基于主分量、独立分量分析的盲信号处理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以统计信号处理理论为基础,针对现有传统信号分析方法的不足,研究混合信号中独立分量提取的相关理论和计算方法; 面向工程实际应用的需要,研究算法在实际应用中需考虑的快速性、稳定性和自适应性,并以工业现场的实际信号为对象,研究独立分量分离在实际工程应用中的作用与价值。
    本文首先集中讨论了与主分量分析(PCA)和独立分量分析(ICA)相关的理论和方法; 论述了“独立”与“不相关”的关系; 论述了白化理论及其工程应用的方法,对“白化”解相关的特性进行了研究。结果表明,对信号进行白化处理,可以大幅度降低信号之间的互相关程度。
    研究了PCA 的一些计算方法以及主分量选取的原则,并根据这一原则——贡献率的大小,来决定主分量的数量。应用这一理论,对实际的工程信号进行了PCA 分析,为传感器数量的选取提供了理论依据。研究了采用PCA 方法对信号进行白化预处理的理论与方法。
    分析了ICA 所用的比照函数,给出了若干比照函数的数学模型,总结了比照函数的选用原则; 指出基于神经网络的独立分量估计算法的核心是梯度下降法; 在随机梯度算法的基础上,提出了一种改进的非线性ICA 算法。研究结果表明,该算法对同类峭度符号的信号的分离具有较好的效果。
    针对传统时频信号处理中存在的“同频干扰不可分”问题,进行了基于PCA 白化预处理的ICA 盲源分离的仿真研究,并对实际的工程信号进行了ICA 分析。其结果表明,盲源分离可以令人满意地解决由多个频率成份相互重叠的信号混合后的分离问题。研究了如何采用ICA 方法剔除中厚板轧机主传动轴的振动信号在传输过程中所受到的同频噪声干扰。
    论述了基于峭度比照函数的定点算法和基于其它高次非线性函数的比照函数的定点算法的一般算式; 在Hyvarien“定点算法”的基础上,提出了采用其它非线性函数作为比照函数的定点算法,并提出了增强稳定性的改进方法; 应用不同的非线性函数所构成的比照函数对不同分布类型的独立分量的提取进行了仿真研究; 针对盲源分离过程中信号次序的不确定性,研究了分离信号次序重排的方法。
    研究了中厚板轧机主传动系统的主要结构特点,分析了主传动系统的固有振动频率,建立了主传动系统的振动模型,指出了主传动系统中易受破坏的的关键传动部件——万向联轴器的破坏机理; 设计并开发了一套基于DataSocket 的Internet 通信方式
Aim to the limitation of traditional signal processing, the theories and methodologies based on statistical signal processing, which are used to extrat the independent components from mixture signals, have been researched. To meet the needs of engineering, the rapidity, stability and self-adaptability of the methodology have been researched. Faces to the real signal of engineering, the applications of independent component analysis (ICA) have been researched.
    First, the theories and methodologies of principal component analysis (PCA) and independent component analysis have been discussed. The relationships of independent and irrelevance have been explained. The white theory and its application in engineering have been expounded. The feature of decorrelation based on whitening has been researched. The result shows the correlative level of signals can be reduced mostly after whitening them.
    The contributiveness-based methodology of principal component selection has been researched. The number of principal component can be determined according this principle. Applied this theory on real signal of engineering, the minimal number of sensor can be determined by using. The theory and methodology for signal whitening based on PCA have been researched.
    The contrast functions have been analyzed, the selected methodology for contrast function has been summarized, and several contrast functions have been proposed. The key of independent estimation based on neural calculating is gradient decent. On the based of stochastic gradient decent algorithm, an improved nonlinear ICA algorithm has excellent effect for the signals that have the same sign of kurtosis.
    Aim to the problem of dis-separating for the same frequency mixed signal, the simulation for blind source separation based on PCA whitening has been researched, and applying the method on real engineering signal —the roll machine vibration signals disturbed by the same frequency noises on signal transmission. The result shows that the blind source separation can excellently separate the signals, which their components are overlapped in frequency domain.
