纳米晶体的尺寸和压力效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系统总结了根据Lindemann熔化准则和Mott方程推导出的尺寸依赖的熔化温度模型,该模型简单且无自由参数,能够预测不同化学键类型纳米晶体的熔化,既能解释具有自由表面的纳米晶体的过冷现象,又能解释镶嵌于基体的纳米晶体的过热现象,还能应用于不同维数的低维晶体。进一步,结合该模型和尺寸依赖的熔化熵模型,预测了纳米晶体熔化焓和结合能的尺寸效应。根据建立的尺寸依赖的结合能模型,预测了尺寸和界面对铁磁、铁电和超导纳米晶体临界温度的影响以及半导体纳米固体能隙的尺寸效应。此外,本文还根据表面应力模型和上述尺寸依赖的熔化温度模型,应用Clapeyron方程计算了相变温度的压力效应,建立了半导体和分子晶体的温度-压力相图。以上各模型的预测结果均与实验以及其它理论结果具有良好的一致性。
As the size of low-dimensional materials decreases to nanometer size range, electronic,magnetic, optic, catalytic and thermodynamic properties of the materials are significantly alteredfrom those of either the bulk or a single molecule. Among the above special properties ofnanocrystals, the size-dependent melting temperature of nanocrystals has received considerableattention since Takagi in 1954 experimentally demonstrated that ultrafine metallic nanocrystalsmelt below their corresponding bulk melting temperature. However, it has not been accompaniedby the necessary investigation of other size-dependent thermodynamic proerties of nanocrystals,such as the melting entropy, the melting enthalpy, and the cohesive energy. Such an investigationshould deepen our understanding of the nature of the thermal stability of nanocrystals. Moreover,size effects on other physical properties including critical temperatures of ferromagnetic,ferroelectric, and superconductive nanocrystals and the bandgap of semiconductor nanosolids etal. have been extensively investigated theoretically and experimentally due to their scienfic andindustrial importance.
    It is obvious that an important variable?pressure is ignored in above investigations sincemost of them process under ambient pressure and the pressure effect is negligible. As the pressureincreases, the structural phase transition under pressure has been a subject of considerableexperimental and theoretical research activity in recent years, especially for semiconductors andmolecular crystals. The study of temperature-pressure phase diagram for both bulk material andnanocrystals may extend phase transition theory and possible industry applications and enrich theknowledge on the aspect of the structure.
    Recently, a simple model without adjustable parameters for size-dependent meltingtemperature of nanocrystals under ambient pressure is established based on Lindemann′scriterion for the melting and Mott′s expression for the vibrational entropy at the meltingtemperature. In comparison with other model conventions, this model covers all the essentialconsiderations of early models and it has wider size range suitability. In this thesis, the abovemodel has been extended to predict the size dependences of the melting enthalpy and thecohesive energy of nanocrystals, the critical temperatures of ferromagnetic, ferroelectric, andsuperconductor nanocrystals, and the bandgap of semiconductor nanosolids. Moreover, thepressure effect on the phase transition temperatures is considered according to the Clapeyronequation, and thus, bulk and size-dependent temperature-pressure phase diagrams are calculated.The concrete contents are listed as follows:1. The size-dependent melting temperature model for nanocrystals is summarizedsystematically. In terms of such model, the melting temperature of a free nanocrystal decreases asits size decreases while nanocrystals embedded in a matrix can melt below or above the meltingpoint of corresponding bulk crystals. If the bulk melting temperature of nanocrystals is lowerthan that of the matrix, the atomic diameter of nanocrystals is larger than that of the matrix, andthe interfaces between them are coherent or semi-coherent, an enhancement of the melting pointis present. Otherwise, there is a depression of the melting point. Our model can predict meltingtemperuatures of low-dimensional crystals with different chemical bonds, different dimensions,and different surface or interface conditions and the surface melting temperature of nanocrystals.As an example, an agreement is found between model predictions and experimental results for Innanocrystals. Based on the above model and the size-dependent melting entropy model, weestablisehed a model to predict the size dependence of the mleing enthalpy and further to predictthe size effect on the cohesive energy of nanocrystals. It is found that our model predictions areconsistent with available experimental results for the melting enthalpy of In nanocrystals and
