. Cancer Res, 2004, 64(5): 1843-1852
    16 Roitt I, Brostoff J, Male D. Immunology. Harcount Asia Pte Ltd, 2001, sixth edition
    17 Kang HG, Chae MH, Park JM, et al. Polymorphisms in TGF-beta1 gene and the risk of lung cancer. Lung Cancer, 2006, 52(1): 1-7
    18 Komiyama SI, Aoki D, Katsuki Y, et al. Proliferative activity of early ovarian clear cell adenocarcinoma depends on association with endometriosis. Eur J Obstet Gynecol Reprod Biol, 2006, [Epub ahead of print]
    19 Xu Q, Wang S, Xi L, et al. Effects of human papillomavirus type 16 E7 protein on the growth of cervical arcinoma cells and immuno-escape through the TGF-beta1 signaling pathway. Gynecol Oncol, 2006, 101(1): 132-139
    20 Bellone G, Smirne C, Mauri FA, et al. Cytokine expression profile in human pancreatic carcinoma cells and in surgical specimens: implications for survival. Cancer Immunol Immunother, 2006, 55(6): 684-698
    21 Kim ES, Kim MS, Moon A. Transforming growth factor (TGF)-beta in conjunction with H-ras activation promotes malignant progression of MCF10A breast epithelial cells. Cytokine,2005, 29(2): 84-91
    22 Yira Bermudez , Hua Yang , Beatriz O. Saunders , et al. VEGF and LPA induced telomerase in human ovarian cancer cells is Sp1-dependent. Gynecologic Oncology , 2007, 106:526-537
    23 Lewis MP, Lyboe KA, Nystrom ML, et al. Tumor-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/S-dependent invasion of squamous carcinoma cells. Br J Cancer, 2004, 90(4): 822-832
    1 Lewis MP, Lyboe KA, Nystrom ML, et al. Tumor-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer, 2004, 90(4): 822-832
    2 Pockaj BA, Basu GD, Pathangey LB, et al. Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 over-expression and prostaglandin E2 secretion in patients with breast cancer. Ann Surg Oncol, 2004, 11(3): 328-339
    3 SredniB,WeilM,KhomenokG,etal.Ammoniumtrichloro (dioxoethyene- o,o’) tellurate (AS101)sensitizes tumors to chemotherapy by inhibiting the tumor interleukin 10 autocrine loop. Cancer Res, 2004, 64(5): 1843-1852
    4 Kim ES, Kim MS, Moon A. Transforming growth factor (TGF)-beta in conjunction with H-ras activation promotes malignant progression of MCF10A breast epithelial cells. Cytokine, 2005, 29(2): 84-91
    5 Weber F, Byrne SN, Le S, et al. Transforming growth factor-beta1 immobilises dendritic cells within skin tumours and facilitates tumour escape from the immune system. Cancer Immunol Immunother, 2005, 54(9): 898-906
    6 Knottenbelt C, Mellor D, Nixon C, et al. Cohort study of COX-1 and COX-2 expression in canine rectal and bladder tumours. J Small Anim Pract, 2006, 47(4): 196-200
    7 杨丽娟,王润田,刘京生,等. 猪苓多糖对 S180 肿瘤培养上清免疫抑制作用影响的研究. 细胞与分子免疫学杂志,2004,20(2):234-237
    8 崔 澂,王润田,佟慧,等. 青蒿琥酯和苦参素对 Colon26 肿瘤细胞免疫抑制的影响.现代免疫学杂志,2006,26 (2):152-156
    9 崔 澂,王润田,佟慧,等.氧化苦参碱下调小鼠 Colon26 肿瘤细胞免疫抑制作用的体外实验.第四军医大学学报,2006,27 (21):1969-1972
    10 崔 澂,王润田,佟慧等. As2O3 下调 Colon26 肿瘤细胞免疫抑制分子分泌的体外研究.中华微生物学和免疫学杂志,2006,26(1):36-40
    11 马凌娣,文世宏,张彦,等. 氧化苦参碱对H22荷瘤小鼠的抑瘤作用及对免疫功能的影响. 中草药,2004, 35(12):1374-1377
    12 季敬璋,胡璟谊,吕建新. 牛膝多糖对CD4+ T 细胞的诱导和分化作用研究. 中国病理生理杂志,2006,22(2):228-23
    13 李贵海,潘成业,孙付军,等.不同生物碱对小鼠 S(180) 肉瘤细胞获得性多药耐药相关生物因子表达的干预.中国中医基础医学杂志,2006,12(8):585-588
    14 陈明伟,倪 磊,赵小革,等. 人参皂甙Rg3 对肿瘤血管生长调控因子蛋白表达抑制作用的研究. 中国中药杂志,2005 ,30 (5):357-360
    15 张俊文,王丕龙.三氧化二砷诱导胃癌细胞凋亡及其对 C-myc 和 TGF-β1 表达的影响. 胃肠病学和肝病学杂志,2006,15(1):7-9
    16 安云庆,姚智. 免疫细胞. 见:陈慰峰,主编. 医学免疫学. 第 4 版. 北京:人民卫生出版社,2004,93-103
    17 韩扬,李长岭,鲁力,等. 肾细胞癌和膀胱癌患者的 T 和 NK 细胞 ζ 链水平与临床意义. 中华肿瘤杂志,2004,26(3):158-160
    18 Ahmadzadeh M, Rosenberg SA. TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J Immunol, 2005, 174(9): 5215-5223
    19 Castriconi R, Cantoni C, Chiesa MD, et al. Transforming growth factor-β1 inhibits expression of NKp30 and NKG2D receptors: Consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA, 2003, 100(7): 4120-4125
    20 Azuma T, Takahashi T, Kunisato A, et al. Human CD4+CD25+regulatory T cells suppress NKT cell function. Cancer Res, 2003, 63(15): 4516-4520
    21 Hsiao YW, Liao KW, Hung SW, et al. Tumor-infiltrating lymphocyte secretion of IL-6 antagonizes tumor-derived TGF-beta and restores the lymphokine-activated killing activity. J Immunol, 2004, 172(3): 1508-1514
    22 Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol, 2002, 169(5): 2756-2761
    23 Shibata M, Nezu T, Kanon H, et al. Decreased production of interleukin-12 and type 2 immune responses are marked in cachectic patients with colorectal and gastric cancer. J Clin Gastroenterol, 2002, 34(4): 416-420
    24 Yamazaki K, Yano T, Kameyama T, et al. Clinical significance of serum Th1/Th2 cytokines in patients with pulmonary adnecarcinoma. Surgery, 2002, 131(1): 236-241
    25 杨萍,程爱明,李程. 恶性肿瘤患者 T 细胞亚群和 NK 活性及 sIL-2R 检测分析. 肿瘤防治杂志,2004,11(1):79-81
    26 Contini P, Ghio M, P oggi A, et al. Soluble HLA-A, -B, -C and -G molecules induce apoptosis in T and NK CD8+ cells and inhibit cytotoxic T cell activity through CD8 ligation. Immunol, 2003, 33(1): 125-134
    27 赵慧丰,高燕,杜涌瑞,等.异基因骨髓源间充质干细胞对 BXSB 小鼠 T、B 细胞的影响。中国免疫学杂志,2008,24(3):195-199
    28 袁军,吴军,解志杰,等. 体外抗原诱导小鼠 T 细胞对 NK 细胞功能的抑制及可能分子机制研究. 中国免疫学杂志,2007,23(12):1083-1086
    29 韩扬,李长岭,鲁力,等. 肾细胞癌和膀胱癌患者的 T 和 NK 细胞 ζ 链水平与临床意义. 中华肿瘤杂志,2004,26(3):158-160
    30 王长印,邹雄,车至香,等. 消化道肿瘤患者 Th1/Th2 细胞的监测和分析. 现代免疫学,2004,24(1):72-76