    Fixed-point algorithm based on kurtosis contrast function and others fixed-point algorithms based on high-order nonlinear contrast function. On the fundamental of
    fixed-point algorithm proposed by Hyvarien, the other nonlinear contrast functions have been proposed in this thesis, and the reliability improved methods has been proposed also. The simulations for different distributed components have been processing by using different nonlinear contrast functions. Aim to the un-determination of order of the component occurs in separating, the order resorting has been researched, and a order resorting algorithm of component has been proposed. The character of main driving system of rolling machine and its inherent frequency has been analyzed. The vibrant model of the main driving system has been created. The mechanism of failed of couple, which is damageable component in the main driving system of rolling machine, has been pointed out. A set of monitoring system of the main driving system of roll machine has been developed. This monitoring system is developed by using DataSocket programming. The communications between workstations and server can be over Internet. A self-adaptive filter has been designed to smooth the vibration signals that are disturbed by power pause in the space. A set of FM wireless communication for torsion monitoring has been designed and been applied also. This torsion monitoring system is easy to mount. The problem, which the signals disturbed by same frequency noises over the transmission in space can’t be demodulated correctly, has been solved by using ICA. This thesis indicated the ICA can solved the problem, which can’t be completed correctly by using traditional signal processing methods.
引文
[1] Linsker, Ralph. Local learning rule that enables information maximization for arbitrary input distributions. Neural Computation, v 9, n 8, Nov 15, 1997:1661
    [2] J. Karhunen, A. Hyvarinen, R. Vigario, J. Hurri, E. Oja. Applications of Neural Blind Separatoin to Signal And Image Processing. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP'97):269-273
    [3] J. Karhunen, L. Wang, R. Vigardo. Nonlinear PCA type Approaches for Source Separation and Independent Component Analysis. In Proc. 1995 IEEE Int. Conf. On Neural Networks, Perth, Australia, November, 1995:995-1000.
    [4] 1 E. Oja, J. Karhunen, and A. Hyvarinen. From neural PCA to neural ICA. In NIPS’96 Postconference Workshop on Blind Signal Processing and Their Applications, Snowmass, Colorado, December 1996: 1970-1973.
    [5] A. Hyvarinen, E. Oja. One-unit learning rules for independent component analysis. To appear in Advances in Neural Information Processing Systems 9. Cambridge, MA: MIT Press, 1997:497-502.
    [6] The fixed-point algorithm and maximun likelihood estimation for independent component analysis, Neural Processing Lett., 1999,
    [7] 李道本. 信号的统计检测与估计理论. 北京:北京邮电大学,1996.1: 392
    [8] 刘琚,何振亚. 盲源分离和盲卷积. 电子学报,2002.4: 570-576
    [9] Jutten C, Herault J. Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic. Signal Processing, 1991,24(1):1-10
    [10] Tong L, Liu R, Soon V. C. Indeterminacy and Identifiablity of Blind Identification. IEEE Trans on Circuits and Systems. 1991,38(5):499-506
    [11] Cardoso J.F. Blind Beamforming for Non-Gaussian Signals. IEE Proceedings, 1993, 140(6):224-230
    [12] Comon P. Independent Component Analysis, A New Concept?. Signal Processing, 1994, 36(3):287-314.
    [13] Bell A.J, Sejnowski T.J. An Information-Maximization Approach To Blind Separation and Deconvolution. Neural Computation, 1995,7(6):1129-1159.
    [14] Amari S, Cichocki A, Yang H H. A New Learning Algorithm for Blind Signal Separation. Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1996, 8:657-663
    [15] Hyvarinen A, Oja E.A. A Fast Fixed-Point Algorithm for Independent Component Analysis. Neural Computation, 1997,9(7):1483-1492