    cohesive energies of Mo and W nanoparticles.2. Based on the Ising premise and the bond order-length-strength correlation mechanism, thecritical temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals aresupposed to be proportional to their cohesive energies. In tems of this premise and asize-dependent cohesive energy model, such size-dependent critical transition temperatures aremodeled in a unified form without any adjustable parameter. According to this model, the criticaltemperature of a nanocrystal progressively reduces with decreasing of its sizes. For freenanoparticles or nanowires and films having weak interactions with substrates compared to theinner interaction of the films, the dominant factor affecting the suppression of the criticaltemperatue seems to be the size while for films having strong interactions with substrates, thesubstrate effect also becomes evident and the suppression trend is weaker than the former. Themodel predictions correspond to the experimental and other theoretical results in the full sizerange. Moreover, it is found that the characteristics of the Co-Ni alloys can be roughly expressedas an algebraic sum of elements of which the alloys consist and the evaporation entropy equalingthirteen times the ideal gas constant has been proven as a good approximation for compounds.3. With miniaturization of semiconductor solids down to the nanometer scale, quantum andinterfacial effects become dominant, which have led to significant changes of their optical andelectrical properties from the corresponding bulk. One of the characteristics of thenanometer-sized semiconductor is the increase of the valence-conduction bandgap withdecreasing of its size. According to the nearly-free-electon approach, the bandgap is supposed tobe proportional to the cohesive energy. Based on this approach and a model for size-dependentcohesive energy, the size-dependent bandgap of semiconductor nanocrystals are modeled withoutany adjustable parameter. The model predictions are supported by the available experimental andother theoretical results in the full size range. Our model can not predict the bandgap of clustersaccurately since the long-range periodicity in clusters is absent and the bond structures of clusters
    differ form the corresponding crystals. Moreover, based on the size and temperature-dependentconductivity, we have proven that the upper-limt value of the bandgap is twice as many as itsbulk value.4. Although the updated temperature-pressure phase diagrams of semiconductors andmolecular crystals have been developed experimentally, further theoretical works are still neededdue to the limited measuring accuracy of high-temperature and high-pressure experiments. Theclassic Clapeyron equation governing all first-order phase transitions of pure substances may beuseful to determine the temperature-pressure curve theoretically. However, in order to know therelation between the equilibrium values of the pressure and the temperature, only approximatemethods can be used in carrying out the integration of the Clapeyron since both the transitionenthalpy and the transition volume are functions of pressure and temperature. To find a solutionof the Clapeyron equation, as a first-order approximation, two reasonable simplifications that thetransition enthalpy is a weak function of the pressure while the transition volume is a weakfunction of the temperature are assumed. Based on the above consideration, thetemperature-pressure phase diagrams for bulk seimiconductors Si and Ge and the melting curvesof Si nanocrystal and bulk CO2 crystal are calculated thorugh the Clapeyron equation where thepressure-dependent volume difference is modeled and the corresponding thermodynamic amountof solid transition enthalpy is calculated by introducing the effect of surface stree inducedpressure and reasonable initial points for integrations are selected. The model predictions arefound to be consistent with the present experimental and other theoretical results. Since theClapeyron equation may govern all first-order phase transitions, the Clapeyron equation suppliesa new way to determine the temperature-pressure phase diagram of materials.
引文
[1] H. Gleiter, N. Hansen, A. Horsewell, T. Leffers H. Lihold (Eds.), in Proceedings of the second Risφ international symposium on metallurgy and materials science, Risφ Nat. Laboratory Roskilde, Denmark, 1981, p. 15.
    [2] H. Gleiter, Nanostructured materials: Basic concept and microstructure, Acta Mater. 2000, 48, 1.
    [3] R. E. Cavicchi, R. H. Silsbee, Coulomb suppression of tunneling rate from small metal particles, Phys. Rev. Lett. 1984, 52, 1453.
    [4] M. Takagi, Electron-diffraction study of liquid-solid transition of thin metal films, J. Phys. Soc. Japan 1954, 9, 359.
    [5] P. Ball, L. Garwin, Science at the atomic scale, Nature 1992, 355, 761.
    [6] J. G. Dash, History of the search for continuous melting, Rev. Mod. Phys. 1999, 71, 1737.
    [7] See, for example, J. W. Christian, The Theory of Transformations in Metals and Alloy, 2nd edition, Part I, Equilibrium and General Kinetic Theory, Oxford, Pergamon Press, 1975, pp. 418-475.
    [8] H. Gleiter, Nanocrystalline materials, Prog. Mater. Sci. 1989, 33, 223.