    31 陈海金,张瑞琴. MTT 法分析青蒿素对人癌细胞系 Hela 细胞的体外细胞毒作用. 中国肿瘤临床与康复,2004,11(1):30-31
    32 赵君宁,何一然,张振玉等. 青蒿琥酯对人胃癌细胞增殖及凋亡的影响.中国癌症杂志,2005,15(4):347-350
    33 李哲,袁守军,聂丽平,等. 青蒿琥酯诱导肿瘤细胞凋亡与抑制存活蛋白表达有关. 中国临床药理学与治疗学,2004,9(6):607-611
    34 许惠玉,汪广阴. 中药单体及有效成分诱导肿瘤细胞凋亡的免疫学机制研究述要. 中医药学刊,2004,18(7):262-265
    35 邵钦树,叶再元,凌志强. 三氧化二砷诱导人胃癌MKN45细胞凋亡及其分子机制的初步研究. 中华胃肠外科杂志,2004,7(1):55-57
    36 邵钦树,叶再元,凌志强. 三氧化二砷诱导人胃癌MKN45细胞凋亡及其分子机制的初步研究. 中华胃肠外科杂志,2004,7(1):55-57
    37 姚金凤,吴春丽,陈慧霞,等.黄芪多糖对 HL260 细胞端粒酶活性的作用. 河南肿瘤学杂志,2005,18(4):247-24
    38 李桂生,杨春旭,韦晓谋,等.蝎毒对人肝癌 Bel27404 细胞端粒酶活性的影响. 东南大学学报,2004,23(3) 166)169
    39 黄富春,范 钰,郑树.榄香烯乳对结肠癌 Lovo 细胞端粒酶活性、细胞凋亡及细胞周期的影响.医药导报,2004,23(10):712-714
    40 邓惠,罗焕敏,黄丰,等. 氧化苦参碱对 U251 胶质瘤细胞的增殖抑制和原癌基因表达的影响. 中国药理学通报,2004, 20(8):893-895
    41 张俊文,王丕龙.三氧化二砷诱导胃癌细胞凋亡及其对C-myc 和TGF-β1 表达的影响. 胃肠病学和肝病学杂志,2006,15(1):7-9
    42 戴碧涛,蒋纪恺,王付丽,等. 氧化苦参碱联合抗肿瘤药抑制K562细胞增殖的研究. 第三军医大学学报,2005, 27(5):392-394
    43 丁新民,保庭毅,杨增悦,等. 三氧化二砷对前列腺癌 PC-3 细胞周期的阻滞作用. 中国临床康复,2005,9(2):174-175
    44 朱玉娟,周爱玲,茅家慧,等. 苦参素对实验性肝癌 PCNA、cyclinD1、CDK4 表达的影响. 中国临床药理学与治疗学,2005, 10(1):52-56
    45 种铁,牛建强,王子明,等. 苦参碱抑制人肾癌细胞系GRC21 细胞株增殖和促凋亡的实验研究.中西医结合学报,2006,4(4):388-391
    46 Chen HH, Zhou HJ, Wu GD, et al. Inhibitory effects of artesunate on angiogenesis and on expressions of vascular endothelial growth factor and VEGF receptor KDR/flk-1. Pharmacology,2004,71(1):1-9
    47 Dell'Eva R, Pfeffer U, Vene R, et al. Inhibition of angiogenesis in vivo and growth of Kaposi's sarcoma xenograft tumors by the anti-malarial artesunate. Biochem Pharmacol,2004,68(12):2359-2366
    48 陈明伟,倪 磊,赵小革,等. 人参皂甙Rg3 对肿瘤血管生长调控因子蛋白表达抑制作用的研究. 中国中药杂志,2005 ,30 (5):357-360
    49 陈刚,徐晓玉,严鹏科,等. 川芎嗪和丹参对小鼠 Lewis 肺癌生长的抑制作用与抑制血管生成的关系. 中草药,2004,35(3):296-299
    50 孙付军,王宁,李贵海,等. 氧化苦参碱对获得性多药耐药小鼠 S180 肿瘤细胞基因表达产物 P170、LRP 及 TOPO 表达的影响. 中药材,2004;27(11):838-840
    51 赵 芳,张茂宏,李丽珍,等. 表没食子儿茶素没食子酸酯逆转人白血病细胞多药耐药性及机制研究. 临床血液学杂志,2005,18(1):33-36
    52 李贵海,潘成业,孙付军,等.不同生物碱对小鼠 S(180) 肉瘤细胞获得性多药耐药相关生物因子表达的干预.中国中医基础医学杂志,2006,12(8):585-588
    53 范青,范广俊,赵瑾瑶,等. 川芎嗪脂质体对人白血病细胞株 K562 多药耐药逆转作用的研究. 中国药师,2004,7(10):753-755
    54 梅英,石毓君,左国庆,等. 川芎嗪逆转 HepG2/ADM 细胞多药耐药性的体外研究. 中国中药杂志,2004,29(10):970-973
    55 张金廷,崔慧先,李庆星,等. 苦参碱对KB细胞及其多药耐药细胞KBv200的凋亡诱导作用.华西口腔医学杂志,2005,23(3):254-257
    56 聂蕾, 殷隆, 尹少甫. 青蒿琥酯诱导人早幼粒白血病细胞HL60 凋亡的线粒体机制. 中国临床药理学与治疗学,2005 ,10 (2) :176-179
    57 杨丽娟,王润田,刘京生,等.黄芪对 S180 肿瘤培养上清免疫抑制作用的影响.中国肿瘤生物治疗杂志,2003,10(3):210-213
    1 Lewis MP, Lyboe KA, Nystrom ML, et al. Tumor-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/S-dependent invasion of squamous carcinoma cells. Br J Cancer, 2004, 90(4): 822-832
    2 Kim ES, Kim MS, Moon A. Transforming growth factor (TGF)-beta in conjunction with H-ras activation promotes malignant progression of MCF10A breast epithelial cells. Cytokine,2005,29(2): 84-91
    3 Pockaj BA, Basu GD, Pathangey LB, et al. Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 over-expression and prostaglandin E2 secretion in patients with breast cancer. Ann Surg Oncol, 2004, 11(3): 328-339
    4 Sredni B, Weil M, Khomenok G, et al. Ammonium trichloro (dioxoethyene- o, o’) tellurate (AS101) sensitizes tumors to chemotherapy by inhibiting the tumor interleukin 10 autocrine loop. Cancer Res, 2004, 64(5): 1843-1852
    5 Wei-Qing Xu , Xu-Cheng Jiang , Lin Zheng , et al. Expression of TGF-β1, TβRII and Smad4 in colorectal carcinoma. Experimental and Molecular Pathology, 2007,82:284-291
    6 Bairey O, Boycov O, Kaganovsky E, et al. All three receptors for vascular endothelial growth factor (VEGF) are expressed on B-chronic lymphocytic leukemia(CLL ) cells. Leuk Res, 2004, 28(3): 221-222
    7 Weber F, Byrne SN, Le S, et al. Transforming growth factor-beta1 immobilises dendritic cells within skin tumours and facilitates tumour escape from the immune system. Cancer Immunol Immunother, 2005, 54(9): 898-906
    8 Knottenbelt C, Mellor D, Nixon C, et al. Cohort study of COX-1 and COX-2 expression in canine rectal and bladder tumours. J Small Anim Pract, 2006, 47(4): 196-200
    9 Hajos S, Waldner C. IL-2, IL-10, IL-15 and TNF are key regulators ofmurine T-cell lymphoma growth. Int J Mol Med, 2003, 12(4): 627-632
    10 Sarah G.Harris, Josue Padilla, Laura Koumas et al. Prostaglandins as modulators of immunity.Trends in Immunology,2002, 23(3):144-150
    11 Yira Bermudez , Hua Yang , Beatriz O. Saunders , et al. VEGF- and LPA-induced telomerase in human ovarian cancer cells is Sp1-dependent. Gynecologic Oncology , 2007, 106:526-537
    12 Naoki Oka ,Akio Soeda ,Akihito Inagaki ,et al. VEGF promotes tumorigenesis and angiogenesisof human glioblastoma stem cells. Biochemical and Biophysical Research Communications , 2007,360: 553-559
    13 Ahmadzadeh M, Rosenberg SA. TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J Immunol, 2005, 174(9): 5215-5223
    14 Li Hao, Chunhui Zhang, Yuhua Qiu ,et al. Recombination of CXCR4, VEGF, and MMP-9 predicting lymph node metastasis in human breast cancer. Cancer Letters , 2007, 253:34–42
    15 Xiao-Song Zhong , Ling-Zhi Liu , Heath D. Skinner ,et al. Mechanism of vascular endothelial growth factor expression mediated by cisplatin in human ovarian cancer cells. Biochemical and Biophysical Research Communications , 2007,358:92-98