    [16] Girolami M, Fyfe C. An extended exploratory Projection Pursuit Network With Linear and Nonlinear Anti-Hebbian Lateral Connections Applied To The Cocktail Party Problem. Neural Networks, 1998,10(9):1670-1618
    [17] Burel G. Blind Separation of Sources: A Nonliner Neural Algorithm. Neural Networks, 1992,5(6):937-947
    [18] Pajunen P, Hyvarinen A, Karhunen J. Nonlinear Blind Source Separation By Self-Organization Maps. In Progress In Neural Information Processing. Berlin: Springer, 1996:1207-1210
    [19] Taleb A, Jutten C. Source Separation In Post Nonlinear Mixtures: An Entropy-Based Algorithm. In Proc of ICASSP. Washinton:ICASSP,1998:2089-2092
    [20] Moulines E, Cardoso J.F, Gassiat E. Maximum Likelihood for Blind Separation And Deconvolution Of Noisy Signals Using mixture Models. In Proc Of ICASSP. Washinton: ICASSP, 1998: 3617-3620
    [21] Hyvarinen A. Noisy Independent Component Analysis. Maximum Likelihood Estimation, And Competitive Learning. In Proc Of IJCNN, Alaska: IJCNN, 1998:2282-2286
    [22] Cardoso J.F, Source Separation Using Hgher Order Moments. In Proc Of ICASSP, Glasgow, UK,1989: 2109-2112
    [23] Cichocki A, Unbehauen A. Robust Neural Networks With On-line Learning For Blind Identification And Blind Separation of Sources. IEEE Trans Circuits and Systems, 1996,43(11): 894-906
    [24] Karhunen J, Wang L, Vigario R. Nonlinear PCA Type Approaches For Source Separation And Independent Component Analysis. In Proc. Of ICNN, Australia, ICNN, 1995: 995-1000
    [25] Cardoso J.F, Laheld B.H. Equivariant Adaptive Source Separation. IEEE Trans Signal Processing, 1996,44(12): 3017-3029
    [26] Hyvarinen A, Oja E. Independent Component Analysis By General Nonlinear Hebbian-like Learning Rules. Signal Processing, 1998,64(3): 301-313
    [27] Oja E, Hyvarinen A. Blind Signal Separation By Neural Networks. In Proc. Of ICONIP, HongKong, 1996,7: 7-14
    [28] Karhunen J. Neural Approaches To Independent Component Analysis And Source Separation. In Proc. 4th European Symp, Artificial Neural Networks. Belgium, Bruges, 1996: 249-266
    [29] Girolami M. An Alternative Pewrspective On Adaptive Independent Component Analysis Algorithms. Neural Computation, 1998,10(8): 2103-2114
    [30] Amari S, Cichocki A. Adaptive Blind Signal Processing –Neural Network Approaches. Proc. Of The IEEE,1998,86(10): 2026-2048.
    [31] Lee T.W, Girolami M. Independent Component Analysis Using An Extended Infomax Algorithm For Mixed Subgaussian And Supergussian Sources. Neural Computation, 1999,11(12): 417-441
    [32] Hyvarinen A. Simple One-unit Neural Algorithms For Blind Source Separation And Blind Deconvolution. In Proc Of ICONIP, HongKong, ICONIP, 1996:1201-1206
    [33] Linsker R. Local Synaptic Learning Rules Suffice To Maximize Mutual Information In a Linear Network. Neural Computation, 1992,4(3): 491-702
    [34] Barlow H.B. Possible Principles Underlying The Transfomation Of Sensory Message, in Sensory Communication. Cambridge MA, MIT Press, 1961.
    [35] Pearlmutter B.A, Parra L.C. A Context-sensitive Geralization Of ICA. In Proc. Of ICONIP. HongKong, ICONIP, 1996:151-157
    [36] Gaeta M, Lacoume J.L. Sources Separation Without A Priori Knowledge: The Maximum Likelihood Solution, Signal Processing V, Theories And Application, Elsevier, 1990
    [37] Pham D.T. Blind Separation Of Instruments Mixture Of Sources Via An Independent Component Analysis. IEEE Trans Signal Processing 1996,44(11): 2768-2779
    [38] Nadal J.P, Parga N. Nonlinear Neurous In The Low-noise Limit: A Factorial Code Maximizes Information Transfer. Network, 1994,4: 295-312
    [39] Cardoso J.F. Infomax And Maximum Likelihood For Blind Source Separation. IEEE Signal Processing LETTERS, 1997,4(4): 112-114
    [40] Obradovic D, Deco G. Information Maximization And Independent Component Analysis: Is There A difference?. Neural Computation, 1998,10(8): 2085-2101.
    [41] Lee T.W, Girolami M, Bell A.J. A Unifying Information Theoretic Framework For Independent Component Analysis. Computers And Mathmatics With Application. 2003,31(11): 1-21.