    [9] L. Lu, M. L. Sui, K. Lu, Superplastic extensibility of nanocrystalline copper at room temperature, Science 2000, 287, 1463.
    [10] F. A. Lindemann, üder die berechnung molekularer eigenfrequenzen, Phys. Z. 1910, 11, 609.
    [11] M. Born, Thermodynamics of crystals and melting, J. Chem. Phys. 1939, 7, 591.
    [12] T. Gorecki, Vacancies for solid krypton bubble copper, nickel and gold particles, Z. Metall. 1974, 65, 426.
    [13] A. Rubcic, J. B. Rubcic, Fizika 1978, 10 (Suppl. 2), 294.
    [14] L. Graback, J. Bohr, Superheating and supercooling of lead precipitates in aluminum, Phys. Rev. Lett. 1990, 64, 934.
    [15] K. Lu, Y. Li, Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystals, Phys. Rev. Lett. 1998, 80, 4474.
    [16] C. J. Rossouw, S. E. Donnelly, Superheating of small solid–argon bubbles in aluminum, Phys. Rev. Lett. 1985, 55, 2960.
    [17] P. A. Buffat, J. P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A 1976, 13, 2287.
    [18] G. L. Allen, R. A. Bayles, W. W. Giles, W. A. Jesser, Small particle melting of pure metals, Thin Solid Films 1986, 144, 297.
    [19] C. J. Coombes, The melting of small particles of lead and indium, J. Phys. F 1972, 2, 441.
    [20] V. P. Skripov, V. P. Koverda, V. N. Skokov, Size effect on melting of small particles, Phys. Status Solidi A 1981, 66, 109.
    [21] J. Peppiatt, J. R. Sambles, The melting of small particles. II. Bismuth, Proc. R. Soc. London Ser. A 1975, 345, 387.
    [22] R. Kofman, P. Cheyssac, R. Garrigos, From the bulk to clusters: solid-liquid phase transitions and precursor effects, Phase Transit. 1990, 24, 283.
    [23] T. Castro, R. Reifenberger, E. Choi, R. P. Andres, Size-dependent melting temperature of individual nanometer-sized metallic clusters, Phys. Rev. B 1990, 42, 8548.
    [24] J. P. Borel, Thermodynamical size effect and the structure of metallic clusters, Surf. Sci. 1981, 106, 1.
    [25] C. Solliard, Debye-Waller factor and melting temperature in small gold particles realted size effect, Solid State Commun. 1984, 51, 947.
    [26] J. H. Evens, D. J. Mazey, Evidence for solid krypton bubbles in copper, nickel and gold at 293K, J. Phys. F 1985, 15, L1.
    [27] T. L. Beck, J. Jellinek, R. S. Berry, Rare gas clusters: solids, liquids, slush, and magic numbers, J. Chem. Phys. 1987, 87, 545.
    [28] A. N. Goldstein, C. M. Echer, A. P. Alivisatos, Melting in semiconductor nanocrystals, Science 1992, 256, 1452.
    [29] A. N. Goldstein, The melting of silicon nanocrystals submicro thin–film structuters derived from nanocrystal precursors, Appl. Phys. A 1996, 62, 33.
    [30] S. L. Lai, J. Y. Guo, V. Petrova, G. Ramanath, L. H. Allen, Size dependent melting properties of small Tin particles: nanocalorimetric measurements, Phys. Rev. Lett. 1996, 77, 99.
    [31] D. L. Zhang, B. Cantor, Melting behaviour of In and Pb particles embedded in an Al matrix, Acta Mater. 1991, 39, 1595.
    [32] R. Goswami, K. Chattopadhyay, The superheating and the crystallography of embedded Pb particles in f.c.c. Al, Cu and Ni matrices, Acta Metall. Mater. 1995, 43, 2837.
    [33] H. W. Sheng, G. Ren, L. M. Peng, Z. Q. Hu, K. Lu, Superheating and melting-point depression of Pb nanoparticles embedded in Al matrixes, Phil. Mag. Lett. 1996, 73, 179.
    [34] R. Goswami, K. Chattopadhyay, The superheating of Pb embedded in a Zn matrix: the role of interface melting, Phil. Mag. Lett. 1993, 68, 215.
    [35] H. H. Andersen, E. Johnson, Structure, morphology and melting hysteresis of ion-implanted nanocrystals, Nucl. Inst. Methods in Phys. Res. B 1995, 106, 480.
    [36] V. K. Semenchenko, Surface Phenomena in Metals and Alloys, Oxford, Pergamon, 1961, p. 281.