    16 Ji YK, Wonhee H, Jin SW, et al. Selective COX-2 inhibitor, NS-398, suppresses cellular proliferation inhuman hepatocellular carcinoma cell lines via cell cycle arrest. World J Gastroenterology, 2007, 13(8): 1 175-1181
    17 Weigang He, Qiuyan Liu, Li Wang,et al. TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Molecular Immunology , 2007, 44: 2850-2859
    18 赵君宁,何一然,张振玉等. 青蒿琥酯对人胃癌细胞增殖及凋亡的影响.中国癌症杂志,2005,15(4):347-350
    19 周艳,顾星星,胡亚娥,等. 三氧化二砷对肝癌细胞株SMMC-7721、HepG抑制作用的研究. 南通医学院学报,2005,25(1):10-12
    20 龙友,王云,张永昶,等. 苦参碱对人肺癌SPC-A-1细胞作用的研究.实用医学杂志,2006,22(13):1483-1485
    21 张金廷,崔慧先,李庆星,等. 苦参碱对KB细胞及其多药耐药细胞KBv200的凋亡诱导作用.华西口腔医学杂志,2005,23(3):254-257
    22 丁新民,保庭毅,杨增悦,等. 三氧化二砷对前列腺癌 PC-3 细胞周期的阻滞作用. 中国临床康复,2005,9(2):174-175
    23 Dell'Eva R, Pfeffer U, Vene R, et al. Inhibition of angiogenesis in vivo and growth of Kaposi's sarcoma xenograft tumors by the anti-malarial artesunate. Biochem Pharmacol,2004,68(12):2359-2366
    24 石璐,陈军刚,严啸薇. 黄芪注射液对含阿霉素方案化疗毒副反应的影响. 中医药临床杂志,2005,17(1):12-14
    25 杨志强,王润田,崔澂,等. 中药复方抑瘤饮影响荷 S180 瘤小鼠免疫功能的动态研究. 现代免疫学,2006,26(1):64-68
    26 宋文广, 王毅峰, 杨连秀, 等.艾迪配合化疗治疗复发转移乳腺癌临床观察.中华肿瘤防治杂志,2006,13(16):1275-1280
    27 姚金凤,吴春丽,陈慧霞,等. 黄芪多糖对 HL260 细胞端粒酶活性的作用. 河南肿瘤学杂志,2005,18(4):247-249
    28 李桂生,杨春旭,韦晓谋,等.蝎毒对人肝癌 Bel27404 细胞端粒酶活性的影响. 东南大学学报,2004,23(3) 166)169
    29 陈明伟,倪 磊,赵小革,等. 人参皂甙 Rg3 对肿瘤血管生长调控因子蛋白表达抑制作用的研究.中国中药杂志,2005,30(5):357-360
    30 徐彩菊,丁钢强,孟佳, 等. 中药三叶青提取物抗肿瘤机制初探中国卫生检验杂志,2006,16(1):14-16
    31 张小梅,伦永志,王仁军,等. 黄芪成分 F3 新制剂抗肿瘤免疫机理的研究. 免疫学杂志,2005,21(1):78-78
    32 周艳,顾星星,胡亚娥,等. 三氧化二砷对肝癌细胞株SMMC-7721、HepG抑制作用的研究. 南通医学院学报,2005,25(1):10-12
    33 金艳书,吴学敏,娄金丽.苦参碱对人肝癌细胞增殖、细胞周期及细胞凋亡的影响.中国临床康复, 2006,20(3):107-109
    34 樊 嵘, 谢 红, 杨 磊, 等.青蒿素及其衍生物抑制K562 细胞生长作用比较. 武警医学院学报,2006,15(13):199-201
    35 丁新民,保庭毅,杨增悦,等. 三氧化二砷对前列腺癌 PC-3 细胞周期的阻滞作用. 中国临床康复,2005,9(2):174-175
    36 戴碧涛,蒋纪恺,王付丽,等. 苦参碱联合抗肿瘤药抑制K562细胞增殖的研究. 第三军医大学学报,2005, 27(5):392-394
    37 朱玉娟,周爱玲,茅家慧,等. 苦参素对实验性肝癌 PCNA、cyclinD1、CDK4 表达的影响. 中国临床药理学与治疗学,2005, 10(1):52-56
    38 Chen HH, Zhou HJ, Wu GD, et al. Inhibitory effects of artesunate on angiogenesis and on expressions of vascular endothelial growth factor and VEGF receptor KDR/flk-1. Pharmacology,2004,71(1):1-9
    39 Dell'Eva R, Pfeffer U, Vene R, et al. Inhibition of angiogenesis in vivo and growth of Kaposi's sarcoma xenograft tumors by the anti-malarial artesunate. Biochem Pharmacol,2004,68(12):2359-2366
    40 杨丽娟,王润田,刘京生,等. 黄芪对 S180 肿瘤培养上清免疫抑制作用的影响. 中国肿瘤生物治疗杂志,2003,10(3):210-213
    41 杨丽娟,王润田,刘京生,等. 猪苓多糖对 S180 肿瘤培养上清免疫抑制作用影响的研究. 细胞与分子免疫学杂志,2004,20(2):234-237
    42 崔 澂,王润田,佟慧,等. 青蒿琥酯和苦参素对 Colon26 肿瘤细胞免疫抑制的影响.现代免疫学杂志,2006,26 (2):152-156
    43 崔 澂,王润田,佟慧,等. 氧化苦参碱下调小鼠 Colon26 肿瘤细胞免疫抑制作用的体外实验.第四军医大学学报,2006,27 (21):1969-1972
    44 崔 澂,王润田,佟慧,等. As2O3 下调 Colon26 肿瘤细胞免疫抑制分子分泌的体外研究.中华微生物学和免疫学杂志,2006,26(1):36-40
    45 Biswas S, Chytil A, Washington K, et al. Transforming growth factor beta receptor type II inactivation promotes the establishment and progression of colon cancer. Cancer Res, 2004, 64(14): 4687-4692
    46 Srivani R, Nagarajan B. A prognostic insight on in vivo expression of interleukin-6 in uterine cervical cancer. Int J Gynecol Cancer, 2003, 13(3): 331-339
    47 Ravinder Tammali, Kota V. Ramana, Satish K. Srivastava ,etal. Aldose reductase regulates TNF-a-induced PGE2 production in human coloncancer cells. Cancer Letters , 2007, 252:299-306
    48 Wang KS, Hu ZL, Li JH, et al. Enhancement of metastatic and invasive capacity of gastric cancer cells by transforming growth factor-beta1. Acta Biochim Biophys Sin, 2006, 38(3): 179-186
    49 Wilson CA, Cajulis EE, Green JL, et al. HER-2 over-expression differentially alters transforming growth factor-beta responses in luminal versus mesenchymal human breast cancer cells. Breast Cancer Res, 2005, 7(6): 1058-1079
    50 Bellone G, Smirne C, Mauri FA, et al. Cytokine expression profile in human pancreatic carcinoma cells and in surgical specimens: implications for survival. Cancer Immunol Immunother, 2006, 55(6): 684-698
    51 Eva Horia, Bruce A,Watkins , et al. Comparison of stearidonic acid and a-linolenic acid on PGE2 production and COX-2 protein levels in MDA-MB-231 breast cancer cell cultures. Journal of Nutritional Biochemistry , 2005, 16 : 184-192
    52 高青,刘兴,王丕龙. 胃癌组织中环氧化酶-2 的表达与微血管密度VEGF 的关系. 肿瘤防治杂志,2004,11(1):65-68
    53 邢丽华,张珍祥,徐永健. 非小细胞肺癌 COX-2 蛋白表达及与 bcl-2相关性. 肿瘤防治研究,2004,31(1):12-13
    54 李威,徐如君,朱春芝,等. 卵巢上皮恶性肿瘤组织环氧合酶-2 的表达及其意义. 肿瘤研究与临床,2004,16(1):4-6
    55 Yang Y, Paik JH, Cho D, Cho JA,et al. Resveratrol induces the suppression of tumor-derived CD4(+)CD25(+) regulatory Tcells.Int Immunopharmacol. 2008 ,8(4):542-547
    56 Hsiao YW, Liao KW, Hung SW, et al. Tumor-infiltrating lymphocyte secretion of IL-6 antagonizes tumor-derived TGF-beta and restores the lymphokine-activated killing activity. J Immunol, 2004, 172(3): 1508-1514
    57 Jarnicki AG, Fitzpatrick DR, Robinson BW, et al. Altered CD3 chain and cytokine gene expression in tumor infiltrating T lymphocytes during the development of mesothelioma. Cancer Lett, 1996, 103(1): 1-9
    58 Wang H, Xie X, Lu W, et al. Ovarian carcinoma cells inhibit T cell proliferation: suppression of IL-2 receptor beta and gamma expression and their JAK-STAT signaling pathway. Life Sci, 2004, 74(14): 1739-1749
