碳纳米管及相关一维体系热电性能的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于传统化石燃料的日益消耗和随之而来的全球变暖问题,开发清洁的可再生能源已迫在眉睫,其中热电材料能实现热能和电能的直接相互转换,引起了科学界的广泛关注。对常规热电材料而言,输运系数之间相互耦合使得热电指数ZT值难以大幅度提高。理论预测和实验研究都表明低维化和纳米化可以显著提高材料的热电性能,这是因为一方面量子限域效应提高了体系的功率因子,另一方面声子边界散射显著降低了体系的热导率。尽管如此,以Bi、Sb、Te、Co、 Pb、Ag等为基元的具有较高热电性能的材料在低维化方面还存在一些困难,主要是缺乏工艺简单、成本低廉的合成手段,因而并不适合大规模制备和应用。近年来,实验上已经成功合成了碳纳米管、碳纳米线等碳纳米材料。相比于传统材料,这些碳材料具有环境相容性好、碳源丰富而且便于批量生产等优点。本论文结合密度泛函理论、非平衡格林函数方法、以及非平衡分子动力学模拟,研究碳纳米管以及相关体系的电子、声子和热电输运性质,寻求它们作为环境友好型高性能热电材料的可能应用。
     我们首先研究了直径仅为4A的三种超小碳纳米管(3,3)、(4,2)和(5,0)的热电性能。计算发现它们的电子透射系数都表现出明显的台阶状,反映出体系电子的弹道输运特征;在很宽的温度范围内,这些碳纳米管的功率因子可以被优化到较高的水平。在这三种超小碳纳米管中,半导体性的(4,2)具有相对较高的室温ZT值(1.6),主要归因于其较大的功率因子和非常小的电子热导。尽管这些碳纳米管自身的ZT值并不是很高,但是它们的热电性能可以通过表面修饰、形成管束、增加样品长度等多种途径得到大幅度提高,预示着超小直径碳纳米管可能是一类潜在的高性能热电材料。
     接下来我们考察了一系列直径较大的碳纳米管(包括的锯齿形的(7,0)、(8,0)、(10,0)、(11,0)、(13,0)、(14,0)和手性型的(4,2)、(5,1)、(6,2)、(6,4)、(8,4)、(10,5))的热电性能,并讨论了它们随温度、直径、螺旋度的变化规律。如果对体系进行合适的p型或n型掺杂,这些碳纳米管也可以获得很高的ZT值,而且中等直径(7-8A)的碳管(比如(10,0)和(6,4))比其它直径的碳管具有较好的热电性能。通过同位素掺杂、等电子替换以及表面氢吸附等途径可以有效地降低体系的晶格热导,同时基本不影响电子输运,因而其ZT值可以优化到4.0左右。与超小直径(4A)碳管相比,(10,0)碳管在实验上更容易合成和纯化,其优异的热电性能有望在不久的将来首先获得应用。
     我们还研究了直径为5A具有三种典型取向的碳纳米线[100]、[110]和[111]的室温热电性能。虽然它们都表现为金属性,但只要费米能级附近存在电子“零通道”,通过合适的掺杂它们就可以表现出较高的功率因子。计算表明,由于具有极低的热导和相对较高的功率因子,[100]和[111]取向的碳纳米线表现出比其它一维碳材料(比如碳纳米管)更好的热电性能。如果这些碳纳米线的表面碳原子被氢原子部分吸附,体系的电子热导和晶格热导会显著降低而基本不影响其功率因子,因而ZT值可以增加到10左右,这表明小直径碳纳米线是非常有应用前景的高性能热电材料。
     碳纳米管具有自组织特性,实验观察表明,单个碳纳米管往往聚集成二维六角排列的阵列结构。为了更好地与相关实验对比,本文最后研究了(10,0)碳纳米管形成阵列结构的热电性能。计算表明,碳管阵列的电子透射系数不再像单根碳纳米管那样出现量子化台阶。在中温附近,通过合适的掺杂,碳管阵列的功率因子能优化到较高的水平,但仍然低于单个碳纳米管的功率因子。由于管间相互作用增强了声子散射,阵列结构的晶格热导从室温到中温范围比单个碳纳米管低20%左右。(10,0)碳管阵列在温度为800K时表现出最高的ZT值1.2。
As fossil fuels are being exhausted and the increasing challenges of global warming, it is urgently needed to develop clean and renewable sources of energy. Thermoelectric materials have attracted much attention from the science community because they can directly convert waste heat into electric power and vice versa. For conventional materials, the transport coefficients are coupled with each other, and it is usually difficult to greatly improve their ZT values. Both theoretical prediction and experimental studies indicate that low-dimensional materials or nanostructures could exhibit much higher thermoelectric performance on account of improved power factor caused by quantum confinement as well as decreased thermal conductivity caused by enhanced phonon boundary scattering. However, the experimental realization of such system remains a big challenging for the best thermoelectric materials which usually contain one ore more elements of Bi, Sb, Te, Co, Pb and Ag. Moreover, they are not suitable for large-scale fabrications and applications because of the complicated and expensive synthesis technique. Recently, it was reported that carbon nanotubes, carbon nanowires, and other one-dimensional carbon nanomaterials were successfully synthesized. Compared with the conventional materials, such carbon nanomaterials are environmentally friendly and easily to be mass produced. In this dissertation, we use a combination of density functional theory (DFT), nonequilibrium Green's function (NEGF) method, and nonequilibrium molecular dynamics (NEMD) simulations to investigate the electronic, phonon, and transport properties of carbon nanotubes and related one-dimensional structures, and try to explore their possible applications as eco-friendly and high-performance thermoelectric materials.
     We first study the thermoelectric properties of three kinds of ultrasmall (4A) carbon nanotubes. It is found that the quantized transmission function displays a clear stepwise structure, which indicates ballistic transport of electrons in the carbon nanotubes. The power factor of these carbon nanotubes can be optimized to much higher values in a wide temperature range. Our calculations indicate that the semiconducting (4,2) tube exhibits higher room temperature ZT value (1.6) than (3,3) and (5,0) tubes because of the higher power factor and lower electronic thermal conductance. Although the ZT values of the pristine tube is not very high, the thermoelectric performance of these nanotubes can be greatly enhanced by hydrogen adsorption, formation of bundles, and increasing the tube length, which significantly reduce the electron and phonon induced thermal conductance. Our calculations suggest that ultra-small carbon nanotubes may be promising candidates for high-performance thermoelectric applications.