    [37] J. R. Sambles, The extrusion of liquid between highly elastic solid, Proc. R. Soc. A 1971, 324, 339.
    [38] P. R. Couchman, W. A. Jesser, Thermodynamic theory of size dependence of melting temperature in metals, Nature 1977, 269, 481.
    [39] G. L. Allen, W. W. Gile, W. A. Jesser, The melting temperature of microcrystals embedded in a matrix, Acta Metall. 1980, 28, 1695.
    [40] J. Eckert, J. C. Holzer, C. C. Ahn, Z. Fu, W. L. Johnson, Melting behavior of nanocrystalline aluminum powders, Nanostr. Mater. 1993, 2, 407.
    [41] F. G. Shi, Size dependent thermal vibrations and melting in nanocrystals, J. Mater. Res. 1994, 9, 1307.
    [42] T. B. David, Y. Lereah, G. Deutscher, R. Kofmans, P. Cheyssac, Solid-liquid transition in ultra-fine lead particles, Phil. Mag. A 1995, 71, 1135.
    [43] G. P. Johari, Thermodynamic contributions from pre-melting or pre-transformation of finely dispersed crystals, Phil. Mag. A 1998, 77, 1367.
    [44] K. F. Peters, J. B. Cohen, Y. W. Chung, Melting of Pb nanocrystals, Phys. Rev. B 1998, 57, 13430.
    [45] K. Morishige, K. Kawano, Freezing and melting of methyl chloride in a single cylindrical pore: anomalous pore-size dependence of phase-transition temperature, J. Phys. Chem. B 1999, 103, 7906.
    [46] Q. Jiang, H. X. Shi, M. Zhao, Melting thermodynamics of organic nanocrystals, J. Chem. Phys. 1999, 111, 2176.
    [47] Z. Zhang, J. C. Li, Q. Jiang, Modeling for size-dependent and dimension-dependent melting of nanocrystals, J. Phys. D: Appl. Phys. 2000, 33, 2653.
    [48] Z. Wen, M. Zhao, Q. Jiang, The melting temperature of molecular nanocrystals at the lower bound of mesoscopic size range, J. Phys.: Condens. Matter 2000, 12, 8819.
    [49] Z. Zhang, M. Zhao, Q. Jiang, Melting temperature of semiconductor nanocrystals in the mesoscopic size range, Semicond. Sci. Technol. 2001, 16, L33.
    [50] P. Pawlow, über die abn?ngikeit des schmelzpunktes von der oberfl?chenenergie eines festen k?rpers, Z. Phys. Chem. 1909, 65, 545.
    [51] K. J. Hanszen, The melting points of small spherules. The thermodynamics of boundary layers, Z. Phys. 1960, 157, 523.
    [52] D. R. H. Jones, Review: The free energies of solid-liquid interfaces, J. Mater. Sci. 1974, 9, 1.
    [53] H. Saka, Y. Nishikawa, T. Imura, Melting temperature of In particles embedded in an Al matrix, Phil. Mag. A 1988, 57, 895.
    [54] H. W. Sheng, G. Ren, L. M. Peng, Z. Q. Hu, K. Lu, Melting process of nanometer-sized In particles embedded in an Al matrix synthesized by ball milling, J. Mater. Res. 1996, 11, 2841.
    [55] K. Chattopadhyay, R. Goswami, Melting and superheating of metals and alloys, Prog. Mater. Sci. 1997, 42, 287.
    [56] L. Zhang, Z. H. Jin, L. H. Zhang, M. L. Sui, K. Lu, Superheating of confined Pb thin films, Phys. Rev. Lett. 2000, 85, 1484.
    [57] Q. Jiang, Z. Zhang, J. C. Li, Size-dependent superheating of nanocrystals embedded in matrix, Chem. Phys. Lett. 2000, 322, 549.
    [58] Q. Jiang, Z. Zhang, J. C. Li, Melting thermodynamics of nanocrystals embedded in matrix, Acta Mater. 2000, 48, 4791.
    [59] Q. Jiang, L. H. Liang, J. C. Li, Thermodynamic superheating and relevant interface stability of low-dimensional metallic crystals, J. Phys.: Condens. Matter 2001, 13, 565.
    [60] H. Reiss, I. B.Wilson, The effects of size on melting point, J. Colloid. Sci. 1948, 3, 551.