    59 von Bernstorff W, Voss M, Freichel S, et al. Systemic and local immunosuppression in pancreatic cancer patients. Clin Cancer Res, 2001, 7(3 Suppl): 925s-932s
    60 Su Y, Huang X, Raskovalova T, et al. Cooperation of adenosine and prostaglandin E(2) (PGE-2) in amplification of cAMP-PKA signaling and immunosuppression. Cancer Immunol Immunother, 2008 , 8 [Epub ahead of print]
    1 Eva Horia, Bruce A. Watkins ,et al. Comparison of stearidonic acid and a-linolenic acid on PGE2 production and COX-2 protein levels in MDA-MB-231 breast cancer cell cultures. Journal of Nutritional Biochemistry , 2005 16 : 184-192
    2 Ravinder Tammali, Kota V. Ramana, Satish K. Srivastava ,etal. Aldose reductase regulates TNF-a-induced PGE2 production in human colon cancer cells.Cancer Letters , 2007, 252:299-306
    3 Saswati Hazraa, Steven M Dubinett.Ciglitazone mediates COX-2 dependent suppression of PGE2 in human non-small cell lung cancer cells. Prostaglandins, Leukotrienes and Essential Fatty Acids , 2007,77 : 51-58
    4 Jin SH, Kim TI, Yang KM,et al. Thalidomide destabilizes cyclooxygenase-2 mRNA by inhibiting p38 mitogen-activated protein kinase and cytoplasmic shuttling of HuR. Eur J Pharmacol , 2007, 558(13):14-20
    5 Xiao-yan Cui , Seok-Chul Yang , Sherven Sharma ,et al. IL-4 regulates COX-2 and PGE2 production in human non-small cell lung cancer. Biochemical and Biophysical Research Communications , 2006, 343:995–1001
    6 Knottenbelt C, Mellor D, Nixon C, et al. Cohort study of COX-1 and COX-2 expression in canine rectal and bladder tumours. J Small Anim Pract, 2006, 47(4): 196-200
    7 7 成扬,邬祥惠,翁心华,等. T 细胞介导的小鼠免疫性肝纤维化形成过程中细胞因子 mRNA 表达水平. 中华传染病杂志,2002,20(1):21-25
    8 李华军,尹姣,陈东,等. 转化生长因子 β-1 在全脑缺血再灌注后迟发性神经元坏死时的表达. 中风与神经疾病杂志,2003,20(1):52-54
    9 Tom Scott , Marcy Dimmick Owens. Thrombocytes respond to lipopolysaccharide through Toll-like receptor-4 and MAP kinase and NF-B pathways leading to expression of interleukin-6 and cyclooxygenase-2 with production of prostaglandin E2. Molecular Immunology , 2008, 45:1001-1008
    10 周爱儒,主编. 生物化学(第六版). 北京:人民卫生出版社,2004:331-348
    11 温进坤,韩梅,主编. 医学分子生物学理论与研究技术(第二版). 北京:科学出版社,2003:311-351
    12 潘元青,孙少华,马岚. TGF-β1 信号通路异常与直肠癌恶性演进关系的研究. 肿瘤防治杂志,2004,11(1):73-77
    13 Sandra Karlsson, Erik Holmberg, Anders Askerlund, et al. Altered transforming growth factor-βpathway expression pattern in rat endometrial cancer. Cancer Genetics and Cytogenetics, 2007,177:43-50
    14 Biswas S, Chytil A, Washington K, et al. Transforming growth factor beta receptor type II inactivation promotes the establishment and progression of colon cancer. Cancer Res, 2004, 64(14): 4687-4692
    15 Muraoka CRS, Kurokawa H, Koh Y, et al. Conditional overexpression of active transforming growth factor beta1 in vivo accelerates metastases of transgenic mammary tumors. Cancer Res, 2004, 64(24): 9002-9011
    16 Feltl D, Zavadova E, Pala M, et al. The dynamics of plasma transforming growth factor beta 1 (TGF-beta1) level during radiotherapy with or without simultaneous chemotherapy in advanced head and neck cancer. Oral Oncol, 2005, 41(2): 208-213
    17 Wang KS, Hu ZL, Li JH, et al. Enhancement of metastatic and invasive capacity of gastric cancer cells by transforming growth factor-beta1. Acta Biochim Biophys Sin, 2006, 38(3): 179-186
    18 Baldus SE, Schwarz E, Lohrey C, et al. Smad4 deficiency in cervical carcinoma cells. Oncogene, 2005, 24(5): 810-819
    19 Simon Chell, Abderrahmane Kadi, Ann Caroline Williams, et al. Mediators of PGE2 synthesis and signalling downstream of COX-2 represent potential targets for the prevention/treatment of colorectal cancer. Biochimica et Biophysica Acta,2006,1766 :104-119
    20 Wei-Qing Xu , Xu-Cheng Jiang , Lin Zheng,et al. Expression of TGF-β1, TβRII and Smad4 in colorectal carcinoma.Experimental and Molecular Pathology, 2007,82 :284-291
    1 史健,魏素菊,单保恩. 斑蝥酸钠注射液治疗癌性胸腔积液的临床观察. 中国中西医结合杂志,2005,25(5):451-453
    2 桂尤胜,曹献英,陈筠. 斑蝥酸钠体外诱导肝癌细胞凋亡的实验研究. 武汉大学学报(医学版) ,2004,25(5):493-496
    3 安巍巍,薛莲,王敏伟等. 去甲斑蝥素诱导小鼠肺纤维瘤 L929 细胞凋亡. 中国癌症杂志,2005,15(1):22-25
    4 左增艳,柳钟勋,李健蕊等. 新型生物反应调节剂、当归多糖(ASDP) 抗肿瘤作用及对荷瘤小鼠免疫功能的影响. 中国免疫学杂志2000,16(10):545-546
    5 李小定,吴谋成,曾晓波等. 灰树花多糖粗品与纯品的抗肿瘤作用和对免疫功能的影响. 营养学报,2003 ,25(1):7-9
    6 Xiao-Ling Zhu, Alex-F. Chenb, Zhi-Bin Lin. Ganoderma lucidum polysaccharides enhance the function of immunological effector cells in immunosuppressed mice.Journal of Ethnopharmacology, 2007,111: 219-226
    7 Okuyama T, Oya M, Ishikawa H. Budding as a risk factor for lymph node metastasis in pT1 or pT2 well-differentiated colorectal adenocarcinoma. Dis Colon Rectum,2002,45: 628-632
    8 王润田,张坤娟,佟慧等. 瑞香狼毒甲醇提取物抗瘤机理研究. 中华微生物学和免疫学杂志,2003 ,23(9):734-738
    9 Xiao-Ling Zhu, Alex-F. Chenb, Zhi-Bin Lin. Ganoderma lucidum polysaccharides enhance the function of immunological effector cells in immunosuppressed mice. Journal of Ethnopharmacology , 2007 , 111:219-226
    10 任德莲,钟德生,徐晓玉等. 黄芪和地黄对食管癌 TIL 增殖及体外抗肿瘤作用的研究. 华西药学杂志,2000,15(3):124-126
    11 季敬璋,胡璟谊,吕建新. 牛膝多糖对CD4+ T 细胞的诱导和分化作用研究. 中国病理生理杂志,2006,22(2):228-23
    12 华东,吴明媛,于晓红等.赤芍总甙对荷瘤鼠细胞免疫功能的影响.中医药学报,2004,32(1):47-48
    13 张仲苗,江波,郑筱祥等. 人参皂苷Rg3 对肿瘤放疗患者外周血淋巴细胞的体外免疫增强作用.中国药学杂志,2004,39(4):261-264
    14 孙继萍,肖伟.黄芪对人肺癌细胞株 Th2 型细胞因子的逆转作用.山东医药,2005,45(4):36-37
    15 Lin J,Dong HF,Oppenheim JJ,et al. Effects of astragali radix on the growth of different cancer cell lines. World J Gastroenterol,2003, 9 (4):670-673