    [42] Nomua T, Eguchi M. An Extension Of The Herault-Jutten Network To Signal Including Delays For Blind Separation. In Proceedings Of IEEE workshop On Neural Networks For Signal Processing. Kyoto, 1996
    [43] Lee W.T, Koehler B. Blind Separation Of Nonlinear Mixing Models. In Proc. Of IEEE nnsp. Florida, USA, 1997: 406-415
    [44] Lin K, Grier D.G, Cowan J.D. source Separation And Density Estimation By Faithful Equivariant SOM, Advances in Neuaral Information Processing Systems. Cambridge MA, MIT Press, 1997
    [45] Hyvarinen A, Pajunen P. On Existence And Uniqueness Of Solutions In Non-linear Independent Component Analysis. In Proc Of IJCNN. Alaska, IJCNN, 1998: 350-1355
    [46] Platt C, Faggin F. Networks for the separation of Sources That Are Supermposed And Delayed. Advances Ind Neural Information Processing Systems. 1991: 730-737
    [47] Yellin D, Wensten E. Criteria for Multichannel Signal Separation. IEEE Trans Signal Process, 1994,42(8): 2158-2168
    [48] 1 Thi H.N, Jutten C. Blind Source Separation For Convolutive Mixtures. Signal Processing, 1995,45(2): 209-229.
    [49] Tokkola K. Blind Separation of Delayed Sources Based On Information Maximization. In Proc of ICASSP. Atlanta:ICASSP,1996: 3509-3512
    [50] Lee T W, Bell A J, Lambert R.H. Blind Separation Of delayed and Convoloved Source. Advances In Neural Information Processing Systems. Cambridge MA: Mit Press 1997: 758-764
    [51] Stato Y. A Mathod Of Self-recovering Equalization For Multilevel Amplitude-Modulation Systems. IEEE Trans On Commun, 1975,23(6); 679-682
    [52] Godard D.N. Self-recovering Equalization And Carrier Tracking In Two-Dimension Data Communication System. IEEE Trans On Commun, 1980,28(11); 1867-1875
    [53] Benveniste A, Goursat M. Blind Equalizers. IEEE Trans on Commun, 1984, 32 (8): 871-883
    [54] Bellini S. Bussgang Techniques For Blind Deconvolution And Blind Equalization. Englewood Cliffs, Prentice-Hall, 1994
    [55] J. Karhunen. Neural approaches to independent component analysis and source separarion. In Proc. 4th European Symp. Artificial Neural Networks, ESANN’96, Bruges, Belgium, Apr. 1996: 249-266
    [56] G. Deco, D. Obradovic. An Information-Theoretic Approach to Neural Computing. New Yourk: Springer-Verlag, 1996
    [57] Sahlin H, Broman H. Separation Of Real-World Signals. Signal Processing, 1998, 64(2): 103-113
    [58] 吴小培,冯焕清,周荷琴. 基于独立分量分析的图像分离技术及应用. 中国图象图形学报,2001,2 (6):133-137
    [59] 李煊,庄镇泉. 独立分量分析及其在图像降噪中的应用: [硕士学位论文]. 合肥:中国科学技术大学图书馆,2001.5
    [60] G.J. Erickson, J.T. Rychert and C.R. Smith. Difficults applying recent blind source separation techniques to EEG and MEG. Maximum Entropy and Bayesian Methods, Boise, Idaho, 1997, pp.209-222
    [61] Karhumen J, Hyvarinen A. Application Of Neural Blind Separation To Signal And Image Processing. In Proc ICASSP. Germany, Munich, 1997:131-134.
    [62] Makeig S, Jung T.P, Bell A.J. Blind Separation Of auditory Event-related Brain Reponses Into Independent Components. In Proc Natl Acad Sci, 1997,94:10979-10984
    [63] Mckeown M.J, Jung T.P, Makeig S. Spatially Independent Activity Patterns In Functional MRI Data Duing The Stroop Cordor-Naming Task. In Proc Natl Acad Sci, 1998,95: 803-810
    [64] 倪晋平,马远良,张忠兵. 一种强干扰下超弱水声信号自适应盲分离的快速算法.声学技术,2002,3(21): 141-144
    [65] Lee T.W, Bell A.J. Orglmeister R. Blind Source Separation Of Real World Signals. In Proc Of ICNN. Houston: ICNN, 1997:2129-2134
    [66] 凌燮亭. 近场宽带信号源的盲分离. 电子学报,1996,24(7):87-92
    [67] 何振亚,刘琚,杨绿溪等. 盲均衡和信道参数估计的一种ICA 和进化计算方法.中国科学(E 辑),2000,30(1):1-7
    [68] 刘琚,聂开宝,何振亚. 线性混迭信号中独立源的盲提取. 应用科学学报,2001,19(3):24-29
    [69] He Zhenya, Liu Ju, Yang Luxi. Blind Separation Of Mages Using Edge-worth expansion based ICA Algorithm. Chinese Journal Of Electronics, 1999,8(3):278-282
    [70] 李世俊,我国钢铁工业产品结构调整的现状及展望. 全景网,http://cn.biz.yahoo.com/040329/2/24wf.html,2004-03-29
    [71] Boodjelida K, Gbosn A. H. A more accurate method for predicting the prestresses in amuitilayer wrapped eylingrical vessel. ASME journal of pressure Vessel Technology, 1991,113(3):459-464
    [72] 谢仕柜. 我国2800mm 以上宽厚板轧机现况及品种需求. 宽厚板,1996,1: 7-10
    [73] 谢仕柜. 我国宽厚板轧机现况及品种需求. 轧钢,1996,3(6): 43-47
    [74] 邹家祥. 轧钢机现代设计理论. 北京:冶金工业出版社,1991,5
    [75] 施东成. 轧钢机械设计方法. 北京:冶金工业出版社,1991,3
    [76] 杨宗毅. 实用轧钢技术手册. 北京:冶金工业出版社,1995,4
    [77] 刘安中,李有荣,黄坤平,陈建华. 中板轧机主传动万向连轴辊端接头断裂事故分析. 冶金设备,2002,1(131): 35-38
    [78] James, J. Smith. Torque monitoring for failure prevention on mill spindles and coupling. Iron and Steel Engineering. November 1986:26-30.