    [61] Q. Jiang, H. X. Shi, M. Zhao, Free energy of crystal-liquid interface, Acta Mater. 1999, 47, 2109.
    [62] Z. Wen, M. Zhao, Q. Jiang, Size range of solid-liquid interface free energy of organic crystals, J. Phys. Chem. B 2002, 106, 4266.
    [63] H. Jones, The solid-lquid interfacial energy of metals: calculation versus measurements, Mater. Lett. 2002, 53, 364.
    [64] N. F. Mott, The resistance of liquid metals, Proc. R. Soc. A 1934, 146, 465.
    [65] A. R. Regel′, V. M. Glazov, Entropy of melting of semiconductors, Semiconductors 1995, 29, 405.
    [66] Q. Jiang, L. H. Liang, M. Zhao, Modeling of the melting temperature of nano-ice in MCM-41 pores, J. Phys.: Condens. Matter 2001, 13, L397.
    [67] R. C. Cammarata, K. Sieradzki, Surface and interface stresses, Annu. Rev. Mater. Sci. 1994, 24, 215 and reference therein.
    [68] J. Weissmüller, J.W. Cahn, Mean stresses in microstructures due to interface stresses: a generalization of a capillary equation for solids, Acta Mater. 1997, 45, 1899.
    [69] F. Spaepen, Interfaces and stresses in thin films, Acta Mater. 2000, 48, 31.
    [70] A. Mujica, A. Rubio, A. Mu?oz, R. J. Needs, High-pressure of group-IV, III-V, and II-VI compounds, Rev. Mod. Phys. 2003, 75, 863.
    [71] R. J. Hemley, Effects of high pressure on molecules, Annu. Rev. Phys. Chem. 2000, 51, 763.
    [72] M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, L. H. Allen, Size-dependent melting point depression of nanostructures: nanocalorimetric measurements, Phys. Rev. B 2000, 62, 10548.
    [73] G. Krausch, T. Detzel, H. N. Bielefeldt, R. Fink, B. Luckscheiter, R. Platzer, U. W?hrmann, G. Schatz, Growth and melting behavior of thin In films on Ge (100), Appl. Phys. A 1991, 53, 324.
    [74] K. Lu, Z. H. Jin, Melting and superheating of low-dimensional materials, Curr. Opin. Solid State Mater. 2001, 5, 39.
    [75] K. C. Prince, U. Breuer, H. P. Bonzel, Anisotropy of the order-disorder phase transition on the Pb(110) surface, Phys. Rev. Lett. 1988, 60, 1146.
    [76] Z. Wen, M. Zhao, Q. Jiang, Surface melting of polycrystals Pb and In within 1 K below melting temperature, Mater. Lett. 2003, 57, 2515.
    [77] M. Zhao, X. H. Zhou, Q. Jiang, Comparison of different models for melting point change of metallic nanocrystals, J. Mater. Res. 2001, 16, 3304.
    [78] M. Zhao, Q. Jiang, Melting and surface melting of low-dimensional In crystals, Solid State Commun. 2004, 130, 37.
    [79] W. L. Zhong, B. Jiang, P. L. Zhang, J. M. Ma, H. M. Chen, Z. H. Yang, L. Li, Phase transiton in PbTiO3 ultrafine particles of different sizes, J. Phys.: Condens. Matter 1993, 5, 2619.
    [80] Q. Jiang, C. C. Yang, Effect of size and pressure on phase-transition temperature, Trends in Vacuum Science & Technology, Research Trends, Trivandrum, India, 2004, 6, pp. 69-90.
    [81] Q. Jiang, X. F. Cui, M. Zhao, Size effect on Curie temperature of ferroelectrics particles, Appl. Phys. A 2004, 78, 703.
    [82] X. F. Cui, M. Zhao, Q. Jiang, Curie transition temperature of ferromagnetic low-dimensional metals, Thin Solid Films 2005, 472, 328.
    [83] Q. Jiang, H. X. Shi, J. C. Li, Finite size effect on glass transition temperatures, Thin Solid Films 1999, 354, 283.
    [84] Q. Jiang, X. Y. Lang, Glass transition of low-dimensional polystyrene, Marcomol. Rapid Commun. 2004, 25, 825.
    [85] http://www.webelements.com/
    [86] I. Barin, O. Knacke, Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 1973.
    [87] H. W. King, in: R. W. Cahn, P. Hassen, Physical Metallurgy, third edition, North-Holland Physics, Publishing, Amsterdam, 1983, pp. 59-63.