    16 余上才,张育正. 牛膝多糖抗肿瘤作用及免疫机制实验研究. 中华肿瘤杂志,1995,7,17(4):275-278
    17 佟丽,黄添友. 茯苓多糖( PPS)和刺五加多糖(ASPS)对 S180 细胞膜脂肪酸组成的影响. 天然产物研究与开发,1995,3(1):5-9
    18 李健,李凤,庞爱芝等. 姜黄素对Hela细胞周期各时相的影响.吉林大学学报(医学版) ,2006,32(4):675-677
    19 陈宏,张震书,张亚历等.姜黄素对大肠癌细胞周期的影响. 胃肠病学和肝病学杂志,2006,9(2):107-109
    20 Moragoda L ,Jaszewski r ,Majumdar ap. Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells. Anticancer res ,2001 ,21 (2A) :873-878
    21 戴恩来,赵健雄,朱玉真等. 扶正抑瘤汤对肿瘤细胞周期端粒酶影响的实验研究. 中国中西医结合杂志,2001,21 (10):760 - 762
    22 马润娣,于立坚,苏伟明等. 土贝母苷甲诱导HeLa细胞周期阻滞和凋亡. 中国临床药理学与治疗学,2004,9 (3):261 -269
    23 王玉荣,王泽时. 加味四君子汤诱导小鼠肿瘤细胞凋亡的实验研究. 山西中医学院学报,2004,5 (1) : 16 - 18
    24 F.H. Lo,N.K. Mak,K.N. Leung,et al. Studies on the anti-tumor activities of the soy isoflavone daidzein on murine neuroblastoma cells. Biomedicine & Pharmacotherapy ,2007,61:591-595
    25 杨骅,王仙平,郁琳琳等. 榄香烯抗癌作用与诱发肿瘤细胞凋亡. 中华肿瘤杂志,1996,18 (3):169-172
    26 Shay JW. the role of telomeres and telomerase in cancer.Cancer Res,2005,65 (9) : 3513-3517
    27 陈伟忠,林勇,谢渭芬等. 苦参碱对肝癌细胞端粒酶活性调控及细胞周期的影响. 第二军医大学学报,2002,23 (5):498 -500
    28 姚金凤,吴春丽,陈慧霞等. 黄芪多糖对HL-60细胞端粒酶活性的作用. 河南肿瘤学杂志,2005 ,18 (4):247-248
    29 黄富春,范钰,郑树. 榄香烯乳对结肠癌Lovo 细胞端粒酶活性、细胞凋亡及细胞周期的影响. 医药导报,2004 ,23(10)::712-714
    30 张玲,王芸,毛海婷等. 淫羊藿甙抑制肿瘤细胞端粒酶活性及其调节机制的研究. 中国免疫学杂志 2004 ,18 (3):193 -194
    31 Anesini C, Ferraro G, Lopez P. Different intracellular signals coupled tothe antiproliferative of aqueous crude extract from Larreadivaricata Cav and nor - dihydrogui areticacid on a lymphoma cellline. Phytomedicine,2001,8(1):1-4
    32 顾奎兴. 中医药治癌的思路与基因组学. 南京中医药大学学报,2002,18 (1):10 - 13
    33 杨江苏,秦旭平,张娜等. 2 种真菌多糖对 HL260 细胞酪酸蛋白磷酸化作用的影响. 中国药学杂志,2000,35 (5) : 303-306
    34 吴青,陈燕,李新刚. 姜黄素调节 B 淋巴瘤细胞 p300 和 HDAC1 的研究. 中国实验血液学杂志,2006,14 (2): 293-297
    35 哈敏文,董明,王兰等. 大蒜素协同抗癌药对肿瘤细胞杀伤作用的研究. 中国肿瘤临床, 2004,31(4):193-196
    36 36卞益民,赖水招,金燕辛. 紫杉烷类抗癌药—紫杉特尔的研究进展. 广东药学,2000,10(1):3-5
    37 Yeung-Leung Cheng,Shih-Chun Lee,Shinn-Zong Lin,Anti-proliferative activity of Bupleurum scrozonerifolium in A549 human lung cancer ce10% dextrose in waterls in vitro and in vivo.Cancer Letters ,2005,222:183-193
    38 李运曼,祝浩杰,刘国卿. 紫草素对 DNA 拓扑异构酶Ⅰ活性的抑制作用和诱导人白血病K562细胞的凋亡. 中国天然药物,2003, 1 (3) : 165 -168
    39 李勇. 大蒜素对人胃腺癌BGC-823细胞影响的研究. 中国中西医结合外科杂志,2001,7(5):307
    40 段小梅. 基因家族对细胞凋亡的调控. 中国医学文摘肿瘤学,2001,15 (1):80-82
    41 左小东,秦叔逵. 华蟾素对肿瘤细胞周期及bcl-2蛋白表达的影响. 现代中西医结合杂志, 2003, 12 (6):567-570
    42 魏小龙,茹祥斌,刘福君等. 低分子量地黄多糖对癌基因表达的影响. 中国药理与毒理学研究,1998,12 (2):159 - 160
    43 何金涛,周清华,袁淑兰等. 丹参酮对人肺癌细胞株的增殖抑制作用及其分子机理. 中国肺癌杂志,2002,5(2):123 - 125
    44 王俊杰,孙新臣,申文江等. 康莱特注射液诱发肾癌细胞凋亡及P53,bcl - 2 表达的研究. 中国肿瘤临床,1999,(6) : 439 - 442
    45 WatabeM, Kawazone N. Masuda Y,et al. Bcl-2 protein inhibits bufalin induced apoptosis through inhibition of mitogen activated protein kinase activation in human leukemia U937cells. Cancer Res,1997,57(15):3097-3100
    46 钟声,徐永健,张珍祥.苦参碱对肺腺癌A540细胞mRNA表达的影响.实用医学杂志,2006,22(10):1103-1105
    47 王勤,吴理茂,赵一等. 青蒿琥酯抗肿瘤作用的机制研究. 药学学报,2002,37(6):477-478
    48 王钦红,谢毅,范华骅,高跞,刘燕,谢彦晖. 六亚甲基二乙酰胺对急性白血病细胞株HL60 和U937分化、凋亡的影响及其机制. 中华血液学杂志,2004 ,25 :154-157
    49 聂蕾,殷 隆,尹少甫.青蒿琥酯诱导人早幼粒白血病细胞 HL60 凋亡的线粒体机制中国临床药理学与治疗学,2005,10(2) :176-179
    50 吴仵,羊裔明,孟文彤等. 丹参酮对K562 细胞株的诱导分化. 华西医科大学学报,2002,33 (1) : 77-79
    51 梁勇,羊裔明,袁淑兰等. 丹参酮诱导白血病分化及其分子机制的研究. 中华血液学杂志,2000, 21 (1) : 23 – 25
    52 唐春兰,杨和平,李剑明等.姜黄素对体内肺腺癌移植瘤裸鼠血管生成的影响.中国临床康复,2005,9(22):163-165
    53 陈明伟,倪磊,赵小革等. 人参皂甙Rg3 对肿瘤血管生长调控因子蛋白表达抑制作用的研究. 中国中药杂志,2005,30(5):357-360
    54 冯敢生,李欣,郑传胜等. 中药白芨提取物抑制肿瘤血管生成机制的实验研究. 中华医学杂志,2003,83(5):412-416
    55 丁怡,赵庆亮,李勇刚等. 雷公藤甲素对血管内皮细胞迁移活性的作用. 四川大学学报(医学版),2005 ,36(3):347-350
    56 K Sheeja,C Guruvayoorappan,G Kuttan. Antiangiogenic activity of and rographis paniculata extract and andrographolide. IntImmunopharmacol,2006,10:1016-1021
    57 王彦刈,吴爱娇,许楠等. 复方丹参对高转移性人肺癌细胞与血管内皮细胞黏附及黏附分子表达的影响. 中国现代应用药学杂志2003 ,20(5) :343-345
    58 王心华,甄永苏. 大黄素抑制人高转移巨细胞肺癌PG细胞的肿瘤转移相关性质. 癌症,2001,20 (8)∶789-793
    59 范跃祖,傅锦业,赵泽明,等. 去甲斑蝥素对人胆囊癌细胞系侵袭转移及其相关基因的抑制效应. 中国新药与临床杂志,2004 ,23 (8)∶522 -525
    60 Chang,Y.Z,Yang,M.W,Wang,G.J,et al. A new mass spectrometry electrospraytip obtained via precise mechanical micromachining. Analytical and Bioanalytical Chemistry , 2005,383 (1):76-82
    61 Shun Fa Yang ,Shu Chen Chu,Shang Jung Liu ,et al. Antimetastatic activities of Selaginella tamariscina (Beauv.)on lung cancer cells in vitro and in vivo. Journal of Ethnopharmacology , 2007,110: 483-489
    62 曲迅,郑广娟,刘德山等. 体外罗勒多糖抗人高转移肺癌细胞侵袭转移作用及机制探讨. 中国病理生理杂志,2005 ,21 (7):1345-1348
    63 娄金丽,林洪生,邱全瑛等. 威脉宁抗小鼠 Lewis 肺癌转移作用及分子机制的研究. 中国病理生理杂志,2004 ,20 (4):627 -631
    64 64 崔 澂,王润田.TGF-β介导的肿瘤免疫抑制研究及临床意义. 实用肿瘤杂志,2005,20(5):457-460
    65 Zhang F ,Altorki NK,Mestre jr , et al. Curcumin inhibits cyclooxygenase-2 transcription inbile acid and phorbol ester treated human gastrointestinal epithelial cells. Carcinogenesis ,1999 ,20 (6):764-770
    66 何彦丽,应逸,王斌等.枸杞多糖对荷瘤小鼠免疫抑制因子VEGF、TGF-β1水平的影响.中药药理与临床,2005,21 (5):28-29
    67 杨丽娟,王润田,刘京生等.猪苓多糖对S180 细胞培养上清免疫抑制作用影响的研究. 细胞与分子免疫学杂志,2004,20(2):234-237
    68 杨丽娟,王润田,刘京生等.黄芪对S180 肿瘤培养上清免疫抑制作用的影响.中国肿瘤生物治疗杂志,2003,10(3):210-213
    69 崔澂,王润田,佟慧等. 青蒿琥酯和苦参素对 Colon26 肿瘤细胞免疫抑制的影响.现代免疫学杂志,2006,26 (2):152-156
    70 崔澂,王润田,佟慧等. 氧化苦参碱下调小鼠 Colon26 肿瘤细胞免疫抑制作用的体外实验.第四军医大学学报,2006,27 (21):1969-1972
