含离子液体系统的相平衡、分子热力学模型及其在生物质预处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质的预处理是由生物质制备生物燃料过程中非常重要的关键步骤之一。然而,当前相关技术的效率和成本效益仍然有待突破。本文针对离子液体预处理生物质过程,系统研究了链状流体的分子热力学模型、含离子液体系统的相平衡及离子液体在生物质预处理中的应用,为离子液体预处理生物质过程的工程化进行了前期探索,积累了相关的基础数据和工艺优化所必需的分子热力学模型。
     在链状流体的分子热力学模型构建方面,我们完成了以下工作:
     (1)基于密堆积格子构建了一个新的随机共聚高分子溶液的混合亥氏函数模型。模型主要包含三个方面的贡献:高分子和溶剂的无热混合熵贡献、多元组分单体间相互作用能贡献和高分子拆分及高分子成链的贡献。第一项贡献采用了Guggenheim模型计算;杨建勇等建立的多元Ising格子模型用于计算第二项的贡献;高分子链贡献则由化学缔合统计力学理论计算。该模型预测值与计算机Monte Carlo(MC)模拟结果几乎吻合一致,且能很好的应用于实际随机共聚物溶液的液液相平衡计算。
     (2)在上述模型的基础上,通过增加考虑所有高分子链自身的长程相关性,开发了一个适用于多元链状流体的混合亥氏函数模型。与计算机MC模拟结果比较,该模型较Flory Huggins理论(FHT)和Revised Freed理论(RFT)有了很大的改善,能用于计算含离子液体和链状高分子系统的各种复杂液液相图。在关联实际系统时,可用二元系统关联得到的参数直接预测不同温度下的三元相平衡。
     (3)鉴于密堆积格子模型不能描述压力对相平衡影响的缺陷,开发了一个改进的Percus-Yevick范德华状态方程。方程中所包含的纯流体参数α和6可由其蒸发焓、密度和分子量等物性估算得到,唯一可调的两元参数a12可由挥发性的非电解质亨利常数获得。除了一些系统在低离子液体浓度区域内出现比较大的偏差,该状态方程对含离子液体两元系统的计算结果与实验值吻合很好;对两元系统液液平衡的关联效果也令人满意。
     在含离子液体系统的相平衡及其在生物质预处理中的应用研究方面,我们完成了以下工作:
     (1)实验测定了22℃下含离子液体[C2mim][Ac]或[C4mim][Ac]三元系统的液液相平衡数据,同时发展了相关模型并对这些含离子液体系统的液液相平衡数据进行了关联计算。结果发现,离子液体[C2mim][Ac]或[C4mim][Ac]与磷酸钾溶液(K3P04)形成的双水相系统(Aqueous Biphasic Systems,简称ABS)最高可回收95.0%以上的离子液体。我们结合模型关联结果对含离子液体系统液液分相的机理进行了定性解释。
     (2)考察了不同离子液体溶解生物质组分的能力。选用1-乙基-3-甲基咪唑乙酸盐([C2mim][Ac])对芒属(Miscanthus)生物质进行了溶解试验,研究发现:通过添加K3P04溶液作为反溶剂可以形成离子液体与盐的ABS,并将离子液体中的溶解物沉淀出来,经液液平衡分离可以回收离子液体和磷酸钾盐,再由固液分离及两次水洗沉淀物后,在50℃下对处理过的生物质成分进行生物酶水解。与其它预处理方法获得的结果比较显示,该方法是一个新的有潜力的生物质预处理过程。预处理过的芒属木质素和半纤维素含量较低,使得酶解得到葡萄糖的速率和产率都很高,在12小时内就能达到85.0%的产率,24小时后几乎100%的产率;回收后的离子液体和磷酸钾盐可重复使用,用回收的离子液体处理生物质,其酶解结果也挺令人满意,在12小时内可达到70.0%的产率。
     (3)针对木质素在离子液体中富集影响溶解能力的问题,采用乙酸乙酯(EtOAc)、1,4-二氧杂环已烷(1,4-dioxane)和四氢呋喃(THF)三种有机溶剂对离子液体[C2mim][Ac]水溶液中的不同木质素成分进行了萃取分离。研究发现分子量越小的木质素越容易被萃取至有机相;THF有着相对较好的萃取能力;同时降低pH值可一定程度上提高木质素的分配系数值。
The biomass pretreatment is one of the most important steps in the process of manufacturing biofuels from biomass. While the modern technology is not that efficient and still waiting for big break. In this paper, to develop the ionic liquids pretreatment process, we have developed the molecular thermodynamic model for chain-like fluid system and studied the phase equilibrium for systems containing ionic liquids and its application in the biomass pretreatment process. These previous exploration has provided fundamental information and necessary molecular thermodynamic models for optimizing ionic liquids pretreatment process.
     Mainly, the theory work includes the following three parts:
     (1) A new molecular thermodynamic model of mixing Helmholtz energy for random copolymer solutions based on close-packed lattice has been developed. The model contains three contributions:the contribution from athermal mixing of polymer chain and solvent, the Helmoltz energy of mixing in a multi-component Ising lattice, and the contribution from dissociation of polymer and association of monomers. The Guggenheim model is used to calculate the athermal mixing entropy, Yang et al.'s multicomponent Ising lattice model is used to calculate the mixing Helmholtz energy of multi-component Ising lattice and the statistical association theory of Cummings, Zhou and Stell is used to calculate the Helmholtz energy due to dissociation of polymer and association of monomers, respectively. It is shown that comparisons between show that the agreement between Monte Carlo (MC) simulated coexistence curves and that predicted by this model is nearly perfect. The model can be satisfactorily used to correlate the liquid-liquid equilibrium of practical random copolymer solutions.
     (2) Based on previous model, we have generally extended it to the multicomponent chain-like fluid mixtures by considering all the long-range interactions in each single chain. The liquid-liquid phase equilibrium of ternary chain-like mixtures predicted by this model are in good agreement with MC simulation results and much better than that calculated by Flory Huggins theory (FHT) and Revised Freed theory (RFT) obviously. This model can describe types 1-3 phase separations of Treybal classification satisfactorily. Meanwhile, model parameters correlated from the binary system can be further used to predict the corresponding liquid-liquid equilibrium of ternary mixtures, including systems containng ionic liquids or chain-like polymers.
