基于几何小波的多目标图像分割与地震去噪
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在图像分割领域中,图像中噪声的压制、弱边界的有效识别和拓扑变化的处理至关重要。基于曲线演化理论的测地线活动轮廓(Geodesic Active Contour-GAC)是当前流行的技术方案之一。Curvelet变换是一种多尺度、多方向的“几何小波(Geometric Wavelet)”,它实现了二维二阶连续可微奇异性(C2-singularity)分段连续目标的最优稀疏表达。本中提出一种基于Curvelet的GAC(或CGS)方法,并且应用于复杂图像中多目标的分割。
     大多活动轮廓(Active Contour或Snake)方法和现有的多尺度Snake都在原始图像域演化,从初始位置走过大片背景区域才到达目标边界,导致CPU计算代价大。基于小波(Wavelet)的活动轮廓中,由一维小波的张量积构成的二维小波只能处理点奇异问题,对于沿边界的曲线奇异性无能为力,识别边界能力差。当前基于几何小波的分割技术只与传统活动轮廓相结合,不能处理多目标时的拓扑变化。本文研究目的即解决上述这些缺陷。研究方法和过程主要为:结合水平集(Level Set)将Curvelet嵌入GAC,使得算法在分割多目标时自如处理拓扑变化;在Curvelet二进制尺度空间进行轮廓线的演化和移植,粗糙尺度上演化快,节省了计算量;用Curvelet阈值代替传统的基于梯度的边界地图(Edge Map),解决Curvelet尺度系列产生边界地图系列的问题,实现每尺度的边界地图与本尺度尺寸相同。本文对基于Curvelet的GAC进行了强噪声、弱边界条件下真实图像的实验,结果表明CGS在同时压制噪声和识别边界两方面都达到了理想的效果。
     地震数据携带大量信息,可供人们研究地质结构,噪声的存在使得难以进行可靠研究,因此如何有效去除噪声,成为地震资料处理一大难题。地震去噪部分,本文将Wavelet和Curvelet联合去噪方法首次引入地震随机去噪领域,目的是为实际工程提供方法借鉴和参考结果。算法基本思想为:迭代进行Wavelet和Curvelet分解,其约束条件是一个变换域系数的l1模最小化的优化问题。本文将其与传统方法和其他多尺度方法进行诸多地震数据图像的比较研究,结果表明Wavelet和Curvelet联合方法比其他方法达到更优良的去噪结果。
In the field of image segmentation, it is critical to suppress image noise, recognize weak edges and deal with topological changes. The geodesic active contour(GAC) which is based on the curve evolution theory is one of the popular techniques currently. Curvelet transform is a multi-scale and multi-directional“geometric wavelet”, which achieved an optimal sparse representation of two-dimensional(2D) and second-order differentiable singularity (C2-singularity) for piecewise continous objects. In this dissertation, a curvelet-based Geodesic snake(CGS) is proposed, and applied to complex image segmentation of multiple objects.
     Most methods based on active contours and the existing multi-scale snakes evolve the contours in the original image domain. Contours have to trudge through large image regions from the initial positions to the real edges of the objects, leading to large CPU computation cost. In the wavelet-based active contour models, the 2D wavelets built by the tensor products of 1D wavelets can only deal with point-singularities, and can not handle the curve-singularities along the edges. So they are powerless to recognize the edges of the objects. The current segmentation techniques based on geometric wavelets are only combined with the traditional active contour, and can not deal with topological changes in the case of multiple objects. The purpose of this study is to resolve these deficiencies. Research methods and the process are mainly as follows: curvelet is embedded in GACs and the algorithm is numerically implemented by level set methods, making the algorithm capable of dealing with topology changes in multiple objects segmentation. The contours are evolved and transported through the binary curvelet scale spaces. They evolve much faster in coarser scales, so the computational cost is saved. The traditional gradient-based edge maps are replaced by the ones based on curvelet threshold. The problem of generating edge map series on curvelet scale series is solved, and a certain edge map has the same size with the scale where it is located. CGS is tested on many natural images, which have either strong noise or weak edges. The experimental results show that the curvelet-based GAC can obtain expected effects in both aspects of suppressing strong noise and recognizing weak edges.