    71 崔澂,王润田,佟慧等. As2O3 下调 Colon26 肿瘤细胞免疫抑制分子分泌的体外研究.中华微生物学和免疫学杂志,2006,26(1):36-40
    72 桑希生,吴红洁,曲永彬等.复方泽漆散对肿瘤组织转化生长因子β表达的影响.中医药信息,2004,21(3):68-70
    73 何彦丽,应逸,罗荣敬等.枸杞多糖对荷瘤小鼠免疫抑制因子VEGF,TGF-β水平的影响. 中药新药与临床药理,2005,16(3):172-174
    74 张俊文,王丕龙.三氧化二砷诱导胃癌细胞凋亡及其对C-myc 和TGF-β1 表达的影响. 胃肠病学和肝病学杂志,2006,15(1):7-9
    75 蔡少平,刘泽.黄连素抑制结肠癌细胞中PGE2表达作用的研究.中国医药学报,2004,19(2):95-97
    76 黄建,张鸣杰,邱福铭. 苦参碱抑制大肠癌 HT-29 细胞环氧化酶-2 表达的研究.中国中西医结合杂志,2005,25(3):240-243
    77 姜文锋,徐功利. 肿瘤细胞耐药表型及其机制的研究进展. 山东医药,2001,41 (5) :56-57
    78 杨纯正.肿瘤细胞耐药基因的研究进展. 中国肿瘤,1996,5 (7) : 152-171
    79 李宏建 ,李贵海 ,孙付军等,苦参碱对肿瘤细胞获得性多药耐药的逆转作用.中国医院药学杂志,2005 ,25(5):389-391
    80 李贵海,王玫,孙付军等.苦参碱逆转小鼠S180 肿瘤细胞获得性多药耐药基因相关表达产物过度表达的研究.中药材,2006,29(1):40-42
    81 俞丽芬,吴云林,章永平. 鸦胆子油乳剂对人胃腺癌长春新碱耐药细胞株 MJN /VCR 的逆转作用. 世界华人消化杂志,2001, 9 (4): 376-378
    82 叶祖先,孙爱续,李兰芳等. 汉防己甲素对阿霉素或长春新碱耐药株人癌细胞的逆转抗药作用. 中国中药杂志,1996,21 (6) : 369 - 371
    83 贾莉,孔力,苗小艳等. 蝎毒逆转K562 /ADM细胞多药耐药性的初步研究. 白血病淋巴瘤, 2002,11 (2) :81 - 83
    84 杨岚,梁蓉,袁跃传等. 川芎嗪联合环胞霉素 A 逆转白血病多药耐药的研究. 癌症,2000,19 (4) : 304-306
    1 Cormier JN, Panell MC, Hackett JA, et al. Natural variation of the expression of HLA and endogenous antigen modulates CTL recognition in an in vitro melanoma model. Int J Cancer, 1999, 80(5):781-790
    2 Paul P, Cabestre F A, Le Gal F A, et al. Heterogeneity of HLA-G gene transcription and protein expression in malignant melanoma biopsies. Cancer Res, 1999, 59 (8): 1954-1960
    3 Singer G, Rebmann V, Chen Y C, et al. HLA-G is a potential tumor marker in malignant ascites. Clin Cancer Res, 2003, 9(12):4460-4464
    4 Davidson B, Elstrand MB, McMaster MT, et al. HLA-G expression in effusions is a possible marker fo tumor susceptibility to chemotherapy in ovarian carcinoma. Gynecol Oncol, 2005, 96(1):42-47
    5 Ibrahim E C, Guerra N, Lacombe M J, et al. Tumor-specific upregulation of the nonclassical class I HLA-G antigen expression in renal carcinoma. Cancer Res, 2001, 61(18):6838-6845
    6 Zhou J H, Ye F, Chen H Z, et al. Altered expression of cellular membrane molecules of HLA-DR, HLA-G and CD99 in cervical intraepithelial neoplasias and invasive squamous cell carcinoma. Life Science, 2006, 78(22):2643-2649
    7 Kleinberg L, Florenes V N, Skrede M, et al. Expression of HLA-G in malignant mesothelioma and clinically aggressive breast carcinoma. Vichows Archiv, 2006, 449(1):31-39
    8 Urosevic M, Willers J, Mueller B, et al. HLA-G protein upregulation in primary cutaneous lymphomas is associated with interleukin-10 expression in large cell T-cell lymphomas and indolent B-cell lymphomas. Blood, 2002, 99(2):609-617
    9 Rebmann V, Regel J, Stolke D, et al. Secreation of sHLA-G molecules in malignancies. Semin Cancer Biol, 2003, 13(5):371-377
    10 Amiot L, Le Friec G, Sebti Y, et al. HLA-G and lymphoproliferative disorders. Semin Cancer Biol, 2003, 13(5):379-385
    11 Wiendl H, Mitsdoerffer M, Hofmeister V, et al. A Functional role of HLA-G expression in human gliomas: an alternative strategy of immune escape. J Immuno, 2002, 168(9):4772-4780
    12 Chen HL. A functionally defective allele of TAP1 results in loss of MHC class I antigen presentation in a human lung cancer. Nat Genet, 1996, 13 (2):210-213
    13 Seliger B, Ritz U, Abele R, et al. Immune escape of melanoma: first evidence of structural alteration in two distinct components of the MHC class I antigen processing pathway. Cancer Res, 2001, 61(24): 8647-8650
    14 Singal DP, Ye M, Qiu X, et al. Molecular basis for lack of expression of HLA class I antigens in human small-cell lung carcinoma cell lines. Int J Cancer ,1996, 68 (5): 629-636
    15 Zheng P, Guo Y, Abele R, et al. Proto-oncogene PML controls genes devoted to MHC class I antigen presentation. Nature,1998, 396 (6709): 373-376
    16 Peter CR. Emtage, Yonghong Wan, Jonathan L, et al. A double recombinant adenovirus expressing the costimulatory molecule B7-1 (Murine) and human IL-2 induces complete tumor regression in a murine breast adenocarcinoma model. The Journal of Immonology, 1998, 160(5):2531
    17 Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med, 2002, 8(8):793
    18 Green DR. Death deceiver. Nature, 1998, 396(6712): 629-630
    19 Cefai D, Favre L, Wattendorf E, et al. Role of Fas Ligand expression in promoting escape from immune rejection in a spontaneous tumor model. Int J Cancer, 2001, 91(4):529-537
    20 Ibrahim R, Frederickson H, Parr A, et al. Expression of FasL in squamous cell carcinomas of the cervix and cervical intraepithelial neoplasia and its role in tumor escape mechanism. Cancer, 2006, 106(5):1065-1077
    21 Eberl L P,Valdenaire O,Saintgiorgio V,et al. Endothelin receptor blockade potentiates faslinduced apoptosis in rat colon carcinoma cells. Int J Cancer, 2000, 86(2):182-187
    22 Lou W,Krill D,Dhir R, et al. Methylation of the CD44 metastasis suppressor gene in human prostate cancer. Cancer Res,1999, 59(10): 2329-2331
    23 Yasuda M, Tanaka Y, Fujii K, et al. CD44 stimulation down regulates Fas expression and Fas mediated apotosis of lung cancer cells. Int Immunol, 2001, 13(10): 1309-1319
    24 Marhaba R,Bourouba M,Zooler M. CD44v7 interferes with activation-induced cell death by up-regulation of anti-apoptotic gene expression. J Leukoc Biol , 2003, 74 (1):135-148