     (3) Since the closed-packed lattice model can't describe the effect of pressure on the phase equilibrium, we have developed a revised Percus-Yevick-van der Waals equation of state. Pure-component parameters a and b in the equation are estimated from the enthalpy of vaporization and liquid-density data of pure-component. The only adjustable binary parameter a12 can be obtained from Henry's constant for the nonelectrolyte. Calculated total pressures of ionic liquid solutions are in good agreement with experimental data although in a few systems observed total pressures are slightly higher than those calculated in the region where the ionic liquid is dilute. The results of correlating a few binary systems with a miscibility gap are also quite satisfying.
     For the application of ionic liquids in biomass pretreatment process, we have done the following three experimental works:
     (1) At 22℃, we have measured the ternary liquid-liquid equilibrium data for aqueous biphasic systems containing [C2mim][Ac] or [C4mim][Ac]. The results show that using the potassium phosphate solution (K3PO4) is able to recycle at least 95.0% ionic liquids. Meanwhile, to better understand the phase separation mechanism of these systems, we have used our model to calculate and correlate the experimental data.
     (2) We have studied the solubility of biomass in different ionic liquids and chose 1-ethyl-3-methylimidazole acetate ([C2mim][Ac]) as the candidate solvent to dissolve Miscanthus. The results show that the K3PO4 solution is able to be used as an anti-solvent to precipitate biomass and an aqueous biphasic system of IL phase and salt phase is formed. After separating the liquids and solid, the solid phase has been washed by water twice before an enzymatic hydrolysis step carrying out to convert cellulose to glucose at 50℃. The results of this new process show that it is a very potential pretreatment method for Miscanthus, which gives a pellet with relative low content of lignin and hemicellulose and has obtained a high rate and high yield of glucose conversion from cellulose. The yield of 85.0% was obtained in 12h and nearly 100% after 24h. Meanwhile, the [C2mim][Ac] and K3PO4 solutions were recycled and reused after simple treatment. The two re-runs have also given a pretty good result,70.0% yield in 12h.
     (3) To solve the accumulation problem of lignin in IL-rich phase, we have studied three organic solvents:ethyl acetate (EtOAc),1,4-dioxane and tetrahydrofuran (THF) to extract and separate different kinds of lignin from [C2mim][Ac] aqueous solution. The results show that the smaller the molecular weight of lignin, the easier be extracted to the organic phase. THF has turned out to be the best solvent among these three. Lower pH is able to increase the partition coefficients.
引文
[1]S. Cheng, S. Zhu. Lignocellulosic feedstock biorefinery-The future of the chemical and energy industry. BioResources 2009,4(2):456-457.
    [2]M. E. Himmel生物质抗降解屏障-解构植物细胞壁产生物能.化学工业出版社,2010.
    [3]G. W. Huber, S. Iborra, A. Corma. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev.2006,106:4044-4098.
    [4]杨淑蕙.植物纤维化学.中国轻工业出版社,2001.
    [5]R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers. Dissolution of Cellulose with Ionic Liquids. J. Am. Chem. Soc.2002,124:4974-4975.
    [6]M. Kleinert, T. Barth. Towards a Lignocellulosic Biorefinery:Direct One-Step Conversion of Lignin to Hydrogen-Enriched Biofuel. Energy Fuels.2008,22(2): 1371-1379.
    [7]史济春,曹湘洪.生物燃料与可持续发展.中国石化出版社,2007.
    [8]C. E. Wyman, B. E. Dale, R. T. Elander, M. Holtzapple, M. R. Ladisch, Y. Y. Lee. Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol.2005,96:1959-1966.
    [9]N. Mosier, C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, M. Ladisch. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol.2005,96:673-686.
    [10]P. Kumar, D. M. Barrett, M. J. Delwiche, P. Stroeve. Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind. Eng. Chem. Res.2009,48(8):3713-3729.
    [11]L. da Costa Sousa, S. P. Chundawat, V. Balan, B. E. Dale.'Cradle-to-grave'assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol.2009, 20(3):339-347.
    [12]A.T.W.M. Hendriks, G. Zeeman. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol.2009,100:10-18.
    [13]L. Cadoche, G. D. Lopez. Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biol. Wastes.1989,30:153-157.
    [14]R. W. R. Zwart, H. Boerrigter, A. Van der Drift. The impact of biomass pretreatment on the feasibility of overseas biomass conversion to fischer-tropsch products. Energy Fuels.2006,20(5):2192-2197.
    [15]E. Takacs, L. Wojnarovits, C. Foldvary, P. Hargittai, H. Borsa, I. Sajo. Effect of combined gamma-irradiation and alkali treatment on cotton-cellulose. Radiat. Phys. Chem.2000,57:399-403.
    [16]W. R. Grous, A.O. Converse, H. E. Grethlein. Effects of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme Microb. Technol.1986,8: 274-280.
    [17]M. T. Holtzapple, J. H. Jun, G. Ashok, S. L. Patibandla, B. E. Dale. The ammonia freeze explosion (AFEX) process:A practical lignocellulose pretreatment. Appl. Biochem. Biotechnol.1991,28/29:59-74.
    [18]H. K. Murnen, V. Balan, S. P. S. Chundawat, B. Bals, L. D. C. Sousa, B. E. Dale. Optimization of ammonia fiber expansion (AFEX) pretreatment and enzymatic hydrolysis of miscanthus x giganteus to fermentable sugars. Biotechnol. Prog.2007, 23:846-850.
    [19]D. L. Brink. Method of treating biomass material.1993.
    [20]I. S. Goldstein, H. Pereira, J. L. Pittman, B. A. Strouse, F. P. Scaringelli. The hydrolysis of cellulose with superconcentrated hydrochloric acid. Biotechnol. Bioeng. 1983,13:17-25.
    [21]C. J. Israilides, G. A. Grant, Y. W. Han. Sugar level, fermentability, and acceptability of straw treated with different acids. Appl. Environ. Microbiol.1978,36(1):43-46.
    [22]J. D. McMillan, Pretreatment of lignocellulosic biomass. In Enzymatic Conversion of Biomass for Fuels Production. American Chemical Society:Washington, DC,1994; p:292-324.
    [23]D. G. Macdonald, N. N. Bakhshi, J. F. Mathews, A. Roychowdhury, P. Bajpai, M. Moo-Young. Alkail Treatment of Corn Stover to Improve Sugar Production by Enzymatic Hydrolysis. Biotechnol. Bioeng.1983,25:2067-2076.