     We then investigate the thermoelectric performance of a series of carbon nanotubes with larger diameters (including the zigzag (7,0),(8,0),(10,0),(11,0),(13,0),(14,0) and the chiral (4,2),(5,1),(6,2),(6,4),(8,4),(10,5)), and discuss how their ZT values change with temperature, tube diameter, and chirality. It is found that these tubes could have higher ZT values at appropriate doping level and operating temperature. The tubes with an intermediate diameter (7~8A)(e.g.,(10.0) and (6,4)) are found to exhibit higher ZT values than others. Moreover, the thermoelectric performance can be significantly enhanced by isotope impurities, isoelectronic substitution, and surface design, thus the ZT values can be optimized to about4.0. Compared with the ultra-small (4A) nanotubes, tube (10,0) can be more easily fabricated in and selected from the experiments, which make it is more favorable to be applied as high-performance thermoelectric materials in the near future.
     We have also investigated the room temperature thermoelectric properties of three kinds of5A carbon nanowires with typical orientations:[100],[110], and [111]. Although these nanowires are metallic in the pristine form, those with zero transmission windows near the Fermi level can be optimized to exhibit higher power factor. Due to relatively high power factor and very low thermal conductance,[100] and [111] CNWs are found to exhibit better thermoelectric performance than other carbon nanomaterials such as carbon nanotubes. Moreover, the ZT of these systems can be further improved to value in excess of10by partial hydrogen passivation. which can reduce the thermal conductance by about50%but leave the power factor less affected. Our calculated results indicate that small diameter carbon nanowires could be very promising high-performance thermoelectric materials.
     Carbon nanotubes are usually self-arranged into a two-dimensional hexagonal array structures during the synthesis process. To make a better comparison with related experimental works, we discuss the thermoelectric properties of an array of (10,0) carbon nanotubes. Our theoretical calculations indicate that the electronic transport coefficients of (10,0) array are no longer quantized. At intermediate temperature, the power factor of array (10,0) can be optimized to higher values via appropriate doping, but it is still much lower than that of free standing tube (10,0). On the other hand, it is found that the lattice thermal conductance of array (10,0) is about20%lower than that of the tube (10,0), which can be attributed to the enhanced phonon scattering by the tube-tube interactions. Overall, the (10,0) array can be doped to exhibit the highest ZT value of1.2at800K.
引文
[1]T. J. Seebeck. "Magnetic polarization of metals and minerals." Abhandlungen der Deutschen Akademie der Wissenchaften zu Berlin. Vol.265, pp.1822-3,1823.
    [2]J. C. Peltier. "Nouvelles experience sur la caloricite des courans electrique." Ann. Chim. Vol. LV1.pp.371,1834.
    [3]G. A. Slack. In CRC handbook of thermoelectric, edited by D. M. Rowe, CRC Press, Boca Raton, FL 1995, pp.407-40.
    [4]T. Tritt. "Holey and unholy semiconductors." Science 1999; 283(5403):804-5.
    [5]F. J. DiSalvo. "Thermoelectric cooling and power generation." Science 1999; 285(5428): 703-6.
    [6]L. D. Hicks, M. S. Dresselhaus. "Effect of quantum-well structures on the thermoelectric figure of merit." Phys. Rev. B 1993; 47(19):12727-31.
    [7]L. D. Hicks, M. S. Dresselhaus. "Thermoelectric figure of merit of a one-dimensional conductor." Phys. Rev. B 1993; 47(24):16631-4.
    [8]D. Teweldebrhan, V. Goyal, M. Rahman, A. A. Balandin. "Atomically-thin crystalline films and ribbons of bismuth telluride."Appl. Phys. Lett.2010; 96(5):053107.
    [9]D. Teweldebrhan, V. Goyal, A. A. Balandin. "Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals." Nano Lett.2010; 10(4): 1209-18.
    [10]F. Zahid, R. Lake. "Thermoelectric properties of Bi2Te3 atomic quintuple thin films." Appl. Phys. Lett.2010; 97(21):212102.
    [11]S. Iijima. "Helical microtubules of graphite carbon." Nature (London) 1991; 354(6348): 56-8.
    [12]S. Iijima, T. Ichihashi. "Single-shell carbon nanotubes of 1-nm diameter." Nature (London) 1993; 363(6430):603-5.
    [13]D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers. "Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls." Nature (London) 1993; 363(6430):605-7.
    [14]L. F. Sun, S. S. Xie, W. Liu, W. Y. Zhou, Z. Q. Liu, D. S. Tang, G. Wang, L. X. Qian. "Creating the narrowest carbon nanotubes." Nature (London) 2000; 403(6768):384.
    [13]L.-C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, S. lijima. "The smallest carbon nanotube." Nature (London) 2000; 408(6808):50.
    [16]N. Wang. Z. K. Tang, G. D. Li, J. S. Chen. "Single-walled 4 A carbon nanotubes arrays.' Nature (London) 2000; 408(6808):50-1.
    [17]Z. K. Tang, H. D. Sun. J. Wang, J. Chen, G. Li. "Mono-sized single-wall carbon nanotubes formed in channels of AlPO4-5 single crystal." Appl. Phys. Lett.1998; 73(16):2287-9.
    [18]L.-M. Peng, Z. L. Zhang, Z. Q. Xue, Q. D. Wu, Z. N. Gu. D. G. Pettifor. "Stability of carbon nanotubes:how small can they be?" Phys. Rev. Lett.2000; 85(15):3249-52.
    [19]R. A. Jishi, M. S. Dresselhaus, G. Dresselhaus. "Symmetry properties of chiral carbon nanotubes." Phys. Rev. B 1993; 47(24):16671-4.
    [20]M. S. Dresselhaus, G. Dresselhaus, R. Saito. "Physics of carbon nanotubes." Carbon 1995; 33(7):883-91.
    [21]M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund. Science of fullerenes and carbon nanotubes. Academic Press, San Diego,1996.
    [22]R. Saito, M. S. Dresselhaus, G. Dresselhaus. Physical properties of carbon nanotubes. Imperial College Press, London,1998.
    [23]T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, M. Loncar. "A diamond nanowire single-photon source." Nat. Nanotechnol.2010; 5(3):195-9.
    [24]C.-H. Hsu, S. G. Cloutier, S. Palefsky, J. Xu. "Synthesis of diamond nanowires using atmospheric-pressure chemical vapor deposition." Nano Lett.2010; 10(9):3272-6.
    [25]B. W. Smith, M. Monthioux, D. E. Luzzi. "Encapsulated C60 in carbon nanotubes." Nature (London) 1998; 396(6709):323-4.
    [26]H. Simon, H. Kuzmany, H. Rauf, T. Pichler, J. Bernardi, H. Peterlik, L. Koreca. A. Janossy. "Low temperature fullerene encapsulation in single wall carbon nanotubes:synthesis of N(?)C60(?)SWNT." Chem. Phys. Lett.2004; 283(3-4):362-7.