    25 Lisignoli G,Grassi F,Zini N,et al. Anti2Fas2Induced apoptosis in chondrocytes reduced by hyaluronan: evidence for CD44 and CD54 invovement . Arthritis Rheum, 2001, 44 (8):1800-1807
    26 Allouche M, Charrad RS, Bettaieb A, et al. Ligation of the CD44 adhesion molecule inhibits drug-induced apoptosis in human myeloid leukemia cells. Blood, 2000, 96 (3): 1187-1190
    27 Fujita Y, Kitagawa M, Nakamura S, et al. CD44 signaling through focal adhesion kinase and its anti-apoptotic effect. FEBS Lett, 2002, 528 (1-3):101-108
    28 Hsiao YW, Liao KW, Hung SW, et al. Tumor-infiltrating lymphocyte secretion of IL-6 antagonizes tumor-derived TGF-beta and restores the lymphokine-activated killing activity. J Immunol, 2004, 172(3): 1508-1514
    29 Weber F,Byrne SN,Le S,et al. Transforming growth factor-beta1 immobilises dendritic cells within skin tumours and facilitates tumour escape from the immune system. Cancer Immunol Immunother, 2005, 54(9): 898-906
    30 Annunziato F,Cosmi L,Liotta F,et al. Phenotype, localization, and mechanism of suppression of CD4+CD25+ human thymocytes. J Exp Med,2002, 196: 379-387
    31 Chen W, Jin W, Tian H, et al. Predominant Th2-Tc2 polarity of tumor-infiltrating lymphocytes in human cervical cancer. J Exp Med, 2001, 194(4): 439-454
    32 Azuma T, Takahashi T, Kunisato A, et al. Human CD4+CD25+regulatory T cells suppress NKT cell function. Cancer Res, 2003, 63(15): 4516-4520
    33 Nakamura K,Kitani A and Strober W. Cell contact-dependent immunosuppression by CD4+CD25+regulatory T cells is mediated by cell surface-bound transforming groeth factor beta. J Exp Med, 2001, 194(4): 629-644
    34 Witham TF, Villa L, Yang T, et al. Expression of a soluble transforming growth factor-beta (TGF beta) receptor reduces tumorigenicity by regulating natural killer (NK) cell activity against 9L gliosarcoma in vivo. J Neurooncol, 2003, 64(1-2): 63-69
    35 Mitra R, Khar A. Suppression of macrophage function in AK-5 tumor transplanted animals: role of TGF-beta. Immunol Lett, 2004, 91(2-3): 189-195
    36 张筱茵,陈咏仪,刘泳,等. 胃癌局部细胞因子表达谱分析. 中华肿瘤杂志,2002,24(1):14-16
    37 Buggins AGS, Lea NC, Gaken J, et al. Effect of co-stimulation and the micro- environment on anti-presentation by leukemia cells. Blood, 1999, 94(10): 3479-3490
    38 Luczynski W, Kovalchuk O, Krawczuk-Rybak M, et al. Lower expression of mRNA for interferon-gamma in T helper cells of children with newly diagnosed lymphomas. Folia Histochem Cytobiol, 2005, 43(3): 169-171
    39 Bacchetta R, Sartirana C, Levings MK, et al. Growth and expansion of human T regulatory type 1 cells are independent from TCR activation but require exogenous cytokines. Eur J Immunol, 2002, 32(8): 2237-2245
    40 Ahmadzadeh M, Rosenberg SA. TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J Immunol, 2005, 174(9): 5215-5223
    41 Jarnicki AG, Fitzpatrick DR, Robinson BW, et al. Altered CD3 chain and cytokine gene expression in tumor infiltrating T lymphocytes during the development of mesothelioma. Cancer Lett, 1996, 103(1): 1-9
    42 von Bernstorff W, Voss M, Freichel S, et al. Systemic and local immuno-suppression in pancreatic cancer patients. Clin Cancer Res, 2001, 7(3Suppl): 925s-932s
    43 Bertone S, Schiavetti F, Bellomo R, et al. Transforming growth factor-β-induced expression of CD94-NKG2A inhibitory receptors in human T lymphocytes. Eur J Immunol, 1999, 29(1): 23-29
    44 Castriconi R, Cantoni C, Chiesa MD, et al. Transforming growth factor-β1 inhibits expression of NKp30 and NKG2D receptors: Consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA, 2003, 100(7): 4120-4125
    45 Dasgupta S, Bhattacharya CM, O'Malley BJ, et al. Inhibition of NK cell activity through TGF-beta 1 by down-regulation of NKG2D in a murine model of head and neck cancer. J Immunol, 2005, 175(8): 5541-5550
    46 Stolina M, Sharma S, Lin Y, et al. Specific inhibition of cyclooxygenase-2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J Immunol, 2000, 104(1): 361-370
    47 Naama HA, Mack VE, Smyth GP, et al. Macrophage effector mechanisms in melanoma in an experimental study. Arch Surg, 2001, 136(7): 804-809
    48 Dempke W, Rie C, Grothey A, et al. Cyclooxygenase-2: a novel target for cancer chemeotherapy. J Cancer Res Clin Oncol, 2001, 27(7): 411-417
    49 Kinoshita T, Takahashi Y, Sakashita T, et al. Growth stimulation and induction of epidermal growth factor receptor by overexpression of cyclooxygenases 1 and 2 in human colon carcinoma cells. Biochem Acta, 1999, 1438(1): 120-130
    50 Takahashi A, Kono K, Itakura J, et al. Correlation of vascular endothelial growth factor-expression with tumor-infiltrating dendritic cells in gastric cancer. Oncology, 2002, 62(2): 121-127
    51 史继敏,桂律,叶宣光,等. 大肠癌血管内皮生长因子表达与临床病理的关系. 肿瘤学杂志,2002,8(3):141-142
    52 钟霞,于皆平,冉宗学. 大肠癌中 NF-κBp65、VEGF 表达的相关性研究. 肿瘤学杂志,2001,7(6):346-348
    53 Beierle EA, Strande LF, Chen MK. VEGF upregulates Bcl-2 expression and is associated with decreased apoptosis in neuroblastoma cells. J Pediatr Surg, 2002, 37(3): 467-471
    54 刘钧,赵永年,朱治键,等. 微血管密度及血管内皮生长因子在贲门癌中的表达及其意义. 肿瘤防治研究,2001,28(6):460-462
    55 袁欣,白世祥,刘菊,等. 食道癌原发灶及转移淋巴结血管内皮生长因子和微血管形成的测定. 肿瘤防治杂志,2001,8(3):251-252
    56 杨福全,戴显伟,徐进,等. 胆管癌 VEGF 表达及肿瘤微血管密度与肿瘤浸润和预后的关系. 肿瘤防治杂志,2002,11(1):49-51
    57 吴开松,刘铭球. 非小细胞肺癌组织中血管内皮生长因子的表达与微血管密度的关系. 肿瘤防治研究,2002,29(2):126-127