    [79] 薛垂义,王雪晗. 中厚板轧机工况在线监测系统探讨. 宽厚板,2003,6(12): 21-23
    [80] 闫晓强,袁晓江. 大型轧机工况在线监测系统. 冶金工业自动化,2002,2, 59-61.
    [81] 邱年宝. 轧机板头联轴器断裂原因分析. 机械传动,2003(4):60-61
    [82] 陶魄. 中厚钢板轧机扭矩监测的应用研究. 机械设计与制造工程,2002,1(31): 72-73
    [83] 曹远锋,邹家祥,臧勇. 2800 mm 中板轧机十字式万向轴断裂研究与设计. 钢铁, 2001,7: 58-62
    [84] 李率民. 济钢3200mm 轧机主传动系统扭振分析与微型计算机仿真. 北京:北京科技大学硕士学位论文,1999.3
    [85] Charles,W., Thamas, H. Jewik. Torque Amplification and Torsional Vibaration In Large Reversing Mill Driver. Iron and Steel Engineer, May 1969:12-15
    [86] Jeffrey S., Frantz. Torque Monitoring Increases Pramary Mill Productivity. Iron and Steel Engineer, July, 1981
    [87] David J. Sheppard. Torsional Vibration Resulting From Adjustable-Frequency AC Drives. IEEE Transactions On Industry Applications. October, 1988(vol.24), 812-817
    [88] 沈标正,盛德恩. 交-交变频轧钢电动机扭振的实测分析. 电机工程学会电动机专业委员会1990 年年会论文集. 1991,11,1-7
    [89] 白埃民,朱德芳,陈中祥,刘先礼. 中板轧机参数相关分析和轧制力矩计算. 钢铁,1995,2(30): 73-76
    [90] 冯海涛.基于盲分离的机械噪声故障诊断研究.浙江大学硕士论文,指导教师:杨世锡; 严拱标2002.2.1
    [91] 刘福声,罗鹏飞.统计信号处理. 长沙:国防科技大学出版社出版日期:1999,6(1):237
    [92] Nilas C.L, Petropulu A.P. Higher-order Spectra Analysis: A Nonlinear Signal Processing Framework. Prentice-Hall, Inc. New Jersey,1993
    [93] 张桂才.基于高阶统计分析的机械故障特征提取技术研究. 武汉:华中科技大学博士学位论文,2002.5
    [94] 张贤达.时间序列分析——高阶统计量方法. 北京:清华大学出版社,1996,6
    [95] Nilas C.L, Mendel J.M. Signal processing with Higher Order Spectra. IEEE Signal Processing Magazine,1993: 10-36
    [96] 肖如芸.概率统计计算方法. 天津:南开大学出版社,1994.2
    [97] J.H. Friedman, J. W. Tukey. A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Of Computers. C-23(9),1974:881-890
    [98] M. C. Jones, R.Sibson. What is projection pursuit? J. of the Royal Statistical Society. Ser. A, 1987, 1-36
    [99] 浙江大学数学系高等数学教研组. 概率论与数理统计. 北京:高等教育出社,1984.3:28-31
    [100] C. Fyfe, R. Baddeley. Nonlinear data structure extraction using simple Hebbian Networks, Biol. Cybern., vol.72, 1995:533-541
    [101] J. Karhunen, J. Joutsensalo. Representation and separation of signals using nonlinear PCA type learning. Neural Network, vol. 7, no.1, 1994:113-127
    [102] E. Oja, H. Ogawa, J. Wanviwattana. Learning in nonlinear constrained Hebbian networks. In Artificial Neural Networks Proc. ICANN-91: 385-390
    [103] 郑颖.概率论与数理统计. 上海:中国纺织大学出版社.1999.8(1)
    [104] 陈希孺.概率论与数理统计. 北京:科学出版社,2000.3(1):134
    [105] 庄楚强.应用数理统计. 广州:华南理工大学出版社,1992,11(1)
    [106] 周概容.概率论与数理统计. 天津:南开大学出版社,1997,9
    [107] Kowalski, M.E., Jin, J.-M.. Karhunen-Loeve based model order reduction on nonlinear systems. IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), v 2, 2002:552-555
    [108] Hozic, Mario, Stefanovska, Aneta. Karhunen-Loeve decomposition of peripheral blood flow signal. Physica A: Statistical Mechanics and its Applications, v 280, n 3, Jun, 2000:587-601
    [109] Everson, R., Sirovich, L. Karhunen-Loeve procedure for gappy data. Journal of the Optical Society of America A: Optics and Image Science, and Vision, v 12, n 8, Aug, 1995, 1657
    [110] 沈清,胡德文,时春. 神经网络应用技术. 长沙:国防科技大学出版社,1993:295