    [24]R. E. Hage, N. Brosse, L. Chrusciel, C. Sanchez, P. Sannigrahi, A. Ragauskas. Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polymer Degradation and Stability.2009,94:1632-1638.
    [25]W. J. J. Huijgen, J. H. Reith, H. den Uil. Pretreatment and Fractionation of Wheat Straw by an Acetone-Based Organosolv Process. Ind. Eng. Chem. Res.2010,49(20): 10132-10140.
    [26]H. L. Chum, D. K. Johnson, S. Black. Organosolv pretreatment for enzymatic hydrolysis of poplars:1. Enzyme hydrolysis of cellulosic residues. Biotechnol. Bioeng. 1988,31:643-649.
    [27]R. W. Thring, E. Chorent, R. Overend. Recovery of a solvohytic lignin:Effects of spend liquor/acid volume ratio, acid concentration and temperature. Biomass.1990,23: 289-305.
    [28]R. D. Rogers, K. R. Seddon. Ionic Liquids-Solvents of the Future? Science.2003,302: 792-793.
    [29]R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers. Dissolution of Cellose with Ionic Liquids. J. Am. Chem. Soc.2002,124:4974-4975.
    [30]O. A. El Seoud, A. Koschella, L. C. Fidale, S. Dorn, T. Heinze. Applications of Ionic Liquids in Carbohydrate Chemistry:A Window of Opportunities. Biomacromolecules. 2007,8(9):2629-2647.
    [31]R. C. Remsing, R. P. Swatloski, R. D. Rogers, G. Moyna. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methyimidazolium chloride:a 13C and 35/37Cl NMR relaxation study on model systems. ChemComm.2006,1271-1273.
    [32]J. S. Moulthrop, R. P. Swatloski, G. Moyna, R. D. Rogers. High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. ChemComm. 2005,1557-1559.
    [33]N. Sun, M. Rahman, Y. Qin, M. L. Maxim, H. Rodriguez, R. D. Rogers. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem.2009,11:646-655.
    [34]S. H. Ha, N. L. Mai, G. An, Y. M. Koo. Microwave-assisted pretreatment of cellulose in ionic liquid for accelerated enzymatic hydrolysis. Bioresour. Technol.2011,102(2): 1214-1219.
    [35]A. P. Dadi, S. Varanasi, C. A. Schall. Enchancement of Cellulose Saccharification Kinetics Using an Ionic Liquid Pretreatment Step. Biotechnol. Bioeng.2006,95(5): 904-910.
    [36]A. Brandt, J. P. Hallett, D. J. Leak, R. J. Murphy, T. Welton. The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chem.2010,12:672-679.
    [37]Y. Fukaya, K. Hayashi, M. Wada, H. Ohno. Cellulose dissolution with polar ionic liquids under mild conditions:required factors for anions. Green Chem.2008,10: 44-46.
    [38]M. Zavrel, D. Bross, M. Funke, J. Buchs, A. C. Spiess. High-throughput screening for ionic liquids dissolvong (ligno-)cellulose. Bioresour. Technol.2009,100:2580-2587.
    [39]Y. Fukaya, A. Sugimoto, H. Ohno. Superior Solubility of Polysaccharides in Low Viscosity, Polar, and Halogen-Free 1,3-Dialkylimidazolium Formates. Biomacromolecules.2006,7(12):3295-3297.
    [40]B. Kosan, C. Michels, F. Meister. Dissolution and forming of cellulose with ionic liquids. Cellulose.2008,15:59-66.
    [41]Y. Cao, J. Wu, J. Zhang, H. Li, Y. Zhang, J. He. Room temperature ionic liquids (RTILs):A new and versatile platform for cellulose processing and derivatization. Chemical Engineering Journal 2009,147:13-21.
    [42]I. Kilpelainen, H. Xie, A. King, M. Granstrom, S. Heikkinen, D. S. Argyropoulos. Dissolution of Wood in Ionic Liquids. J. Agric. Food Chem.2007,55(22):9142-9148.
    [43]H. Xie, S. Li, S. Zhang. Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers. Green Chem.2005,7:606-608.
    [44]J. Vitz, T. Erdmenger, C. Haensch, U. S. Schubert. Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem.2009,11:417-424.
    [45]S. Dreyer, U. Kragl. Ionic Liquids for Aqueous Two-Phase Extraction and Stabilization of Enzymes. Biotechnol. Bioeng.2008,99:1416-1424.
    [46]S. Bose, D. W. Armstrong, J. W. Petrich. Enzyme-Catalyzed Hydrolysis of Cellulose in Ionic liquids:A Green Approach Toward the Production of Biofuels. J. Phys. Chem. B.2010,114:8221-8227.
    [47]C. Sievers, M. B. Valenzuela-Olarte, T. Marzialetti, I. Musin, P. K. Agrawal, C. W. Jones. Ionic-Liquid-Phase Hydrolysis of Pine Wood. Ind. Eng. Chem. Res.2009,48(3): 1277-1286.
    [48]L. Vanoye, M. Fanselow, J. D. Holbrey, M. P. Atkins, K. R. Seddon. Kinetic model for the hydrolysis of lignocellulosic biomass in the ionic liquid, 1-ethyl-3-methyl-imidazolium chloride. Green Chem.2009,11:390-396.
    [49]C. Li, B. Knierim, C. Manisseri, R. Arora, H. V. Scheller, M. Auer, K. P. Vogel, B. A. Simmons, S. Singh. Comparison of dilute acid and ionic liquid pretreatment of switchgrass:Biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol.2010,101:4900-4906.
    [50]H. Zhao, G. A. Baker, J. V. Cowins. Fast Enzymatic Saccharification of Switchgrass after Pretreatment with Ionic Liquids. Biotechnol. Prog.2010,26(1):127-134.
    [51]N. V. Plechkova, K. R. Seddon. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev.2008,37(1):123-150.
    [52]V. Najdanovic-Visak, J. M. S. S. Esperancüa, L. P. N. Rebelo, M. N. da Ponte, H. J. R. Guedes, K. R. Seddon, H. C. de Sousa, J. Szydlowski. Pressure, Isotope, and Water Co-solvent Effects in Liquid-Liquid Equilibria of (Ionic Liquid+Alcohol) Systems. J. Phys. Chem. B.2003,107:12797-12807.