    [27]D. Fu, X. Zeng, J. Zou, H. Qian, X. Li, X. Xiong. "Direct synthesis of Y-junction carbon nanotubes by microwave-assisted pyrolysis of methane." Mater. Chem. Phys.2009; 118(2-3):501-5.
    [28]J. Park, J. Yoon, G.-T. Kim, J. S. Ha. "p-n homo-junction arrays of aligned single walled carbon nanotubes fabricated by selective patterning of polythyleneimine film." Nanotechnology 2011; 22(38):385302.
    [29]T. Pei, H. Xu, Z. Zhang, Z. Wang, Y. Liu, Y. Li, S. Wang, L.-M. Peng. "Electronic transport in single-walled carbon nanotube/graphene junction." Appl. Phys. Lett.2011; 99(11):113102.
    [30]P.W. Chiu, S. Roth, "carbon nanotube nanocontact in T-junction structures." Appl. Phys. Lett.2007; 91(10):102109.
    [31]C. Zhang, Y. Wang, L. Huang, Y. Wu. "Electrical transport study of magnetomechanical nanocontact in ultrahigh vacuum using carbon nanowalls." Appl. Phys. Lett.2010; 97(6): 062102.
    [32]S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, C. Dekker. "Individual single-wall carbon nanotubes as quantum wires." Nature (London) 1997; 386(6624):474-7.
    [33]C. T. White, T. N. Todorov. "Carbon nanotubes as long ballistic conductors." Nature (London) 1998; 393(6682):240-2.
    [34]C. T. White, T. N. Todorov. "Nanotubes go ballistic." Nature (London) 2001; 411(6838): 649-50.
    [35]A. Bachtold, M. S. Fuhrer, S. Plyasunov, M. Forero, E. H. Anderson, A. Zrttl, P. L. McEuen. "Scanned probe microscopy of electronic transport in carbon nanotubes." Phys. Rev. Lett.2000; 84(26),6082-5.
    [36]J. Kong, E. Yenilmez, T. W. Tombler, W. Kim, H. Dai, R. B. Laughlin, L. Liu, C. S. Jayanthi. S. Y. Wu. "Quantum interface and ballistic transmission in nanotube electron waveguides." Phys. Rev. Lett.2001; 87(10):106801.
    [37]A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai. "Ballistic carbon nanotube field-effect transistors." Nature (London) 2003; 424(6949):654-7.
    [38]J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmodt, R. E. Smalley. "Eletrical and thermal transport properties of magnetically aligned single wall carbon nanotube films." Appl. Phys. Lett.2000; 77(5): 666-8.
    [39]T. Durkop, S. A. Getty, E. Cobas, M. S. Fuhrer. "Extraordinary mobility in semiconducting carbon nanotubes." Nano Lett.2004; 4(1),35-9.
    [40]Y--F. Chen,M. S. Fuhrer. "Electric-field-dependent charge-carrier velocity in semiconducting carbon nanotubes." Phys. Rev. Lett.2005; 95(23):236803.
    [41]M. S. Purewal, B. H. Hong, A. Ravi, B. Chandra, J. Hone, P. Kim. "Scaling of resistance and electron mean free path of single-walled carbon nanotubes." Phys. Rev. Lett.2007; 98(18):186808.
    [42]Z. Zhang, S. Wang, L. Ding, X. Liang, T. Pei, J. Shen, H. Xu, Q. Chen, R. Cui, Y. Li, L.-M. Peng. "Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage." Nano Lett.2008; 8(11):3696-701.
    [43]J. Hone, M. Whitney, C. Piskoti, A. Zettl. "Thermal conductivity of single-walled carbon nanotubes." Phys. Rev. B 1999; 59(4):R2514-R9.
    [44]P. Kim. L. Shi, A. Majumdar, P. L. McEuen. "Thermal transport measurements of individual multiwalled nanotubes." Phys. Rev. Lett.2001; 87(21):215502.
    [45]C. Yu, L. Shi, Z. Yao, D. Li, A. Majumdar. "Thermal conductance and thermopower of an individual single-wall carbon nanotube." Nano Lett.2005; 5(9):1842-6.
    [46]E. Pop. D. Mann, J. Cao, Q. Wang, K. Goodson, H. Dai. "Negative differential conductance and hot phonons in suspended nanotube molecular wires." Phys. Rev. Lett. 2005; 95(15):155505.
    [47]Z. L. Wang, D. W. Tang, X. B. Li, X. H. Zheng, W. G. Zhang, L. X. Zheng, Y. T. Zhu. "Length-dependent thermal conductivity of an individual single-wall carbon nanotube." Appl. Phys. Lett.2007; 91(12):123119.
    [48]E. Pop, D. A. Mann, K. E. Goodson, H. Dai. "Electrical and thermal transport in metallic sing-wall carbon nanotubes on insulating substrates." J. Appl. Phys.2007; 101(9):093710.
    [49]M. T. Pettes, L. Shi. "Thermal and structural characterizations of individual single-, double-, and multi-walled carbon nanotubes."Adv. Funct. Mater.2009; 19(24):3918.
    [50]J. Hone, I. Ellwood, M. Muno, A. Mizel, M. L. Cohen, A. Zettl. A. G. Rinzler, R. E. Smalley. "Thermoelectric power of single-walled carbon nanotubes.''Phys. Rev. Lett.1998; 80(5):1042-5.
    [51]G. U. Sumanasekera, C. K. W. Adu, S. Fang, P. C. Eklund. "Effects of gas adsorption and collisions on electrical transport in single-wall carbon nanotubes." Phys. Rev. Lett.2000; 85(5):1096-9.
    [52]N. Barisic, R. Gaal, I. Kezsmarki, G. Mihaly, L. Forro. "Pressure dependence of the thermoelectric power of single-walled carbon nanotubes." Phys. Rev. B 2002; 65(24): R241403.
    [53]J. Vavro, M. C. Llaguno, J. E. Fischer, S. Ramesh, R. K. Saini, L. M. Ericson, V. A. Davis, R. H. Hauge, M. Pasquali. R. E. Smalley. "Thermoelectric power of p-doped single-wall carbon nanotubes and the role of phonon drag." Phys. Rev. Lett.2003; 90(6):065503.
    [54]J. P. Small, K. M. Perez, P. Kim. "Modulation of thermoelectric power of individual carbon nanotubes." Phys. Rev. Lett.2003; 91(25):256801.
    [55]R. S. Prasher, X. J. Hu, Y. Chalopin, N. Mingo, K. Lofgreen, S. Volz, F. Cleri, P. Keblinski. "Turning carbon nanotubes from exceptional heat conductors into insulators." Phys. Rev. Lett.2009; 102(10):105901.