     Seismic data carries large amounts of information, which enables geologic researchers to study the geological structure. The presence of noise makes it difficult to conduct reliable research. So how to remove the noise effectively becomes a major challenge in seismic data processing. In the seismic denoising part of this dissertation, the combined wavelet and curvelet denoising method is firstly introduced to the field of seismic random denoising, aiming to provide new method and reference results for practical engineering. The basic concept of the combined approach is to apply the wavelet and curvelet decomposition iteratively, subjecting to an optimization problem of the l1 -norm minimization of the transform domain coefficients. The combined algorithm is compared to the traditional and the other multi-scale methods on lot of natural seismic data, and the experimental results show that the combined wavelet and curvelet denoising scheme can achieve much better results than the others.
引文
[1] Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. Int J Comput Vis, 1987, 1: 321-331.
    [2] Xu C, Prince J L. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process, 1998, 7: 359-369.
    [3] Caselles V, Catte F, Coll T, et al. A geometric model for active contours. Numerische Mathematik, 1993, 66: 1-31.
    [4] Malladi R, Sethian J, Vemuri B. Evolutionary fronts for topology independent shape modeling and recovery. Proc 3rd Eur Conf Computer Vision, 1994, 3-13.
    [5] Osher S, Fedkiw R. Level set methods: An overview and some recent results. J Comput Phys, 2001, 169: 463-502.
    [6] Fedkiw R, Saprio G, Shu C. Shock capturing, level sets, and based methods in computer vision and image processing: A review of Osher’s contribution. J Comput Phys, 2003, 185: 309-341.
    [7] Mallat S. A wavelet tour of signal processing. 2nd ed, Academic Press, Orlando-SanDiago, 1999.
    [8] Daubechies I, Teschke G. Varitional image restoration by means of wavelets: simultaneous decomposition, deblurring and denoising. Appl Comput Harm Anal, 2005, 19: 1-16.
    [9] Dahmen W. Wavelet methods for PDEs-some recent developments. J Comput Appl Math, 2001, 128: 133-185.
    [10] Cattani C. Harmonic wavelets towards the solution of nonlinear PDE. Computers and Math Appl, 2005, 50: 1191-1210.
    [11] Ma J. An exploration of multiresolution symplectic scheme for wave propagation using second generation wavelets. Phys Lett A, 2004, 328: 36-46.
    [12] Ma J, Yang H. Multiresolution symplectic scheme for wave propagation in complex media. Appli Math Mech-ENGL, 2004, 25: 523-528.
    [13] Candès E J, Demanet L. Curvelets and Fourier integral operators. C R Acad Sci Paris, Ser I, 2003, 336: 395-398.
    [14] Candès E J, Demanet L. The curvelet representation of wave propagation is optimally sparse. Comm on Pure Appl Math, 2005, 58: 1472-1528.
    [15] Candès E J, Donoho D L. Curvelets-a surprisingly effective nonadaptive representation for objects with edges. Curves and Surface Fitting: Saint-Malo 1999, A Cohen, C Rabut, L L Schumaker (Eds), Vanderbilt University Press, Nashville, 2000, 105-120.
    [16] Candès E J, Donoho D L. Curvelets and curvilinear integrals. J Approx Theory, 2001, 113: 59-90.
    [17] Starck J L, Candès E J, Donoho D L. The curvelet transform for image denoising. IEEE Trans Image Process, 2002, 11: 670-684.
    [18] Starck J L, Nguyen M K, Murtagh F. Wavelets and curvelets for image deconvolution: A combined approach. Signal Process, 2003, 83: 2279-2283.
    [19] Candès E J, Guo F. New multiscale transforms, minimum total variation synthesis: Applications to edge-preserving image reconstruction. Signal Process, 2002, 82: 1519-1543.
    [20] Shan H, Ma J. Curvelet-based geodesic snakes for image segmentation with multiple objects. Pattern Recognition Letters, 2010, 31: 355-360.
    [21] Ma J, Antoniadis A, Le Dimet F -X. Curvelet-based snake for multiscale detection and tracking of geophysical fluids. IEEE Trans Geoscience and Remote Sensing, 2006, 44: 3626-3638.
    [22] Shan H, Ma J, Yang H. Comparisons of wavelets, contourlets and curvelets in seismic denoising. Journal of Applied Geophysics, 2009, 69: 103-115.