    [53]M. Li, H. D. Willauer, J. G. Huddleston, R. D. Rogers. Temperature effects on polymer-based aqueous biphasic extraction technology in the paper pulping process. Separation Science and Technology.2005,40:1245-1265.
    [54]A. B. Pereiro, A. Rodriguez. Purification of hexane with effective extraction using ionic liquid as solvent. Green Chem.2009,11:346-350.
    [55]A. G. Fadeev, M. M. Meagher. Opportunities for ionic liquids in recovery of biofuels. Chem. Commun.2001,295-296.
    [56]J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser, R. D. Rogers. Room temperature ionic liquids as novel media for'clean'liquid-liquid extraction. Chem. Comm.1998,16:1765-1766.
    [57]K. E. Gutowski, G. A. Broker, H. D. Willauer, J. G. Huddleston, R. P. Swatloski, J. D. Holbrey, R. D. Rogers. Controlling the Aqueous Miscibility of Ionic Liquids:Aqueous Biphasic Systems of Water-Miscible Ionic Liquids and Water-Structuring Salts for Recycle, Metathesis, and Separations. J Am Chem Soc.2003,125:6632-6633.
    [58]N. J. Bridges, K. E. Gutowski, R. D. Rogers. Investigation of aqueous biphasic systems formed from solutions of chaotropic salts with kosmotropic salts (salt-salt ABS). Green Chem.2007,9:177-183.
    [59]C. M. S. S. Neves, S. P. M. Ventura, M. G. Freire, I. M. Marrucho, J. A. P. Coutinho. Evaluation of cation influence on the formation and extraction capability of ionic-liquid-based aqueous biphasic systems. J. Phys. Chem. B.2009,113(15): 5194-5199.
    [60]S. P. M. Ventura, C. M. S. S. Neves, M. G. Freire, I. M. Marrucho, J. A. P. Coutinho. Evaluation of anion influence on the formation and extraction capability of ionic-liquid-based aqueous biphasic systems. J. Phys. Chem. B.2009,113(27): 9304-9310.
    [61]B. Wu, Y. M. Zhang, H. P. Wang. Aqueous Biphasic Systems of Hydrophilic Ionic Liquids+Sucrose for Separation. J. Chem. Eng. Data.2008,53(4):983-985.
    [62]V N. Visak, J. N. C. Lopes, Z. P. Visak, J. Trindade, L. P. N. Rebelo. Salting-out in Aqueous Solutions of Ionic Liquids and K3PO4:Aqueous Biphasic Systems and Salt Precipitation. Int. J. Mol. Sci.2007,8:736-748.
    [63]J. R. Trindade, Z. P. Visak, M. Blesic, I. M. Marrucho, J. A. P. Coutinho, J. N. Canongia Lopes, L. P. N. Rebelo. Salting-out effects in aqueous ionic liquid solutions: Cloud-point temperature shifts. J. Phys. Chem. B.2007,111:4737-4741.
    [64]Y. Deng, T. Long, D. Zhang, J. Chen, S. Gan. Phase Diagram of [Amim]Cl+Salt Aqueous Biphasic Systems and Its Application for [Amim]Cl Recovery. J. Chem. Eng. Data.2009,54(9):2470-2473.
    [65]B. Wu, Y. M. Zhang, H. P. Wang. Aqueous Biphasic Systems of Hydrophilic Ionic Liquids+Sucrose for Separation. J. Chem. Eng. Data.2008,53(4):983-985.
    [66]B. Wu, Y.Zhang, H. Wang. Phase Behavior for Ternary Systems Composed of Ionic Liquid+Saccharides+Water. J. Phys. Chem. B.2008,112(20):6426-6429.
    [67]Z. Lei, B. Chen, C. Li, H. Liu. Predictive Molecular Thermodynamic Models for Liquid Solvents, Solid Salts, Polymers, and Ionic Liquids. Chem. Rev.2008,108: 1419-1455.
    [68]P. J. Flory. Thermodynamics of High Polymer Solutions. J. Chem. Phys.1942,10(1): 51-61.
    [69]M. L. Huggins. Some Properties of Solutions of Long-Chain Compounds. J. Phys. Chem.1942,46(1):151-158.
    [70]G. M. Wilson. Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free of Mixing. J. Am. Chem. Soc.1964,86(2):127-130.
    [71]H. Renon, J. M. Prausnitz. Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures. AIChE J.1968,14(1):135-144.
    [72]M. L. Huggins. Theory of Solutions of High Polymers. J. Am. Chem. Soc.1942,64(7): 1712-1719.
    [73]M. L. Huggins. A Revised Theory of High Polymer Solutions. J. Am. Chem. Soc. 1964,85(17):3535-3540.
    [74]R. Koninsveld, L. A. Kleintjens. Liquid-Liquid Phase Separation in Multicomponent Polymer Systems. X. Concentration Dependence of the Pair-interaction Parameter in the System Cyclohexane-Polystyrene. Macromolecules.1971,4(5):637-641.
    [75]W. R. Krigbaum, P. J. Flory. Statistical Mechanics of Dilute Polymer Solutions. IV. Variation of the Osmotic Second Coefficient with Molecular Weight. J. Am. Chem. Soc.1953,75(8):1775-1784.
    [76]S. J. Mumby, P. Sher, J. van Ruiten. Liquid-Liquid Phase Separation in Blends of Polydisperse Linear and Branched Polyethylenes. Polymer.1995,36(15):2921-2927.
    [77]T. A. Orofino, P. J. Flory. Relationship of the Second Virial Coefficient to Polymer Chain Dimensions and Interaction Parameters. J. Chem. Phys.1957,26(5): 1067-1076.
    [78]C. Qian, S. J. Mumby, B. E. Eichinger. Phase Diagrams of Binary Solutions and Blends. Macromolecules.1991,24(7):1655-1661.
    [79]A. R. Shultz, P. J. Flory. Phase Equilibria in Polymer-Solvent Systems. J. Am. Chem. Soc.1952,74(19):4760-4767.
    [80]E. A. Guggenheim, Mixtures.1952.
    [81]严琪良.链状分子流体热力学性质的计算机模拟研究.博士学位论文.华东理工大学.1997.
    [82]Q. L. Yan, H. L. Liu, Y. Hu. Analytical expressions of Helmholtz function of mixing for Ising model. Fluid Phase Equilibr.2002,218:157-161.
    [83]D. S. Abrams, J. M. Prausnitz. Statistical Thermodynamics of Liquid Mixtures:A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems. AIChE J.1974,21(1):116-128.