    [56]D. Kim, Y. Kim. K. Choi, J. C. Grunlan, C. Yu. "Improved thermoelectric behavior of nanotube-filled polymer composites with poly (3,4-ethylenedioxythiophene) poly (styrenesu]fonate)."ACS Nano 2010; 4(1):513-23.
    [57]C. A. Hewitt, A. B. Kaiser, S. Roth, M. Craps, R. Czerw, D. L. Carroll. "Multilayered carbon nanotube/polymer composite based thermoelectric fabrics." Nano Lett.2012; 12(3): 1307-10.
    [58]K. Ohara, N. Suzuki, S. lizuka. "Carbon nanowire formation in electron-energy controlled plasma produced by CH4/Ar rf discharges with small coaxial electrodes." Diam. Relat. Mater.2010; 19(7-9):908-10.
    [59]W. Janssen, S. Faby, E. Gheeraert. "Bottom-up fabrication of diamond nanowires arrays." Diam. Relat. Mater.2011; 20(5-6):779-81.
    [60]J. Vavro, M. C. Llaguno, B. C. Satishkumar, D. E. Luzzi, J. E. Fischer. "Electrical and thermal properties of C60-filled single-wall carbon nanotubes." Appl. Phys. Lett.2002; 80(8):1450.
    [61]S. Bandow, T. Hiraoka, T. Yumura, K. Hirahara, S. lijima. "Raman scattering study on fullerene derived intermediates formed within single-wall carbon nanotube:from peapod to double-wall carbon nanotube." Chem. Phys. Lett.2004; 384(4-6):320-5.
    [62]P. Utko, J. Nygard, M. Monthioux, L. Noe. "Sub-Kelvin transport spectroscopy of fullerene peapod quantum dots." Appl. Phys. Lett.2006; 89(23):233118.
    [63]T. Kato, R. Hatakeyama, J. Shishido, W. Oohara, K. Tohji. "P-N junction with donor and acceptor encapsulated single-walled carbon nanotubes." Appl. Phys. Lett.2009; 95(8): 083109.
    [64]F. Borrnert, C. Borrnert, S. Gorantla, X. Liu, A. Bachmatiuk, J.-O. Joswig, F. R. Wagner, F. Schaffel, J. H. Warner, R. Schonfelder, B. Rellinghaus, T. Gemming, J. Thomas, M. Knupfer, B. Biichner, M. H. Rummeli. "Single-wall-carbon nanotube/single-carbon-chain molecular junctions." Phys. Rev. B 2010; 81(8):085439.
    [65]V. Perebeinos, J. Tersoff, P. Avouris. "Mobility in semiconducting carbon nanotubes at finite carrier density." Nano Lett.2006; 6(2):205-8.
    [66]H. Ishii, N. Kobayashi, K. Hirose. "Order-N electron transport calculation from ballistic to diffusive regimes by a time-dependent wave-packet diffusion method:application to transport properties of carbon nanotubes." Phys. Rev. B 2010; 82(8):085434.
    [67]J. Che, T. Cagin, W. A. Goddard Ⅲ. "Thermal conductivity of carbon nanotubes." Nanotechnology 2000; 11(2):65-9.
    [68]S. Berber, Y. K. Kwon, D. Tomanek. "Unusually high thermal conductivity of carbon nanotubes." Phys. Rev. Lett.2000; 84(20),4613-6.
    [69]M. A. Osman, D. Srivastava. "Temperature dependence of the thermal conductivity of single-wall carbon nanotubes." Nanotechnology 2001; 12(1):21-4.
    [70]J. X. Cao, X. H. Yan, Y. Xiao, J. W. Ding. "Thermal conductivity of zigzag single-walled carbon nanotubes:Role of the umklapp process." Phys. Rev. B 2004; 69(7):073407.
    [71]J. Wang, J.-S. Wang. "Carbon nanotube thermal transport:ballistic to diffusive." Appl. Phys. Lett.2006;88(11):111909.
    [72]R. Pan, Z. Xu, Z. Zhu, Z. Wang. "Thermal conductivity of functionalized single-wall carbon nanotubes." Nanotechnology 2007; 18(28):285704.
    [73]Y. Gu, Y. Chen. "Thermal conductivities of single-walled carbon nanotubes calculated from the complete phonon dispersion relations." Phys. Rev. B 2007; 76(13):134110.
    [74]H. M. Duong, D. V. Papavassilion, K. J. Mullen, B. L. Wardle, S. Maruyama. "Calculated thermal properties of single-walled carbon nanotube suspensions." J. Phys. Chem. C 2008; 112(50):19860-5.
    [75]J.-W. Jiang, J.-S. Wang, B. Li. "A nonequilibrium Green's function study of thermoelectric properties in single-walled carbon nanotubes" J. Appl. Phys.2011; 109(1):014326.
    [76]O. Shenderova, D. Brenner, R. S. Ruoff. "Would diamond nanorods be stronger than fullerene nanotubes?" Nano Lett.2003; 3(6):805-9.
    [77]A. S. Barnard, S. P. Russo,I. K. Snook. "Ab initio modeling of diamond nanowire structures." Nano Lett.2003; 3(10):1323-8.
    [78]A. S. Barnard, S. P. Russo, I. K. Snook. "Surface structure of cubic diamond nanowires." Surf. Sci.2003; 538(3):204-10.
    [79]A. S. Barnard, I. K. Snook. "Phase stability of nanocarbon in one dimension:nanotubes versus diamond nanowires." J. Chem. Phys.2004; 120(8):3817-21.
    [80]C. W. Padgett, O. Shenderova, D. W. Brenner. "Thermal conductivity of diamond nanorods:molecular simulation and scaling relations." Nano Lett.2006; 6(8):1827-31.
    [81]J. W. Jiang, B. S. Wang, J. S. Wang. "Molecular dynamics simulation for heat transport in thin diamond nanowires." Phys. Rev. B20M; 83(23):235432.
    [82]S. Berber, Y.-K. Kwon, D. Tomanek. "Microscopic formation mechanism of nanotube peapods." Phys. Rev. Lett.2002; 88(18):185502.
    [83]E. G. Noya, D. Srivastava, L. A. Chernozatonskii, M. Menon. "Thermal conductivity of carbon nanotube peapods." Phys. Rev. B 2004; 70(11):115416.
    [84]H. Kondo, H. Kino. T. Ohno. "Transport properties of carbon nanotubes encapsulating C60 and related materials." Phys. Rev. B 2005; 71(11):115413.