    [23] Ayed I B, Mitiche A, Belhadj Z. Multiregion level-set partitioning of synthetic aperture radar images. IEEE Trans Pattern Anal Mach Intell, 2005, 27: 793-800.
    [24] Delyon G, Réfrégier P. SAR Image segmentation by stochastic complexity minimization with a nonparametric noise model. IEEE Trans Geoscience and Remote Sensing, 2006, 44: 1954-1961.
    [25] Shuai Y, Sun H, Xu G. SAR Image segmentation based on level set with stationary global minimum. IEEE Geoscience and Remote Sensing Letters, 2008, 5: 644-648.
    [26] Paragios N, Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans Pattern Anal Mach Intell, 2000, 22: 266-280.
    [27] Zimmer C, Labruyère E, Yedid V M. Segmentation and tracking of migrating cells in videomicroscopy with parametric active contours: A tool for cell-based drug testing. IEEE Trans Medical Imaging, 2002, 21: 1212-1221.
    [28] Ray N, Acton S T, Ley K. Tracking leukocytes in vivo with shape and size constrained active contours. IEEE Trans Medical Imaging, 2002, 21: 1222-1235.
    [29] Mukherjee D P, Ray N, Acton S T. Level set analysis for leukocyte detection and tracking. IEEE Trans Image Process, 2004, 13: 562-572.
    [30] Goobic A P, Tang J, Acton S T. Image stabilization and registration for tracking cells in the microvasculature. IEEE Trans Biomedical Engineering, 2005, 52: 287-299.
    [31] Auer M, Stollberger R, Regitnig P. 3-D reconstruction of tissue components for atherosclerotic human arteries using ex vivo high-resolution MRI. IEEE Trans MedicalImaging, 2006, 25: 345-356.
    [32] Jones T D, Plassmann P. An active contour model for measuring the area of leg ulcers. IEEE Trans Medical Imaging, 2000, 19: 1202-1210.
    [33] Shen D, Herskovits E H, Davatzikos C. An adaptive-focus statistical shape model for segmentation and shape modeling of 3-D brain structures. IEEE Trans Medical Imaging, 2001, 20: 257-270.
    [34] Goldenberg R, Kimmel R, Rivlin E. Cortex segmentation: A fast variational geometric approach. IEEE Trans Medical Imaging, 2002, 21: 1544-1551.
    [35] Chen G, Gu L, Qian L. An improved level set for liver segmentation and perfusion analysis in MR images. IEEE Trans Information Technology in Biomedicine, 2009, 13: 94-103.
    [36] Kobashi S, Fujiki Y, Matsui M. Interactive segmentation of the cerebral lobes with fuzzy inference in 3T MR images. IEEE Trans Systems, Man, and Cybernetics-Part B: Cybernetics, 2006, 36: 74-86.
    [37] Chen Q, Zhou Z M, Tang M. Shape statistics variational approach for the outer contour segmentation of left ventricle MR images. IEEE Trans Information Technology in Biomedicine, 2006, 10: 588-597.
    [38] Law M W K, Chung A C S. Weighted local variance-based edge detection and its application to vascular segmentation in magnetic resonance angiography. IEEE Trans Medical Imaging, 2007, 26: 1224-1241.
    [39] Diri B A, Hunter A, Steel D. An active contour model for segmenting and measuring retinal vessels. IEEE Trans Medical Imaging, 2009, 28: 1488-1497.
    [40] Ray N, Acton S T, Altes T. Merging parametric active contours within homogeneous image regions for MRI-based lung segmentation. IEEE Trans Medical Imaging, 2003, 22: 189-199.
    [41] Cristerna R V, Ba?uelos V M, Suárez O Y. Coupling of radial-basis network and active contour model for multispectral brain MRI segmentation. IEEE Trans Medical Imaging, 2004, 51: 459-470.
    [42] Pluempitiwiriyawej C, Moura J M F, Wu Y-J L, et al. STACS: New active contour scheme for cardiac MR image segmentation. IEEE Trans Actions on Medical Imaging, 2005, 24: 593-603.
    [43] Malassiotis S, Strintzis M G. Tracking the left ventricle in echocardiographic images by learning heart dynamics. IEEE Trans Medical Imaging, 1999, 18: 282-290.