    [84]A. Fredenslund, J. Gmehling, P. Rasmus. Vapor-Liquid Equilibria Using UNIFAC, A Group Contribution Method. Elsevier.1977.
    [85]K. F. Freed. New Lattice Model for Interacting, Avoiding Polymers with Controlled Length Distribution. J. Phys. A:Math. Gen.1985,18(5):871-887
    [86]M. G. Bawendi, K. F. Freed. A lattice model for self- and mutually avoiding semiflexible polymer chains. J. Chem. Phys.1987,86(6):3720-3730.
    [87]M. G. Bawendi, K. F. Freed, U. Mohanty. A Lattice Field Theory for Polymer Systems with Nearest-Neighbor Interaction Energies. J. Chem. Phys.1987,87(9):5534-5540.
    [88]A. M. Nemirovsky, M. G. Bawendi, K. F. Freed. Lattice Models of Polymer Solution: Monomers Occupying Several Lattice Sites. J. Chem. Phys.1987,87(12):7272-7284.
    [89]M. G. Bawendi, K. F. Freed. Systematic corrections to Flory-Huggins theory: Polymer-solvent-void systems and binary blend-void systems. J. Chem. Phys.1988, 88(4):2741-2756.
    [90]J. Dudowicz, K. F. Freed, W. G. Madden. Role of Molecular Structure on the Thermodynamic Properties of Melts, Blends, and Concentrated Polymer Solutions. Comparison of Monte Carlo Simulations with the Cluster Theory for the Lattice Model. Macromolecules.1990,23(22):4803-4819.
    [91]J. Dudowicz, K. F. Freed. Effect of Monomer Structure and Compressibility on the Properties of Multicomponent Polymer Blends and Solutions:1. Lattice Cluter Theory of Compressible Systems. Macromolecules.1991,24(18):5076-5095.
    [92]J. Dudowicz, K. F. Freed. Effect of Monomer Structure and Compressibility on the Properties of Multicomponent Polymer Blends and Solutions:2. Application to Binary Blends. Macromolecules.1991,24(18):5096-5111.
    [93]J. Dudowicz, K. F. Freed. Effect of Monomer Structure and Compressibility on the Properties of Multicomponent Polymer Blends and Solutions:3. Application to PS(D)/PVME Blends. Macromolecules.1991,24(18):5112-5123.
    [94]J. Dudowicz, K. F. Freed. Molecular Influences on Miscibility Patterns in Random Copolymer/Homopolymer Binary Blends. Macromolecules.1998,31(15):5094-5104.
    [95]D. Buta, K. F. Freed, I. Szleifer. Monte Carlo test of the lattice cluster theory: Thermodynamic properties of binary polymer blends. J. Chem. Phys.2001,114(3): 1424-1434.
    [96]J. Dudowicz, K. F. Freed, J. F. Douglas. New patterns of polymer blend miscibility associated with monomer shape and size asymmetry. J. Chem. Phys.2002,116(22): 9983-9996.
    [97]E. B. Stukalin, J. F. Douglas, and K. F. Freed. Multi-step Relaxation in Equilibrium Polymer Solutions:A Minimal Model of Relaxation in "Complex" Fluids. J. Chem. Phys.2008,129:094901.
    [98]K. F. Freed. Extension of Lattice Cluster Theory to Strongly Interacting, Self-assembling Polymeric Systems. J. Chem. Phys.2009,130:061103.
    [99]Y. Hu, S. M. Lambert, D. S. Soane, J. M. Prausnitz. Double-Lattice Model for Binary Polymer Solutions. Macromolecules.1991,24(15):4356-4363.
    [100]Y. Hu, H. L. Liu, Y. H. Shi. Molecular Thermodynamic Theory for Polymer Systems.I. A Closed-Packed Lattice Model. Fluid Phase Equilibr.1996,117:100-106.
    [101]Y. Hu, H. L. Liu, D. S. Soane, J. M. Prausnitz. Binary Liquid-Liquid Equilibria from A Double-Lattice Model. Fluid Phase Equilibr.1991,67:65-86.
    [102]Y. Hu, X. G. Ying, D. T. Wu, J. M. Prausnitz. Molecular Thermodynamics of Polymer Solution. Fluid Phase Equilibr.1993,83:289-300.
    [103]严琪良,姜建文,刘洪来,胡英.链状分子系统相平衡的Monte Carlo模拟.化工学报.1995,46(5):517-523.
    [104]姜建文,严琪良,刘洪来,胡英.三元链状分子系统液液平衡的计算机模拟.化工学报.1996,47(5):637-641.
    [105]杨建勇,彭昌军,刘洪来,胡英.三元链状分子系统液液平衡的Monte Carlo模拟和分子热力学模型.化工学报.2006,20(5):673-678.
    [106]B. H. Chang, K. R. Ryu, Y. C. Bae. Chain Length Dependence of Liquid-Liquid Equilibria of Binary polymer solutions. Polymer.1998,39(8-9):1735-1739.
    [107]B. H. Chang, Y. C. Bae. Molecular thermodynamics approach for liquid-liquid equilibria of the symmetric polymer blend systems. Chem. Eng. Sci.2003,58: 2931-2936.
    [108]M. Müller. Miscibility behavior and single chain properties in polymer blends:a bond fluctuation model study. Macromol. Theory Simul.1999,8:343-374.
    [109]A. Z. Panagiotopolous, N. Quirke, M. Stapleton, D. J. Tildesley. Phase equilibria by simulation in the Gibbs ensemble Alternative derivation, generalization and application to mixture and membrane equilibria. Molecular Physics.1988,63: 527-545.
    [110]B. H. Chang, Y. C. Bae. Phase Behaviors of Symmetric Polymer Blend Systems. J Polym Sci:Part B.2004,42:1532-1538.
    [111]J. H Ryu, P. D. Gujrati. Lattice theory of a multicomponent mixture of monodisperse polymers of fixed architectures. J. Chem. Phys.1997,107:3954-3966.
    [112]S. M. Lambert, D. S. Soane, J. M. Prausnitz. Liquid-Liquid Equilibira in Binary Systems:Monte-Carlo Simulations for Calculating the Effect of Nonrandom Mixing. Fluid Phase Equilibr.1993,82:59-68.