    [85]T. Kojima, T. Ono. "First-principle study on transport property of peapods." Curr. Appl. Phys.2012; 12(3):S100-S4.
    [86]J. Zhang, Q. W. Shi, J. Yang. "Electronic transport in Z-junction carbon nanotubes." J. Chem. Phys.2004; 120(16):7733-7.
    [87]A. Cummings, M. Osman, D. Srivastava, M. Menon. "Thermal conductivity of Y-junction carbon nanotubes." Phys. Rev. B 2004; 70(11):115405.
    [88]K. H. Khoo, J. R. Chelikowsky. "Electron transport across carbon nanotube junctions decorated with Au nanoparticles:density functional calculations." Phys. Rev. B 2009; 79(20):205422.
    [89]C. Ren, Z. Xu, W. Zhang, Y. Li, Z. Zhu, P, Huai. "Theoretical study of heat conduction in carbon nanotube hetero-junctions." Phys. Lett.A 2010; 374(17-18):1860-5.
    [90]K. L. Ma, X. H. Yan, Y. D. Guo, Y. Xiao. "Electronic transport properties of junctions between carbon nanotubes and graphene nanoribbons." Eur. Phys. J. B 2011; 83(4): 487-92.
    [91]V. Varshney, J. Lee, A. K. Roy, B. L. Farmer. "Modeling of interface thermal conductance in longitudinally connected carbon nanotube junctions." J. Appl. Phys.2011; 109(8): 084913.
    [92]A. A. Shokri, Sh. Nikzad. "Topology effects of interface and gate voltage on electrical transport through the CNT/C60/CNT junction using the Green's function method." J. Appl. Phys.2011; 110(2):024303.
    [93]K. Esfarjani, M. Zebarjadi, Y. Kawazoe. "Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation." Phys. Rev. B 2006; 73(8):085406.
    1941 M. Born, K. Huang. Dynamical theory of crystal lattice. Oxford University Press, Oxford, 1954.
    [95]P. Hohenberg, W. Kohn. "Inhomogeneous electron gas." Phys. Rev.1964; 136(3B): B864-B71.
    [96]W. Kohn, L. J. Sham. "Self-consistent equation including exchange and correlation effects." Phys. Rev.1965; 140(4A):A1133-A8.
    [97]D. R. Hamann, M. Schluter, C. Chiang."Norm-conserving psedopotentials." Phys. Rev. Lett.1979; 43(20):1494-7.
    [98]D. Vanderbilt. "Soft self-consistent pseudopotentials in a generalized eigenvalue formalism."Phys. Rev. B 1990; 41(11):7892-5.
    [99]M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, K. Stokbro. "Density-functional method for nonequilibrium electron transport." Phys. Rev. B 2002; 65(16):165401.
    [100]J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal. "The SIESTA method for ab initio order-N materials simulation." J. Phys.:Conders. Matter 2002; 14(11):2745-79.
    [101]S. Datta. Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge,1995.
    [102]H. Haug, A.-P. Jauho. Quantum kinetics in transport and optics of semiconductors. Springer, Berlin,1996.
    [103]M. G. Holland. "Analysis of lattice thermal conductivity." Phys. Rev.1963; 132(6): 2461-71.
    [104]F. Muller-Plathe. "Reversing the perturbation in nonequilibrium molecular dynamics:an easy way to calculate the shear viscosity of fluids." Phys. Rev. E 1999; 59(5):4894-8.
    [105]P. K. Schelling, S. R. Phillpot, P. Keblinski. "Comparison of atomic-level simulation methods for computing thermal conductivity." Phys. Rev.B 2002; 65(14):144306.
    [106]S. Plimpton. "Fast parallel algorithms for short-range molecular dynamics." J. Comput. Phys.1995; 117(1):1-19. Code and manual available at:http://lammps.sandia.gov/doc/Manual.html
    [107]J. Tersoff. "New empirical approach for the structure and energy of covalent systems." Phys. Rev. B 1988; 37(12):6991-7000.
    [108]J. Tersoff. "Modeling solid-state chemistry:interatomic potentials for multicomponent systems."Phys. Rev. B 1989; 39(8):5566-8.
    [109]F. de Brito Mota, J. F. Justo, A. Fazzio. "Structural properties of amorphous silicon nitride."Phys. Rev. B 1998; 58(13):8323-8.
    [110]S. J. Stuart, A. B. Tutein, J. Harrison. "A reactive potential for hydrocarbons with intermolecular interactions." J. Chem. Phys.2000; 112(14):6472-86.
    [111]J. D. Gale. "GULP:a computer program for the symmetry-adapted simulation of solid."J. Chem. Soc. Faraday Trans.1997; 93(4):629-37.
    [112]G. Kfesse, J. Hafner. "Ab initio molecular dynamics for liquid metals." Phys. Rev. B 1993; 47(1):R558-61.
    [113]G. Kfesse, J. Hafner. "Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium." Phys. Rev. B 1994; 49(20): 14251-69.
    [114]G. Kfesse, J. Furthmuller. "Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set." Comput. Mater. Sci.1996; 6(1):15-50.
    [115]J. P. Perdew, Y. Wang. "Accurate and simple analytic representation of the electron-gas correlation energy." Phys. Rev. B 1992; 45(23):13244-9.
    [116]H. J. Monkhorst, J. D. Pack. "Special points for Brillouin-zone integrations." Phys. Rev. B 1976; 13(12):5188-92.
    [117]N. Troullier, J. L. Martins. "Efficient pseudopotentials for plane-wave calculations. Ⅱ. operators for fast iterative diagonalization." Phys. Rev. B 1991; 43(11):8861-9.
    [118]H. L. Zhang, J. F. Li, K. F. Yao, L. D. Chen. "Spark plasma sintering and thermal conductivity of carbon nanotube bulk materials." J. Appl. Phys.2005; 97(11):114310.
    [119]J. Chen, X. Gui, Z. Wang, Z. Li, R. Xiang, K. Wang, D. Wu, X. Xia, Y. Zhou, Q. Wang, Z. Tang, L. Chen. "Superlow thermal conductivity 3D carbon nanotube network for thermoelectric applications." ACS Appl. Mater. Interfaces 2012; 4(1):81-6.
    [120]H. J. Liu, C. T. Chan. "Properties of 4 A carbon nanotubes from first-principles calculations." Phys. Rev. B 2002; 66(11):115416.
    [121]C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, A. Zettl. "Breakdown of Fourier's law in nanotube thermal conductors." Phys. Rev. Lett.2008; 101(7):075903.
    [122]Z. X. Huang, Z. A. Tang. "Evaluation of momentum conservation influence in non-equilibrium molecular dynamics methods to compute thermal conductivity." Physica B 2006; 373(2):291-6.