    [44] Mikic I, Krucinski S, Thomas J D. Segmentation and tracking in echocardiographic sequences: Active contours guided by optical flow estimates. IEEE Trans Medical Imaging, 1998, 17: 274-284.
    [45] Eveno N, Caplier A, Coulon P Y. Accurate and quasi-automatic lip tracking. IEEE TransCircuits and Systems for Video Technology, 2004, 14: 706-715.
    [46] Sakalli M, Lam K M, Yan H. A faster converging snake algorithm to locate object boundaries. IEEE Trans Image Process, 2006, 15: 1182-1191.
    [47] Yan P, Bowyer K W. Biometric recognition using 3D ear shape. IEEE Trans Pattern Anal Mach Intell, 2007, 29: 1297-1308.
    [48] Daugman J. New methods in iris recognition. IEEE Trans Systems, Man, and Cybernetics-Part B: Cybernetics, 2007, 37: 1167-1175.
    [49] Gorthi S, Duay V, Houhou N. Segmentation of head and neck lymph node regions for radiotherapy planning using active contour-based atlas registration. IEEE J Selected Topics in Signal Processing, 2009, 3: 135-147.
    [50] Shah S, Ross A. Iris segmentation using geodesic active contours. IEEE Trans Information Forensics and Security, 2009, 4: 824-836.
    [51] Niedermeier A, Romaneeben E, Lehner S. Detection of coastlines in SAR images using wavelet methods. IEEE Trans Geoscience and Remote Sensing, 2000, 38: 2270-2281.
    [52] Bentabet L, Jodouin S, Ziou D. Road vectors update using SAR imagery: A snake-based method. IEEE Trans Geoscience and Remote Sensing, 2003, 41: 1785-1803.
    [53] Peng T, Jermyn I H, Prinet V. Incorporating generic and specific prior knowledge in a multiscale phase field model for road extraction from VHR images. IEEE J of Selected Topics in Applied Earth Observations and Remote Sensing, 2008, 1: 139-146.
    [54] Lee R S T, Liu J N K. An elastic contour matching model for tropical cyclone pattern recognition. IEEE Trans Systems, Man, and Cybernetics-Part B: Cybernetics, 2001, 31: 413-417.
    [55] Ozertem U, Erdogmus D. Nonparametric snakes. IEEE Trans Image Process, 2007, 16: 2361-2368.
    [56] Thévenaz P, Unser M. Snakuscules. IEEE Trans Image Process, 2008, 17: 585-593.
    [57] Heydarian M, Noseworthy M D, Kamath M V. Optimizing the level set algorithm for detecting object edges in MR and CT images. IEEE Trans Nuclear Science, 2009, 56: 156-166.
    [58] Chung D H, Sapiro G. Segmenting skin lesions with partial-differential-equations-based image processing algorithms. IEEE Trans Medical Imaging, 2000, 19: 763-767.
    [59] Lankton S, Tannenbaum A. Localizing region-based active contours. IEEE Trans Image Process, 2008, 17: 2029-2039.
    [60] Paragios N, Deriche R. Geodesic active regions: A new framework to deal with frame partition problems in computer vision. J Vis Commun Image Represent, 2002, 13: 249-268.
    [61] Paragios N, Deriche R. Coupled geodesic active regions for image segmentation: A level set approach. Proc 6th Eur Conf on Computer Vision, 2000, 224-240.
    [62] Chan T, Vese L. Active contours without edges. IEEE Trans Image Process, 2001, 10: 266-277.
    [63] Tsai A, Yezzi A, Willsky A S. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Tran Image Process, 2001, 10: 1169-1186.
    [64] Gao S, Bui T D. Image segmentation and selective smoothing by using Mumford-Shah model. IEEE Trans Image Process, 2005, 14: 1537-1549.
    [65] Xie X, Mirmehdi M. RAGS: Region-aided geometric snake. IEEE Trans Image Process, 2004, 13: 640-652.
    [66] Xie X, Mirmehdi M. MAC: Magnetostatic active contour model. IEEE Trans Pattern Anal Mach Intell, 2008, 30: 632-645.
    [67] Mignotte M, Meunier J. A multiscale optimization approach for the dynamic contour-based boundary detection issue. Comput Med Imaging Graph, 2001, 25: 265-275.