    [111] Linsker, Ralph. Local learning rule that enables information maximization for arbitrary input distributions. Neural Computation, v 9, n 8, Nov 15, 1997, 661
    [112] K. Diamantaras, S. Kung. Principal Component Networks—Theory and Applications. New York: Wiley, 1996
    [113] S. Haykin. Neural Networks: A Comprehensive Foundation. New York: IEEE Computer Soc. Press and Macmillan, 1994
    [114] A.Cichocki, R.Unbehauen. Neural Networks For Optimization And Signal Processing. New York: Wiley, 1993
    [115] 孙荣恒. 应用概率论. 北京:科学出版社,1998,10
    [116] J. Karhunen, A. Hyvarinen, R. Vigario, J. Hurri, E. Oja. Applications of Neural Blind Separatoin to Signal And Image Processing. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP'97)
    [117] Tugnait K. Spatio-Temporal Signal Processing For Blind Separation Of Multichannel Signals. In Proc Of Spie, Orlando, SPIE,1996: 88-103
    [118] Eric Moreau, Odile Macchi. New self-adaptative algorithms for source separation based on contrast functions. Higher-Order Statistics, 1993. IEEE Signal Processing Workshop on , 7-9 June 1993:215-219
    [119] J.H. Friedman, J.W. Tukey. A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput., vol. C-23, 1974:881-890
    [120] J.H. Friedman. Exploratory projection pursuit. J. Amer. Statist. Assoc. vol. 82, no. 397, 1987:249-266
    [121] M.C. Jones, R.Sibson. What is projection pursuit. J. Roy. Statist. Soc., Ser. A. vol. 150, 1987:1-36
    [122] New approximations of differential entropy for independent component analysis and projection pursuit. In Proc. Int. Symp. Circuits Syst., Orlando, FL, 1999
    [123] A.J.Bell and T.J.Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural Comput., vol.7, 1995:1129-1159
    [124] A.Hyvarinen, E. Oja, P. Hoyer and J. Hurri. Image feature extraction by sparse coding and independent component analsysis. In Proc. Int. Conf. Pattern Recognition (ICPR’98). Brisbane, Australia, 1998:1268-1273
    [125] C. Therrien. Discrete Random Signals And Statistical Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1992
    [126] P.F. Baldi, K. Hornik. Learning in linear neural networks: a survey. Neural Networks, IEEE Transactions on , Vol. 6 Issue: 4 , July 1995:837 -858
    [127] K. Dimantaras, S. Kung. Principal Component Networks----Theory and Applications. New Yourk: Wiley, 1996
    [128] S. Haykin, Neural Networks: A Comprehensive Foundation. New Yourk: IEEE Computer Soc.l Press and Macmillan, 1994
    [129] P. Baldi, K. Hornik. Neural networks for principal component analysis: Learning from examples without local minima. Neural Networks, Vol. 2, 1989:53-58
    [130] L. Wang, J. Karhunen. Aunified neural bigradient algorithm for robust PCA and MCA. Int. J. Neural Syst., vol. 7:53-67, 1996
    [131] L. Wang, J. Karhunen, E. Oja. A bigradient optimization approach for robust PCA, MCA, and source separation. In Proc. 1995 IEEE Int. Conf. Neural Networks, Perth, Australia, Nov. 1995:1684-1689
    [132] J. Karhunen, P.Pajunen. Blind source separation using least-squares type adaptive algorithms. To appear in Proc. 1997, IEEE Int. Conf. Acoust., Speech, Signal Processing. ICASSP’97, Munich, Germany, Apr. 1997