    [123]A. Maiti, G. D. Mahan, S. T. Pantelides. "Dynamical simulations of nonequilibrium process-heat flow and the Kapitza resistance across grain boundaries." Solid State Commun. 1997; 102(7):517-21.
    [124]S. Baroni, S. de Grioncoli, A. D. Corso, P. Giannozzi. "Phonons and related crystal properties from density-functional perturbation theory." Rev. Mod. Phys.2001; 73(2): 515-62.
    [125]D. Donadio, G. Galli. "Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the Boltzmann transport equation." Phys. Rev. Lett.2007; 99(25):255502.
    [126]Y. W. Wen, H. J. Liu, L. Pan, X. J. Tan, H. Y. Lv, J. Shi, X. F. Tang. "A triplet form of (5,0) carbon nanotube with higher hydrogen storage capacity." J. Phys. Chem. C 2011; 115(18): 9227-31.
    [127]G. Zhang, Li B. "Thermal conductivity of nanotubes revisited:effects of chirality, isotope impurity, tube length, and temperature."J.Chem. Phys.2005; 123(11):114714.
    [128]J. X. Cao, X. H. Yan, Y. Xiao, J. W. Ding. "Exact study of lattice dynamics of single-walled carbon nanotubes." Phys. Rev. B 2003; 67(4):045413.
    [129]C. W. Chang, A. M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl. "Isotope effect on the thermal conductivity of boron nitride nanotubes." Phys. Rev. Lett.2006; 97(8):085901.
    [130]G. Balasubramanian, I. K. Puri, M. C. Bohm, F. Leroy. "Thermal conductivity reduction through isotope substitution in nanomaterials:predictions from an analytical classical model and nonequilibrium molecular dynamics simulations." Nanoscale 2011; 3(9): 3714-20.
    [131]J. Chen, G. Zhang, B. Li. "Tunable thermal conductivity of Si1-xGex nanowires." Appl. Phys. Lett.2009; 95(7):073117.
    [132]T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley. "Catalytic growth of single-walled nanotubes by laser vaporization." Chem. Phys. Lett.1995; 243(1-2):49-54.
    [133]C. Joumet, W. K. Maser, P. Bernier, A. Loiseau, M. L. Chapelle, S. Lefrant, P. Deniard, R. Leek, J. W. Fischer. "Large-scale production of single-walled carbon nanotubes by the electric-arc technique." Nature (London) 1997; 388(6644):756-8.
    [134]J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, H. Dai. "Synthesis of individual single-walled carbon nanotubes on patterned siliconwafers." Nature (London) 1998; 395(6705):878-81.
    [135]M. Zheng. A. Jagota, E. D. Semke, B. A. Diner. R. S. Mclean, S. R. Lustig, R. E. Richardson, N. G. Tassi. "DNA-assisted dispersion and separation of carbon nanotubes." Nat. Mater.2003; 2(5):338-42.
    [136]A.I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, P. Yang. "Enhanced thermoelectric performance of rough silicon nanowires." Nature (London) 2008; 451(7175):163-7.
    [137]A. I. Boukai, Y. Bunimovich, L. Tahir-Kheli, J. K. Yu, W. A. Goddard, J. R. Heath. "Silicon nanowires as efficient thermoelectric materials." Nature (London) 2008; 451(7175):168-71.
    [138]M. Hu, K. P. Giapis, J. V. Goicochea, X. Zhang, D. Poulikakos. "Significant reduction of thermal conductivity in Si/Ge core-shell nanowires." Nano Lett.2011; 11(2):618-23.
    [139]M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Feng, J.-P. Fleurial. "New directions for low-dimensional thermoelectric materials." Adv. Mater.2007; 19(8): 1043-53.
    [140]X. Yan, B. Poudel. Y. Ma, W. S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, Z. F. Ren. "Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3."Nano Lett.2010; 10(29):3373-8.
    [141]G. Zhang, B. Kirk, L. A. Jauregui, H. Yang, X. Xu, Y. P. Chen, W. Yue. "Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties.' Nano Lett.2012; 12(1):56-60.
    [142]T. Hayashi, H. Muramatsu, Y. A. Kim, H. Kajitani, S. Imai, H. Kawakami, M. Kobayashi, T. Matoba, M. Endo, M. S. Dresselhaus. "TEM image simulation study of small carbon nanotubes and carbon nanowire." Carbon 2006; 44(7):1130-6.
    [143]X. J. Tan, H. J. Liu, Y. W. Wen, H. Y. Lv, L. Pan, J. Shi, X. F. Tang. "Thermoelectric properties of ultrasmall single-wall carbon nanotubes", J. Phys. Chem. C 2011; 115(44): 21996-2001.
    [144]X. J. Tan, H. J. Liu, Y. W. Wen, H. Y. Lv, L. Pan, J. Shi, X. F. Tang. "Optimizing the thermoelectric performance of zigzag and chiral carbon nanotubes", Nanoscale Res. Lett. 2012; 7(1):116.
    [145]H. Zheng, H. J. Liu, X. J. Tan, H. Y. Lv, L. Pan, J. Shi, X. F. Tang. "Enhanced thermoelectric performance of graphene nanoribbons", Appl. Phys. Lett.2012; 100(9): 093104.
    [146]D. Donadio, G. Galli. "Atomistic simulations of heat transport in silicon nanowires." Phys. Rev. Lett.2009; 102(19):195901.
    [147]W. Li, N. Mingo, L. Lindsay, D. A. Broido, D. A. Stewart, N. A. Katcho. "Thermal conductivity of diamond nanowires from first principles." Phys. Rev. B 2012; 85(19): 195436.
    [148]J. Guo, B. Wen, R. Melnik, S. Yao, T. J. Li. "Geometry and temperature dependent thermal conductivity of diamond nanowires:a non-equilibrium molecular dynamics study.' Physica E 2010; 43(1):155-60.
    [149]R. J. Mehta, Y. Zhang, C. Karthik, B. Singh, R. W. Siegel, T. Borca-Tasciuc, G. Ramanath. "A new class of doped nanobulk high figure-of-merit thermoelectrics by scalable bottom-up assembly." Nat. Mater.2012; 11(3):233-40.
    [150]W. Liu, X. J. Tan, K. Yin, H. J. Liu, X. F. Tang, J. Shi, Q. J. Zhang, C. Uher. "Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si-xSnx solid solutions", Phys. Rev. Lett.2012; 108(16):166601.
    [151]X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen. "Multiple-filled skutterudites:high thermoelectric figure of merit through separately optimizing electrical and thermal transports." J. Am. Chem. Soc.2011; 133(20):7837-46.