    [68] Mukherjee D, Acton S T. Cloud tracking by scale space classification. IEEE Trans Geosci Remote Sens, 2002, 40: 405-415.
    [69] Keserci B, Yoshida H. Computerized detection of pulmonary nodules in chest radiographs based on morphological features and wavelet snake model. Med Image Anal, 2002, 6: 431-447.
    [70] Liu J C, Hwang W L. Active contour model using wavelet modulus for object segmentation and tracking in video sequences. Int J Wavelets, Multiresolution Inf Process, 2003, 1: 93-112.
    [71] Wu H, Liu J, Chui C. A wavelet-frame based image force model for active contouring algorithms. IEEE Trans Image Process, 2000, 9: 1983-1988.
    [72] Tang J, Acton S T. Vessel boundary tracking for intravital microscopy via multiscale gradient vector flow snakes. IEEE Trans Biomed Eng, 2004, 51: 316-324.
    [73] Bresson X, Vandergheynst P, Thiran J. Multiscale active contours. Int J Comput Vis, 2006, 70: 197-211.
    [74] Candès E, Donoho D. Continuous curvelet transform: I. Resolution of the wavefront set. Appl Comput Harmon Anal, 2003, 19: 162-197.
    [75] Candès E, Donoho D. Continuous curvelet transform: II. Discretization and frames. Appl Comput Harmon Anal, 2003, 19: 198-222.
    [76] Candès E, Donoho D. New tight frames of curvelets and optimal representations of objects with piecewise singularities. Comm Pure Appl Math, 2004, 57: 219-266.
    [77] Ma J. Curvelets for surface characterization. Appl Phys Lett, 2007, 90: 054109.
    [78] Ma J, Hussaini M Y. Three-dimensional curvelets for coherent vortex analysis of turbulence. Appl Phys Lett, 2007, 91: 184101.
    [79] Ma J, Fenn M. Combined complex ridgelet shrinkage and total variation minimization. SIAM J Sci Comput, 2006, 28: 984-1000.
    [80] Ma J, Plonka G. Combined curvelet shrinkage and nonlinear anisotropic diffusion. IEEE Trans Image Process, 2007, 16: 2198-2206.
    [81] Freeman W, Adelson E. The design and use of steerable filters. IEEE Trans Pattern Anal Mach Intell, 1991, 13: 891-906.
    [82] Simoncelli E, Freeman W, Adelson E, et al. Shiftable multiscale transforms. IEEE Trans Inform Theory, 1992, 38: 587-607.
    [83] Lee T. Image representation using 2D Gabor wavelets. IEEE Trans Pattern Anal Mach Intell, 2008, 18: 1-13.
    [84] Donoho D, Wedgelets: Nearly minimax estimation of edges. Ann Statistics, 1999, 27: 859-897.
    [85] Donoho D, Huo X. Beamlets and multiscale image analysis. Multiscale and Multiresolution Methods, Springer Lecture Notes in Comput Sci Eng, Barth T et al (Eds), 2002, 20: 149-196.
    [86] Mallat S, Peyr′e G. A review of bandlet methods for geometrical image representation. Numerical Algorithms, 2007, 44: 205-234.
    [87] Pennec E L, Mallat S. Sparse geometrical image approximation with bandlets. IEEE Trans Image Process, 2005, 14: 423-438.
    [88] Do M, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process, 2005, 14: 2091-2106.
    [89] Labate D, Lim W Q, Kutyniok G, et al. Sparse multidimensional representation using shearlets. Wavelets XI (San Diego, CA, 2005), SPIE Proc, 2005, 5914: 254-262.
    [90] Guo K, Labate D. Optimally sparse multidimensional representation using shearlets. SIAM J Math Anal, 2007, 39: 298-318.
    [91] Demanet L, Ying L. Wave atoms and sparsity of oscillatory patterns. Appl Comput Harmon Anal, 2007, 23: 368-387.
    [92] Willett R, Nowak K. Platelets: A multiscale approach for recovering edges and surfaces in photon-limited medical imaging. IEEE Trans Med Imaging, 2003, 22: 332-350.
    [93] Lu Y, Do M N. Multidimensional directional filter banks and surfacelets. IEEE Trans Image Process, 2007, 16: 918-931.