    [113]B. F. Qiao, D. L. Zhao. A theory of polymer solutions without the mean-field approximation in Flory-Huggins theory. J. Chem. Phys.2004,121(10):4968-4973.
    [114]J. Y. Yang, Q. L. Yan, H. L. Liu, Y. Hu. A Molecular Thermodynamic Model for Binary Lattice Polymer Solutions. Polymer.2006,47:5187-5195.
    [115]J. W. Jiang, Q. L. Yan, H. L. Liu, Y. Hu. Monte Carlo Simulations of Liquid-Liquid Equilibria for Ternary Chain Molecule Systems on a Lattice. Macromolecules.1997, 30:8459-8462.
    [116]H. J. Liang, X. H. He, W. Jiang, B. Z. Jiang. Monte Carlo simulation of phase separation of A/B/A-B ternary mixtures. Macromol. Theory Simul.1999,8:173-178.
    [117]T. Chen, H. L. Liu, Y. Hu. Monte Carlo Simulation of Phase Equilibria for Random Copolymers. Macromolecules.2000,33(5):1904-1909.
    [118]J. Houdayer, M. Miüller. Phase Diagram of Random Copolymer Melts:A Computer Simulation Study. Macromolecules.2004,37:4283-4295.
    [119]N. F. Carnahan, K. E. Starling. Equation of state for non-attracting rigid spheres. J. Chem. Phys.1969,51:635-636.
    [120]G. Stell, Y. Zhou. Chemical association in simple models of molecular and ionic fluids. J. Chem. Phys.1989,91:3618-3623.
    [121]Y. Zhou, G. Stell. Chemical association in simple models of molecular and ionic fluids. II. Thermodynamic properties. J. Chem. Phys.1992,96(2):1504-1506.
    [122]Y. Zhou, G. Stell. Chemical association in simple models of molecular and ionic fluids.III. The cavity function. J. Chem. Phys.1992,96(2):1507-1515.
    [123]Y. Hu, H. L. Liu. Participation of molecular simulation in the development of molecular-thermodynarnic models. Fluid Phase Equilibr.2006,241:248-256.
    [124]Q. L. Yan, H. L. Liu, Y. Hu. Simulation of Phase Equilibria for Lattice Polymers. Macromolecules.1996,29:4066-4071.
    [125]A. Z. Panagiotopoulos, V. Wong. Phase Equilibria of Lattice Polymers from Histogram Reweighting Monte Carlo Simulations. Macromolecules.1998,31: 912-918.
    [126]J. Y. Yang, C. J. Peng, Ⅱ. L. Liu, Y. Hu. A generic molecular thermodynamic model for linear and branched polymer solutions in a lattice. Fluid Phase Equilibr.2006,244(2): 188-192.
    [127]J. Y Yang, C. J. Peng, H. L. Liu, Y. Hu. Liquid-liquid equilibria of polymer solutions with oriented interactions. Fluid Phase Equilibr.2006,249:192-197.
    [128]J. Y. Yang, C. J. Peng, H. L. Liu, Y. Hu. Calculation of Vapor-liquid and Liquid-liquid Phase Equilibria for Systems Containing Ionic Liquids Using a Lattice Model. Ind. Eng. Chem. Res.2006,45:6811-6817.
    [129]杨建勇.基于格子模型的高分子溶液分子热力学.博士学位论文.华东理工大学.2006.
    [130]J. Y. Yang, Q. Xin, L. Sun, H. L. Liu, Y. Hu, J. W. Jiang. A new molecular thermodynamic model for multicomponent Ising lattice. J. Chem. Phys.2005,125: 164506.
    [131]H. L. Liu, J. Y. Yang, Q. Xin, Y. Hu. Molecular thermodynamics of mixed-solvent polymer solutions. Fluid Phase Equilibr.2007,261:281-285.
    [132]R. P. Kambour, J. T. Bendler, R. C. Bopp. Phase Behavior of Polystyrene, Poly(2,6-dimethyl-1,4-phenylene oxide), and Their Brominated Derivatives. Macromolecules.1983,16:753-757.
    [133]G. ten Brinke, F. E. Karasz, W. J. MacKnight. Phase Behavior in Copolymer Blends: Poly(2,6-dimethyl-1,4-phenylene oxide) and Halogen-Substituted Styrene Copolymers. Macromolecules.1983,16:1827-1832.
    [134]A. C. Balazs, I. C. Sanchez, R. E. Irving. Effect of Sequence Distribution on the Miscibility of Polymer/Copolymer Blends. Macromolecules.1985,18:2188-2191.
    [135]T. Hino, S. M. Lambert, D. S. Soane, J. M. Prausnitz. Miscibilities in binary copolymer systems. Polymer.1993,34(22):4756-4761.
    [136]J. Dudowicz, K. F. Freed. Lattice Cluster Theory for Pedestrian.2. Random Copolymer Systems. Macromolecules.2000,33:3467-3477.
    [137]T. Chen, C. J. Peng, H. L. Liu, Y. Hu. Molecular thermodynamics model for random copolymer solutions. Fluid Phase Equilibr.2005,233:73-80.
    [138]A. Shariati, C. J. Peters. High-pressure phase behavior of systems with ionic liquids: measurements and modeling of the binary system fluoroform+l-ethyl-3-methylimidazolium hexafluorophosphate. Journal of Supercritical Fluids.2003,25(2):109-117.
    [139]M. B. Shiflett, A. Yokozeki. Solubilities and diffusivities of carbon dioxide in ionic liquids:[Bmim][PF6] and [Bmim][BF4]. Industrial & Engineering Chemistry Research. 2005,44(12):4453-4464.
    [140]M. B. Shiflett, A. Yokozeki. Vapor-liquid-liquid equilibria of pentafluoroethane and ionic liquid [Bmim][PF6] mixtures studied with the volumetric method. J. Phys. Chem. B.2006,110(29):14436-14443.
    [141]A. Yokozeki, M. B. Shiflett. Global phase behaviors of trifluoromethane in ionic liquid [Bmim][PF6]. AIChE Journal.2006,52(11):3952-3957.
    [142]M. B. Shiflett, A. Yokozeki. Solubility of CO2 in room temperature ionic liquid [Hmim][Tf2N]. J. Phys. Chem. B.2007,111(8):2070-2074.
    [143]M. G. Del Po’polo, G. A. Voth. On the Structure and Dynamics of Ionic Liquids. J. Phys. Chem. B.2004,108:1744-1752.