    [152]N. Yang, G. Zhang, B. Li."Ultralow thermal conductivity of isotope-doped silicon nanowires." Nano Lett.2008; 8(1):276-80.
    [153]M. Hu, K. P. Giapis, J. V. Goicochea, X. Zhang, D. Poulikakos. "Significant reduction of thermal conductivity in Si/Ge core-shell nanowires." Nano Lett.2011; 11(2):618-23.
    [154]A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley. "Crystalline ropes of metallic carbon nanotubes." Science 1996; 273 (5274):483-7.
    [155]T. Miao, W. Ma, X. Zhang, J. Wei, J. Sun. "Significatly enhanced thermalelectric properties of ultralong double-walled carbon nanotube bundle." Appl. Phys. Lett.2013; 102(5):053105.
    11561 F. Tournus, J.-C. Charlier, P. Melinon. "Mutual orientation of two C60 moleculars:an ab initio study." J. Chem. Phys.2005; 122(9):094315.
    [157]H. J. Liu. Y. W. Wen, L. Miao, Y. Hu. "Structural and electronic properties of bundles of 4 A carbon nanotunes." Nanotechnology 2007; 18(44):445708.
    [158]L. A. Girifalco, M. Hodak, R. S. Lee. "Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential." Phys. Rev. B 2000; 62(19):13104-10.
    [159]A. E. Aliev, M. H. Lima, E. M. Silerman, R. H. Baughman. "Thermal conductivity of multi-walled carbon nanotubes sheets:a radiation losses and quenching of phonon modes." Nanotechnology 2010; 21(3):035709.
    [160]W. J. Evans, M. Shen, P. Keblinski. "Inter-tube thermal conductance in carbon nanotubes arrays and bundles:effect of contact area and pressure." Appl. Phys. Lett.2012; 100(26): 261908.
    [161]H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Worth, L. T. Scott, M. Felmont, D. Olevano. B. v. Issendorff. "Gas-phase production and photoelectron spectroscopy of the smallest fullerence, C20." Nature (London) 2000; 407(6800):60-3.
    [162]W. An, Y. Gao, S. Bulusu, X. C. Zeng. "Ab initio calculation of bowl, cage, and ring isomers of C20 and C20." J. Chem. Phys.2005; 112(20):204109.
    [163]S. Bose, H. N. Acharya, H. D. Banerjee. "Electrical, thermal, thermoelectric and related properties of magnesium silicide semiconductor prepared from rice husk." J. Mater. Sci. 1993; 28(20):5461-8.
    [164]T. Caillat. A. Borshchevsky, J.-P. Fleurial. "Properties of single crystalline semiconducting CoSb3." J. Appl. Phys.1996; 80(8):4442-9.
    [165]J. Tani, H. Kido. "Thermoelectric properties of Bi-doped Mg2Si semiconductors. Physica B 2005; 364(1-4):218-24.
    [166]M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, N. Hamada. "The thermoelectric properties of bulk crystalline n- and p-type Mg2Si prepared by the vertical Bridgman method." J. Appl. Phys.2008; 104(1):013703.
    [167]S. K. Bux, M. T. Yeung, E. S. Toberer, G. J. Snyder, R. B. Kanerb, J.-P. Fleurial. "Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide." J. Mater. Chem.2011; 21(33):12259-66.
    [168]S.-W. You, I.-H. Kim. "Solid-state synthesis and thermoelectric properties of Bi-doped Mg2Si compounds." Curr. Appl. Phys.2011; 11(3):S392-S5.
    [169]J. Tani, H. Kido. "Thermoelectric properties of Sb-doped Mg2Si semiconductors.' Intermetallics 2007; 15(9):1202-7.
    [170]T. Dasgupta, C. Stiewe, R. Hassdorf, A. J. Zhou, L. Boettcher, E. Mueller. "Effect of vacancies on the thermoelectric properties of Mg2Si1-xSbx(0≤x≤0.1)."Phys. Rev. B 2011; 83(23):235207.
    [171]V. K. Zaitsev, M. I. Fedorov, E. A. Gurieva, I. S. Eremin, P. P. Konstantinov, A. Y. Samunin, M. V. Vedernikov. "Highly effective Mg2Si1-xSnx thermoelectric." Phys. Rev. B 2006; 74(4):045207.
    [172]Y. Isoda, T. Nagai, H. Fujiu, Y. Imai, Y. Shinohara. Proceedings of the 26th International Conference on Thermoelectrics, Jeju Island, South Korea,2007; IEEE Catalog No. CFP07404;p.251.
    [173]J. Tani, H. Kido. "Thermoelectric properties of Al-doped Mg2Si1-xTSnx(x≤0.1)." J. Alloy. Compd.2008; 466(1-2):335-40.
    [174]W. Luo, M. Yang, F. Chen, Q. Shen, H. Jiang, L. Zhang. "Fabrication and thermoelectric properties of Mg2Si1-xSnx (0≤x≤1.0) solid solutions by solid state reaction and spark plasma sintering." Mat. Sci. Eng. B 2009; 157(1-3):96-100.
    [175]W. Liu, X. Tang, J. Sharp. "Low-temperature solid state reaction synthesis and thermoelectric properties of high-performance and low-cost Sb-doped Mg2Si0.6Sn0.4." J. Phys. D:Appl. Phys.2010; 43(8):085406.
    [176]H. L. Gao, T. J. Zhu, X. X. Liu, L. X. Chen, X. B. Zhao. "Flux synthesis and thermoelectric properties of eco-friendly Sb doped Mg2Sio.5Sno.5 solid solutions for energy harvesting."J. Mater. Chem.2011; 21(16):5933-7.
    [177]T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V. Badding, J. O. Sofo. "Transport coefficients from first-principles calculations." Phys. Rev. B 2003; 68(12): 125210.
    [178]G. K. H. Madsen, D. J. Singh. "BoltzTrap. A code for calculating band-structure dependent quantities." Comput. Phys. Commun.2006; 175(1):67-71.
    [179]T. Thonhauser, T. J. Scheidemantel, J. O. Sofo, J. V. Badding, G. D. Mahan. "Thermoelectric properties of Sb2Te3 under pressure and uniaxial stress." Phys. Rev. B 2003; 68(8):085201.
    [180]A. Bejan, A. D. Allan. Heal Transfer Handbook (Wiley, New York,2003), p.1338.
    [181]J. W. Che, T. Cagin, W. Q. Deng, W. A. Goddard Ⅲ. "Thermal conductivity of diamond and related materials from molecular dynamics simulations."J. Chem. Phys.2000; 113(16): 6888-900.