    [94] Ma J, Plonka G. A review of curvelets and recent applications. IEEE Signal Process Mag, 2010, 3: 2-18.
    [95] Gao X, Nguyen T, Strang G. A study of two-channel complex-valued filter banks and wavelets with orthogonality and symmetry properties. IEEE Trans Signal Process, 2002, 50: 824-833.
    [96] Kingsbury N. Image processing with complex wavelets. Phil Trans R Soc Lond A, 1999, 357: 2543-2560.
    [97] Candès E, Donoho D. Ridgelets: A key to higher-dimensional intermittency? R Soc Lond Philos Trans Ser A Math Phys Eng Sci, 1999, 357: 2495-2509.
    [98] Ma J, Fenn M. Combined complex ridgelet shrinkage and total variation minimization. SIAM J Sci Comput, 2006, 28: 984-1000.
    [99] Daubechies I. Ten lectures on wavelets. Philadelphia, PA: SIAM, 1992.
    [100] Sum K W, Cheung P Y S. Boundary vector field for parametric active contours. Pattern Recognition, 2007, 40: 1635-1645.
    [101] Wang T, Cheng I, Basu A. Fluid vector flow and applications in brain tumor segmentation. IEEE Trans Biomedical Engineering, 2009, 56: 781-789.
    [102] Cohen L, Cohen I. Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans Pattern Analysis and Machine Intelligence, 1993, 15: 1131-1147.
    [103] Siddiqi K, Lauziere Y, Tannenbaum A, et al. Area and length minimizing flows for shape segmentation. IEEE Trans Image Processing, 1998, 7: 433-443.
    [104] Xu C, Prince J. Generalized gradient vector flow external forces for active contours. Signal Processing, 1998, 71: 131-139.
    [105] Ray N, Acton S. Motion gradient vector flow: External force for tracking rolling leukocytes with shape and size constrained active contours. IEEE Trans Medical Imaging, 2004, 23: 1466-1478.
    [106] Paragios N, Mellina-Gottardo O, Ramesh V. Gradient vector flow geometric active contours. IEEE Trans Pattern Analysis and Machine Intelligence, 2004, 26: 402-407.
    [107] Gil D, Radeva P. Curvature vector flow to assure convergent deformable models for shape modelling. Proc Fourth Int’l Workshop Energy Minimization Methods in Computer Vision and Pattern Recognition, 2003, 357-372.
    [108] Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi Formulation. J Comput Phys, 1988,79: 12-49.
    [109] Caselles V, Kimmel R, Sapiro G. Geodesic active contours. Internat J Comput Vision, 1997, 22: 61-79.
    [110] Cohen L. On active contour models and balloons. Comput Vision, Graph Image Process: Image Understanding, 1991, 53: 211-218.
    [111] Burt P J, Adelson E H. The Laplacian pyramid as a compact image code. IEEE Trans Communications, 1983, 31: 532-540.
    [112] Mallat S. A wavelet tour of signal processing. 2nd ed Academic, New York, 1999.
    [113] Do M N. Directional multiresolution image representations. Ph D dissertation, School Comput Commun Sci, Swiss Fed Inst Technol, Lausanne, Switzerland, 2001.
    [114] Bamberger R H, Smith M J T. A filter bank for the directional decomposition of images: Theory and design. IEEE Trans Signal Process, 1992, 40: 882-893.
    [115] Shapiro J M. Adaptive McClellan transformations for quincunx filter banks. IEEE Trans Signal Process, 1994, 42: 642-648.
    [116] Feilner M, Ville D D, Unser M. An orthogonal family of quincunx wavelets with continuously adjustable order. IEEE Trans Image Process, 2005, 14: 499-510.
    [117] Hennenfent G, Herrmann F J. Seismic denoising with nonuniformly sampled curvelets. Computing in Science and Engineering, 2006, 8: 16-25.
    [118] Hunt B R, Kubler O. Karhunen-Loève multispectral image restoration-Part 1: Theory. IEEE Trans Acoustics, Speech, and Signal Processing, 1984, 32: 592-599.
    [119] Canales L L. Random noise reduction. Presented at the 54t h SEG Mtg, 1984, 525-572.
    [120] Mary E K, Alistair J H, John A O. A comparison ofτ-p transform methods. Geophysics, 1990, 55: 1202-1215.