    [144]Y. Qin, J. M. Prausnitz. Solubilities in ionic liquids and molten salts from a simple perturbed-hard-sphere theory. Industrial & Engineering Chemistry Research.2006, 45(16):5518-5523.
    [145]T. F. Wang, C. J. Peng, H. L. Liu, Y. Hu. Description of the pVT behavior of ionic liquids and the solubility of gases in ionic liquids using an equation of state. Fluid Phase Equilibria.2006,250(1-2):150-157.
    [146]T. F. Wang, C. J. Peng, H. L. Liu, Y. Hu, J. W. Jiang. Equation of state for the vapor-liquid equilibria of binary systems containing imidazolium-based ionic liquids. Industrial & Engineering Chemistry Research.2007,46(12):4323-4329.
    [147]M. C. Kroon, E. K. Karakatsani, I. G. Economou, G. J. Witkamp, C. J. Peters. Modeling of the carbon dioxide solubility in imidazolium-based ionic liquids with the tPC-PSAFT equation of state. J. Phys. Chem. B.2006,110(18):9262-9269.
    [148]E. K. Karakatsani, L. G. Economou, M. C. Kroon, C. J. Peters, G. J. Witkamp. tPC-PSAFT modeling of gas solubility in imidazolium-based ionic liquids. J. Phys. Chem. C.2007,111(43):15487-15492.
    [149]J. S. Andreu, L. F. Vega. Capturing the solubility Behavior of CO2 in ionic liquids by a simple model. J. Phys. Chem. C.2007,111(43):16028-16034.
    [150]B. Breure, S. B. Bottini, G. J. Witkamp, C. J. Peters. Thermodynamic modeling of the phase behavior of binary systems of ionic liquids and carbon dioxide with the group contribution equation of state. J. Phys. Chem. B.2007,111(51):14265-14270.
    [151]P. T. Cummings, G. Stell. Statistical mechanical models of chemical reactions. Ⅱ. Analytic solution of the Percus-Yevick approximation for a model of homogeneous association. Mol. Phys.1985,55(1):33-48.
    [152]J. G. Kirkwood, V. A. Lewinson, B. J. Alder. Radial Distribution Functions and the Equation of State of Fluids Composed of Molecules Interacting According to the Lennard-Jones Potential. J. Chem. Phys.1952,52:929-938.
    [153]陈霆.共聚高分子溶液的计算机模拟和分了热力学模型研究.博士学位论文.华东理工大学.2001.
    [154]T. Dobashi, M. Nakata, M. Kaneko. Coexistence curve of polystyrene in methylcyclohexane. I. Range of simple scaling and critical exponents. J. Chem. Phys. 1980,72:6685-6691.
    [155]J. Brandrup, E. H. Immergut, E. A. Grulke. Polymer Handbook,4th ed. New York:a wiley-interscience publication.1999.
    [156]A. Schneider, B. A. Wolf. Specific features of the interfacial tension in the case of phase separated solutions of random copolymers. Polymer.2000,41:4089-4097.
    [157]R. E. Treybal. Liquid Extraction, second ed. McGraw-Hill; New York.1963.
    [158]H. P. Deutsch, K. Binder. Critical Behavior and Crossover Scaling in Symmetric Polymer Mixtures:A Monte Carlo Investigation. Macromolecules.1992,25: 6214-6230.
    [159]M. Muller, K. Binder. Computer Simulation of Asymmetric Polymer Mixtures. Macromolecules.1995,28:1825-1834.
    [160]A. Sariban, K. Binder. Critical properties of the Flory-Huggins lattice model of polymer mixtures. J. Chem. Phys.1987,86:5859-5873.
    [161]G. C. Johnson, A. W. Francis. Ternary Liquid System, Benzene-Heptane-Diethylene Glycol. Ind. Eng. Chem.1954,46:1662-1668.
    [162]J. Lachwa, J. Szydlowski, V. Najdanovic-Visak, L.P.N. Rebelo, K. R. Seddon, M. N. da Ponte, J.M.S.S. Esperanca, H.J.R. Guedes. Evidence for Lower Critical Solution Behavior in Ionic Liquid Solutions. J. Am. Chem. Soc.2005,127:6542-6543.
    [163]P. Lou, S. Kang, K. C. Ko, J. Y. Lee. Solubility of Small Molecule in Ionic Liquids:A Model Study on the Ionic Size Effect. J. Phys. Chem.2007,111:13047-13051.
    [164]A. Arce, M. J. Earle, S. P. Katdare, H. Rodriguez, K. R. Seddon. Phase equilibria of mixtures of mutually immiscible ionic liquids. Fluid Phase Equilibr.2007,261: 427-433.
    [165]S. Rostami, D. J. Walsh. Simulation of Upper and Lower Critical Phase Diagrams for Polymer Mixtures at Various Pressures. Macromolecules.1985,18:1228-1235.
    [166]J. L. Lin, R. J. Roe. D.s.c. study of mixcibility of polystyrene and poly(a-methylstyrene). Polymer.1988,29:1227-1232.
    [167]H. Takahashi, T. Kyu, Q. Tran-cong, O. Yano, T. Soen. Phase Separation in Mixtures of Poly(ethylene glycol Monomethylether) and Poly(Propylene Glycol) Oligomers. J. Poly. Sci:Part B:Polymer Physics.1991,29:1419-1425.
    [168]Y. C. Bae, J. J. Shim, D. S. Soane, J. M. Prausnitz. Representation of Vapor-Liquid and Liquid-Liquid Equilibria for Binary Systems Containing Polymers:Applicability of an Extended Flory-Huggins Equation. J. Appl. Polym. Sci.1993,47:1193-1206.
    [169]D. J. Walsh, G. T. Dee, J. L. Halary, J. M. Ubiche, M. Millequant, J. Lesec, L. Monnerie. Application of Equation of State Theories to Narrow Molecular Weight Distribution Mixtures of Polystyene and Poly(vinylmethyl ether). Macromolecules. 1989,22:3395-3399.
    [170]Van der Waals, D. Johannes Over de Continuiteit van den Gas-en Vloeistoftoestand; 1873.
    [171]Van der Waals, D. Johannes. The Equation of State for Gases and Liquids.1910.
    [172]J. M. Prausnitz, R. N. Lichtenthaler, E.G.de. Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria (Third Edition).2005.