    [182]V. K.Zaitsev, M.I. Fedorov, I. S. Eremin, E. A. Gurieva. Thermoelectrics Handbook: Macro to Nano-Structured Materials (CRC press, New York,2005), Chap.29.
    [183]Y. Isoda, T. Nagai, H. Fujiu, Y. Imai, Y. Shinohara. Proceedings of the 25th International Conference on Thermoelectrics (Vienna, Austria,2006). p.406.
    [184]Y. Z. Pei, X. Y. Shi, A. LaLonde, H. Wang, L. D. Chen, G. J. Snyder. "Convergence of electric bands for high performance bulk thermoelectric." Nature (London) 2011; 473(7345):66-9.
    [185]W. Liu, X. F. Tang, H. Li, J. Sharp, X. Y. Zhao, C. Uher. "Optimized thermoelectric properties of Sb-doped Mg2(1+z)Si0.5-ySn0.5Sby through adjustment of the Mg content." Chem. Mater.2011; 23(23):5256-63.
    [186]Q. Zhang, J. He, T. J. Zhu, S. N. Zhang, X. B. Zhao, T. M. Tritt. "High figures of merit and natural nanostructures in Mg2Si0.4Sno06 based thermoelectric materials." Appl. Phys. Lett.2008; 93(10):102109.
    [187]M. Akasaka, T. lida, K. Nishio, Y. Takanashi. "Composition dependent thermoelectric properties of sintered Mg2Si1-xGex (x= 0 to 1) initiated from a melt-grown polycrystalline source." Thin Solid Films 2007; 515(22):8237-41.
    [188]G. S. Nolas, D. Wang, M. Beekman. "Transport properties of polycrystalline Mg2S1-ySny (0    [189]K. Biswas, J. He, I. D. Blum, C.-I Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, M. G. Kanatzidis. "High-performance bulk thermoelectrics with all-scale hierarchical architectures." Nature (London) 2012; 489(7416):414-8.
    [190]S. Wang, N. Mingo. "improved thermoelectric properties of Mg2SixGeySb1-nanoparticle-in-alloy materials." Appl. Phys. Lett.2009; 94(20):203109.
    [191]J. Zhou, X. Li, G. Chen, R. Yang. "Semiclassical model for thermoelectric transport in nanocomposites." Phys. Rev. B 2010; 82(11):115308.
    [192]K. Biswas. J. He. Q. Zhang, G. Wang, C. Uher, V. P. Dravis, M. G. Kanatzidis. "Strained endotaxial nanostructures with high thermoelectric figure of merit." Nat. Chem.2011; 3(2): 160-6.
    [193]T. Caillat, J.-P. Fleurial, A. Borshchevsky. "Preparation and thermoelectric propertis of semeconducting Zn4Sb3." J. Phys. Chem. Solids 1997; 58(7):1119-25.
    [194]G. J. Snyder, M. Christensen, E. Nishibori, T. Caillat, B. B. Iversen. "Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties." Nat. Mater.2004; 3(7):458-63.
    [195]S. Schlecht, C. Erk, M. Yosef. "Nanoscale zinc antimonides:synthesis and phase stability." Inorg. Chem.2006; 45(4):1693-7.
    [196]M. Sommer, S. Huettner, M. Thelakkat. "Donor-acceptor block copolymers for photovoltaic applications." J. Mater. Chem.2010; 20(48):10778-97.
    [197]J. Zhang, B. Xu, L.-M. Wang, D. Yu, Z. Liu, J. He, Y. Tian. "Great thermoelectric power factor enhancement of CoSb3 through the lightest metal element filling." Appl. Phys. Lett. 2011; 98(7):072109.
    [198]T. Zhang, Q. Zhang, J. Jiang, Z. Xiong, J. Chen, Y. Zhang, W. Li, and G. Xu. "Enhanced thermoelectric performance in p-type BiSbTe bulk alloy with nanoinclusion of ZnAlO." Appl. Phys. Lett.2011; 98(6):022104.
    [199]J. Nylen, S. Lidin, M. Andersson, H. Liu, N. Newman, U. Haussermann. "Effect of metal doping on the low-temperature structural behavior of thermoelectric β-Zn4Sb3." J. Solid State Chem.2007; 180(9):2603-15.
    [200]F. Cargnoni, E. Nishibori, P. Rabiller, L. Bertini, G. J. Snyder, M. Christensen, C. Gatti, B. B. Iversen. "Interstitial Zn atoms do the trick in thermoelectric zinc antimonide, Zn4Sb3:a combined maximum entropy method X-ray electron density and ab initio electronic structure study." Chem.-Eur. J.2004; 10(16):3861-70.
    [201]B. L. Pedersen, H. Birkedal, E. Nishibori, A. Bentien, M. Sakata, M. Nygren, P. T. Frederiksen, B. B. Iversen. "Hg0.04Zn3.96Sb3:synthesis, crystal structure, phase transition, thermoelectric properties." Chem. Mater.2007; 19(25):6304-11.
    [202]A.P. Litvinchuk, J. Nylen, B. Lorenz, A. M. Guloy, U. Haussermann. "Optical and electronic properties of metal doped thermoelectric Zn4Sb3."J. Appl. Phys.2008; 103(12): 123524.
    [203]B. L. Pedersen, H. Yin, H. Birkedal, M. Nygren, and B. B. Iversen. "Cd substitution in MxZn4-xSb3:effect on thermal stability, crystal structure, phase transitions, and thermoelectric performance." Chem. Mater.2010; 22(7):2375-83.
    [204]M. Liu, X. Qin, C. Liu, L. Pan, and H. Xin. "Ag and Cu doping and their effects on the thermoelectric properties of β-Zn4Sb3." Phys. Rev. B 2010; 81(24):245215.
    [205]W. Li, L. Zhou, Y. Li, J. Jiang, G. Xu. "Thermoelectric properties of hot-pressed Zn4Sb3-xTex." J. Alloy. Compd.2009; 486(1-2) 335-7.
    [206]A. S. Mikhaylushkin, J. Nylen, U. Haussermann. "Structure and bonding of zinc antimonides:complex Frameworks and narrow band gaps." Chem.-Eur. J.2005; 11(17): 4912-20.
    [207]A. N. Qiu, L. T. Zhang, J. S. Wu. "Crystal structure, electronic structure, and thermoelectric properties of β-Zn4Sb3 from first principles." Phys. Rev. B 2010; 81(3): 035203.
    [208]J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder. "Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density states." Science 2008; 321(5888):554-7.
    [209]C. M. Jaworski, V. Kulbachinskii, J. P. Heremans. "Resonant level formed by tin in Bi2Te3 and the enhancement of room-temparature thermoelectric power." Phys. Rev. B 2009; 80(23):233201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700