    [121] Turner G. Aliasing in theτ-p transform and the removal of spatially aliased coherent noise. Geophysics, 1990, 55: 1496-1503.
    [122] Binzhou Z, Greenhalgh S A. Linear and parabolicτ-p transform revisited. Geophysics, 1994, 59: 1133-1149.
    [123] Jeng Y, Li Y-W, Chen C-S, et al. Adaptive filtering of random noise in nearsurface seismic and ground-penetrating radar data. J Applied Geophysics, 2008, 68: 36-46.
    [124] Gendron P. Denoising seismic signals via Bayes theorem with wavelet packet bases. International Workshop on Wavelets and Statistics, ISDS Statistics week at Duke University, 1997, 12-13.
    [125] Chanerley A A, Alexander N A. An approach to seismic correction which includes wavelet de-noising. Proceedings of the Sixth Conference on omputational Structures Technology, 2002, 107-108.
    [126] Duval, L.C., Tran, V.B., 2001. Compression denoising: Using seismic compression for uncoherent noise removal. EAGE 63rd Conference & Technical Exhibition-Amsterdam, The Netherlands, 11-15.
    [127] Do M N, Vetterli M. Contourlets. Welland, G V(Ed), Beyond Wavelets, Academic, Amsterdam, The Netherlands, 2003, 4: 83-105.
    [128] Po D D Y, Do M N. Directional multiscale modeling of images using the contourlet transform. IEEE Trans Image Process, 2006, 15: 1610-1620.
    [129] Eslami R, Radha H. Translation-invariant contourlet transform and its application to image denoising. IEEE Trans Image Process, 2006, 15: 3362-3374.
    [130] Candès E J, Demanet L, Donoho D L, et al. Fast discrete curvelet transforms. Multiscale Modeling and Simulation, 2006, 5: 861-899.
    [131] Hennenfent G, Herrmann F J. Seismic denoising with nonuniformly sampled curvelets. Computing in Science and Engineering, 2006, 8: 16-25.
    [132] Herrmann F J, Hennenfent G. Non-parametric seismic data recovery with curvelet frames. Geophysical Journal International, 2008, 173: 233-248.
    [133] Herrmann F J, B?niger U, Verschuur D J. Non-linear primary-multiple separation with directional curvelet frames. Geophysical Journal International, 2007, 170: 781-799.
    [134] Slavakis K, Yamada I. Robust wideband beamforming by the hybrid steepest descent method. IEEE Trans Signal Process, 2007, 55: 4511-4522.
    [135] Russo F. An image-enhancement system based on noise estimation. IEEE Trans Instrumentation and measurement, 2007, 56: 1435-1442.
    [136] Lin Q. Halftone image quality analysis based on a human visionmodel. Proceedings of SPIE 1913, 1993, 378-389.
    [137] Mannos J, Sakrison D. The effects of a visual fidelity criterion on the encoding of images. IEEE Trans Information Theory, 1974, 20: 525-535.
    [138] Mitsa T, Varkur K. Evaluation of contrast sensitivity functions for the formulation of quality measures incorporated in halftoning algorithms. ICASSP 93-V, 1993, 301-304.
    [139] Peli E, Arnold L, Goldstein R. Contrast sensitivity to patch stimuli: Effects of spatial bandwidth and temporal presentation. Spatial Vision, 1990, 7: 1-14.
    [140] Venkata N D, Kite T D, Geisler W S, et al. Image quality assessment based on a degradation model. IEEE Trans Image Process, 2000, 9: 636-650.
    [141] Phoong, S.M., Kim, C.W., Vaidyanathan, P.P., Ansari, R., 1995. A new class of two-channel biorthogonal filter banks and wavelet bases. IEEE Trans Signal Process, 43, 649-665.
    [142] Cohen A, Daubechies I. Nonseparable bidimensional wavelet bases. Revista Matematica Iberoamericana, 1993, 9: 51-137.
    [143] Moddemeijer R. On estimation of entropy and mutual information of continuous distributions. Signal Processing, 1989, 16: 233-246.
    [144] Darolti C, Mertins A, Bodensteiner C, et al. Local region descriptors for active contours evolution. IEEE Trans Image Process, 2008, 17: 2275-2288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700