    [173]N. S. Snider, T. M. Herrington. Hard-sphere model of binary liquid mixtures. J. Chem. Phys.1967,47:2248-2255.
    [174]M. L. McGlashan. Thermodynamic excess functions of mixtures of molecules of different sizes. Dept. of Chemistry, The University, Exeter.1969.
    [175]J. K. Percus, G. J. Yevick. Analysis of Classical Statistical Mechanics by Means of Collective Coordinates. Physical Review.1958,110(1):1-13.
    [176]M. S. Wertheim. Exact Solution of the Percus-Yevick Integral Equation for Hard Spheres. Phys. Rev. Lett.1963,10:321-323.
    [177]J. L. Lebowitz. Exact Solution of Generalized Percus-Yevick Equation for a Mixture of Hard Spheres. Phys. Rev.1964,133(4A):895-899.
    [178]R. L. Gardas, M. G. Freire, P. J. Carvalho, I. M. Marrucho, I. M. A. Fonseca, A.G. M. Ferreira, J. A. P. Coutinho. High-Pressure Densities and Derived Thermodynamic Properties of Imidazolium-Based Ionic Liquids. J. Chem. Eng. Data.2007,52(1): 80-88.
    [179]L.M.N.B.F. Santos, J.N.C. Lopes, J.A.P. Coutinho, J.M.S.S. Esperanca, L. R. Gomes, I. M. Marrucho, L.P.N. Rebelo. Ionic Liquids:First Direct Determination of their Cohesive Energy. J. AM. CHEM. SOC.2007,129(2):284-285.
    [180]K. Fumino, A. Wulf, S. P. Verevkin, A. Heintz, R. Ludwig. Estimating Enthalpies of Vaporization of Imidazolium-Based Ionic Liquids from Far-Infrared Measurements. ChemPhysChem.2010,11(8):1623-1626.
    [181]D. H. Zaitsau, G. J. Kabo, A. A. Strechan, Y. U. Paulechka, A. Tschersich, S. P. Verevkin, A. Heintz. Experimental Vapor Pressures of 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imides and a Correlation Scheme for Estimation of Vaporization Enthalpies of Ionic Liquids. J. Phys. Chem. A.2006,110(22): 7303-7306.
    [182]R.G. de. Azevedo, J.M.S.S. Esperanca, J. Szydlowski, Z. P. Visak, P. F. Pires, H.J.R. Guedes, L.P.N. Rebelo. Thermophysical and thermodynamic properties of ionic liquids over an extended pressure range:[Bmim][Tf2N] and [Hmim][Tf2N]. J. Chem. Thermodynamics.2005,37:888-899.
    [183]R. L. Gardas, M. G. Freire, P. J. Carvalho, I. M. Marrucho, I.M.A. Fonseca, A.G.M. Ferreira, J.A.P. Coutinho. PpT Measurements of Imidazolium-Based Ionic Liquids. J. Chem. Eng. Data.2007,52:1881-1888.
    [184]J.M.S.S. Esperanca, Z. P. Visak, N.V. Plechkova, K. R. Seddon, H.J.R. Guedes, L.P.N. Rebelo. Density, Speed of Sound, and Derived Thermodynamic Properties of Ionic Liquids over an Extended Pressure Range.4. [C3mim][Tf2N] and [C5mim][Tf2N]. J. Chem. Eng. Data.2006,51:2009-2015.
    [185]R. Kato, M. Krummen, J. Gmehling. Measurement and correlation of vapor-liquid equilibria and excess enthalpies of binary systems containing ionic liquids and hydrocarbons. Fluid Phase Equilibria.2004,224:47-54.
    [186]S.P. Verevkin, J. Safarov, E. Bich, E. Hassel, A. Heintz. Thermodynamic properties of mixtures containing ionic liquids Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with 1-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl) imide. Fluid Phase Equilibria.2005,236:222-228.
    [187]R. Kato, J. Gmehling. Measurement and correlation of vapor-liquid equilibria of binary systems containing the ionic liquids [EMIM][(CF3SO2)2N], [BMIM][(CF3SO2)2N], [MMIM][(CH3)2PO4] and oxygenated organic compounds respectively water. Fluid Phase Equilibria.2005,231:38-43.
    [188]R. Kato, J. Gmehling. Systems with ionic liquids:Measurement of VLE and r∞ data and prediction of their thermodynamic behavior using original UNIFAC, mod. UNIFAC(Do) and COSMO-RS(O1). J. Chem. Thermodynamics.2005,37:603-619.
    [189]J. Safarov, S. P. Verevkin, E. Bich, A. Heintz. Vapor Pressures and Activity Coefficients of n-Alcohols and Benzene in Binary Mixtures with 1-Methyl-3-butylimidazolium Octyl Sulfate and 1-Methyl-3-octylimidazolium Tetrafluoroborate. J. Chem. Eng. Data.2006,51(2):518-525.
    [190]H. Weingartner. Understanding Ionic Liquids at the Molecular Level:Facts, Problems, and Controversies. Angew. Chem. Int. Ed.2008,47:654-670.
    [191]L. D. Simoni, Y. Lin, J. F. Brennecke, M. A. Stadtherr. Modeling Liquid-Liquid Equilibrium of Ionic Liquid Systems with NRTL, Electrolyte-NRTL, and UNIQUAC. Ind. Eng. Chem. Res.2008,47 (1):256-272.
    [192]I. Lewandowski, J. C. Clifton-Brown, J. M. O. Scurlock, W. Huisman. Miscanthus: European experience with a novel energy crop. Biomass and Bioenergy.2000,19: 209-227.
    [193]A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, D. Crocker. Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable Energy Laboratory.2008.
    [194]A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples. National Renewable Energy Laboratory.2006.
    [195]K. Shill, S. Padmanabhan, Q. Xin, J. Prausnitz, D. S. Clark, H. W. Blanch. Ionic Liquid Pretreatment of Cellulosic Biomass:Enzymatic Hydrolysis and Ionic Liquid Recycle. Biotechnol. Bioeng.2010,9999:1-11.
    [196]S. Werner, M. Haumann, P. Wasserscheid. Ionic Liquids in Chemical Engineering. Annu. Rev. Chem. Biomol. Eng.2010,1:203-230.
    [197]G. Hinckley, V. V. Mozhaev, C. Budde, Y. L. Khmelnitsky. Oxidative enzymes possess catalytic activity in systems with ionic liquids. Biotechnology Letters.2002,24: 2083-2087.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700