    58 李宏江,敬静,汪静,等. 乳腺癌血管内皮生长因子与微血管密度的分布及与预后的关系. 肿瘤学杂志,2002,8(4):215-217
    59 范伟,卢丽艳,王世军. 乳腺癌血管内皮生长因子与微血管密度的免疫组织化学研究. 肿瘤防治研究,2002,29(5):402-404
    60 Huang CY, Shen ZY. Vascular endothelial growth factor-fundamental research and experimental study in plastic surgery. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2002, 16(1):64-69
    61 Oh H, Takagi H, Otani A, et al. Selective induction of neuropilin-1 by vascular endothelial growth factor(VEGF): A mechanism contributing to VEGF-induced angiogenesis. Proc Natl Acad Sci USA, 2002, 99(1): 383-388
    62 王正昕,张明徽,李楠,等. 胃癌组织中树突状细胞浸润及其表面分子表达的临床意义. 第二军医大学学报,2002,23(3):264-266
    63 Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late- 63.1 stage ovarian cancer. Cancer Res, 2001, 61(12): 4766-4772
    64 宋文刚,于益之,曲迅,等. 肿瘤细胞培养上清对小鼠骨髓来源的树突状细胞分化发育的影响.中国肿瘤生物治疗杂志,2001,8(2):134-137
    65 Almand B, Resser JR, Lindman B, et al. Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res, 2000, 6(5): 1755-1766
    66 Sheu BC, Lin RH, Lien HC, et al. predominant Th2-Tc2 polarity of tumor-infiltrating lymphocytes in human cervical cancer. J Immunol, 2001, 167(5): 2972-2978
    67 Wang H, Xie X, Lu W, et al. Ovarian carcinoma cells inhibit T cell proliferation: suppression of IL-2 receptor beta and gamma expression and their JAK-STAT signaling pathway. Life Sci, 2004, 74(14): 1739-1749
    68 Rabinowich H, Suminami Y, Reichert TE, et al. Expression of cytokine genes or proteins and signaling molecules in lymphocytes associated with human ovarian carcinoma. Int J Cancer, 1996, 68(3): 276-284
    69 Urosevic M, Kurrer MO, Kamarashev J, et al. Human leukocyte antigen G upregulation in lung cancer associated with hihe-grade histology human leukocyte class Ⅰ loss and interleukin-10 production. J Pathol, 2001, 159(3): 817-824
    70 Bacchetta R, Sartirana C, Levings MK, et al. Growth and expansion of human T regulatory type 1 cells are independent from TCR activation but require exogenous cytokines. Eur J Immunol, 2002, 32(8): 2237-2245
    71 Yamazaki K, Yano T, Kameyama T, et al. Clinical significance of serum Th1-Th2 cytokines in patients with pulmonary adnecarcinoma. Surgery, 2002, 131(1): 236-241
    72 王长印,邹雄,车至香,等. 消化道肿瘤患者 Th1/Th2 细胞的检测和分析. 现代免疫学,2004,24(1):72-76
    73 Sheu BC,Lin RH,Lien HC,et al. Predominant Th2-Tc2 polarity of tumor-infiltrating lymphocytes in human cervical cancer. J Immunol, 2001, 167(5): 2972-2978
    74 Parenti A, Morbidelli L, Cai XL. Nitric oxide is an upstream signal of vascular endothelial growth factor-induced extracellular signal- regulatedkinase 1-2 activation in postcapillary endothelium. J Biol Chem, 1998, 273(7): 4220-4226
    75 Nakamura Y,Yasuoka H, Tsujimoto M, et al. Nitric oxide in breast cancer: induction of vascular endothelial growth factor-C and correlation with metastasis and poor prognosis. Clin Cancer Res, 2006, 12(4): 1201-1207
    76 Shariftabrizi A, Nifli AP, Ansari M, et al. Matrix metalloproteinase 2 secretion in WEHI 164 fibrosarcoma cells is nitric oxide-related and modified by morphine. Eur J Pharmacol, 2006, 530(1-2): 33-39
    77 Fagnoni FF,Takamizawa M,Godf rey WR,etal. Role of B70/B7-2 in CD4+T-cell immune responses induced by dendritic cells. Immunology,1995 ,85 (3):467-474
    78 Lissoni P,Vigor L, Ferranti R,et al. Circulating dendritic cells in early and advanced cancer patients:diminished percent in the metastatic disease. J Biol Regul Homeost Agents ,1999,13 (4):216-220
    79 Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects.Nat Rev lmmunol,2004, 4(12):941-952
    80 Decker D , Springer W, Decker P , et al . Changes in TH1/ TH2 immunity after endovascular and conventional inf rarenal aortic aneurysm repair: it s relevance for clinical practice.Eur J Vasc Endovasc Surg, 2003,25 (3):254-261
    81 Rayman P, Wesa A K, Richmond AL,et al. Effect of renal cell carcinomas on the development of type 1 T-cell responses. Clin Cancer Res, 2004,10 (18 Pt 2):6360s-6366s
    82 Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer, 2005, 5(4): 263-274
    83 Shevach EM, DiPao lo RA, Andersson J, et al. The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol Rev, 2006, 212: 60-73
    84 Enarsson K, Johnsson E, L indholm C, et al. Differentialmechanisms for T lymphocyte recruitment in normal and neop lastic human gastric mucosa.Clin Immunol, 2006, 118 (1): 24-34
    85 Pompe G, Antoni MH, Visser A, et al. Effect of mild acute stresson immune cell distribution and nature killer cell ac tivity in breast cancer patients. Biological Psychology, 1998, 4 (1):21-35
    86 Fearon DT. Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclearleukocyte, Blymphocyte, and monocyte. JExpMed, 1980,152(1):20-24
    87 Guo F.The measurement of erythrocyteandits control function. Immunological Journal, 1990, 6(1):60-62
    88 Liu L H, Qi LP, Shan BE,et al . The changes and relationships between lymphocyte and eryt hrocyte immunologic function in esophageal carcinoma patient s before and after operation. Chinese Journal of Clinical Oncology (Chinese), 2003,30 (2):84-87
    89 Midis GP, Shen Y, Owen Schaub LB. Elevated soluble Fas ( sFas) levels in nonhem atopoietic human malignancy. Cancer Res, 1996,56 (17):3870-3874

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700