    [133] J.Hurri, A. Hyvarinen, J. Karhunen, E. Oja. Image feature extraction using independent component analysis. In P0roc. 1996 IEEE Nordic Signal Processing Symp., Espoo, Finland, Sept. 1996:475-478
    [134] Theodore S.Reppaport,电子工业出版社,1998.9(1):641
    [135] J. Karhunen, L. Wang, R. Vigardo. Nonlinear PCA type Approaches for Source Separation and Independent Component Analysis. In Proc. 1995 IEEE Int. Conf. On Neural Networks, Perth, Australia, November, 1995:995-1000
    [136] E. Oja, J. Karhunen, and A. Hyvarinen. From neural PCA to neural ICA. In NIPS’96 Postconference Workshop on Blind Signal Processing and Their Applications, Snowmass, Colorado, December 1996
    [137] A. Hyvarinen, E. Oja. One-unit learning rules for independent component analysis. To appear in Advances in Neural Information Processing Systems 9. Cambridge, MA: MIT Press, 1997
    [138] The fixed-point algorithm and maximun likelihood estimation for independent component analysis, Neural Processing Lett., 1999
    [139] J. M. Mendel, "Tutorial on higher-Order statistics (spectra) in signal proccessing and system theory: theoretical results and some applications", Processing of the IEEE, Vol. 79, No. 3, March 1991
    [140] D.G. Luenberger. Optimization by Victor Space Methods. New York: Wiley, 1969
    [141] A. Hyvarinen. A family of fixed-point algorithms for independent component analysis. In Proc. IEEE Int. Conf. Acoust., Speech Signal Processing(ICASSP’97), Munich, Germany, 1997:3917-3920
    [142] A. Hyvarinen, E. Oja. A fast fixed-point algorithm for independent component analysis. Neural Comput. Vol. 9, no.7, 1992:1483-1492
    [143] A. Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE TRANSACTIONS ON NEURAL NETWORKS. Vol. 10, No. 3, May 1999:626-634
    [144] A. Hyvarinen and E. Oja. Independent component analysis by general nonlinear Hebbian-like learning rules. Signal Processing, vol.64, No.3, 1998:301-313
    [145] A.S. Householder. The Thory of Matrices in Numerical Analysis. Blaisdell Publ. Co., New York, 1964
    [146] A. Salam. On hyperbolic and symplectic Gram-Schmidt-Like algorithms. http://lmac.univ-littoral.fr/~salam/index_fichiers/sources/srqr/,2003
    [147] Ref. Yin Min Cheang, Lei Xu, Independent component ordering in ICA time series analysis. Neurocompenting 41(2001):45-152
    [148] Y.M.Cheung, L. Xu, An empirical method to select dominant independent components in ICA time series analysis, Proceedings of 1999 International Joint Conference on Neural Networks (IJCNN’99), Vol.6, Washington, DC, July 10-16,1999, 3883-3887
    [149] 宋司兵,余维民.轧机主传动系统扭振计算研究及软件开发. 一重技术,2002 2~ 3(92~93):27-30
    [150] 王传溥.舰船轴系振动. 哈尔滨: 哈尔滨船舶工程学院出版社,1987,5
    [151] 师汉民.吴雅.机械振动系统——分析·测试·建模·对策. 武汉:华中理工大学出版社,1992,11
    [152] National Instrument, DataSocket Technical Overview, 2001
    [153] 赵弘, 白晶. 轧机振动及非线性分析. 机械,2003.5(30): 16-19
    [154] 商维绿. 现代扭矩测量技术. 上海:上海交通大学出版社, 1999,4
    [155] 现代综合机械设计手册编委会.现代综合机械设计手册(上). 北京:北京出版社,1999,1:424

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700