    [88] Periodic Table of the Elements, Gaston, Oregon, 1993, p. 1.
    [89] A. M. Molenbroek, G. ter Horst, J. W. M. Frenken, Difference in surface melting between indium(110) and (011), Surf. Sci. 1996, 365, 103.
    [90] M. Dippel, A. Maier, V. Gimple, H. Wider, W. E. Evenson, R. L. Rasera, G. Schatz, Size-dependent melting of self-assembled indium nanostructures, Phys. Rev. Lett. 2001, 87, 095505.
    [91] M. Hasegawa, M. Watabe, K. Hoshino, A theory of melting in metallic small particles, J. Phys. F: Met. Phys. 1980, 10, 619.
    [92] H. K. Kim, S. H. Huh, J. W. Park, J. W. Jeong, G. H. Lee, The cluster size dependence of thermal stabilities of both molybdenum and tungsten nanoclusters, Chem. Phys. Lett. 2002, 354, 165.
    [93] C. Kittel, Introduction to Solid State Physics, 5th edition, John Wiley & Sons Inc., New York, 1976, p. 74.
    [94] M. Schmidt, H. Haberland, Phase transitions in clusters, C. R. Phys. 2002, 3, 327.
    [95] H. Lutz, P. Scoboria, J. E. Crow, T. Mihalisin, Effects of finite size on critical phenomena: The resistivity anomaly in Ni films, Phys. Rev. B 1978, 18, 3600.
    [96] C. Kittel, Physical theory of ferromagnetic domains, Rev. Mod. Phys. 1949, 21, 541.
    [97] Y. W. Du, M. X. Xu, J. Wu, Y. B. Shi, H. X. Lu, Magnetic properties of ultrafine nickel particles, J. Appl. Phys. 1991, 70, 5903.
    [98] R. Z. Valiev, Y. D. Vishnyakov, R. R. Mulyukov, G. S. Fainshtein, On the decrease of Curie temperature in submicron-grained nickel, Phys. Status Solidi A 1990, 117, 549.
    [99] L. Sun, P. C. Searson, C. L. Chien, Finite-size effects in nickel nanowire arrays, Phys. Rev. B 2000, 61, R6463.
    [100] C. Q. Sun, W. H. Zhong, S. Li, B. K. Tay, Coordination imperfection suppressed phase stability of ferromagnetic, ferroelectric, and superconductive nanosolids, J. Phys. Chem. B 2004, 108, 1080.
    [101] B. Sadeh, M. Doi, T. Shimizu, M. J. Matsui, Dependence of the Curie temperature on the diameter of Fe3O4 ultra-fine particles, J. Magn. Soc. Jpn. 2000, 24, 511.
    [102] W. Dürr, M. Taborelli, O. Paul, R. Germar, W. Gudat, D. Pescia, M. Landolt, Magnetic phase transition in two-dimensional ultrathin Fe films on Au(100), Phys. Rev. Lett. 1989, 62, 206.
    [103] C. Liu, S. D. Bader, Two-dimensional magnetic phase transition of ultrathin iron films on Pd(100), J. Appl. Phys. 1990, 67, 5758.
    [104] Z. Q. Qiu, J. Pearson, S. D. Bader, Magnetic phase transition of ultrathin Fe films on Ag(111), Phys. Rev. Lett. 1991, 67, 1646.
    [105] Z. Q. Qiu, J. Pearson, S. D. Bader, Asymmetry of the spin reorientation transition in ultrathin Fe films and wedges growth on Ag(100), Phys. Rev. Lett. 1993, 70, 1006.
    [106] C. M. Scheider, P. Bressler, P. Schuster, J. Kirschner, Curie temperature of ultrathin films of fcc cobalt epitaxially grown on atomically flat Cu(100) surfaces, Phys. Rev. Lett. 1990, 64, 1059.
    [107] F. Huang, G. J. Mankey, M. T. Kief, R. F. Willis, Finite-size scaling behavior of ferromagnetic thin films, J. Appl. Phys. 1993, 73, 6760.
    [108] F. Huang, M. T. Kief, G. J. Mankey, R. F. Willis, Magnetism in the few-monolayers limit: A surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co-Ni alloys on Cu(100) and Cu(111), Phys. Rev. B 1994, 49, 3962.
    [109] M. Farle, K. Baberschke, U. Stetter, A. Aspelmeier, F. Gerhardter, Thickness-dependent Curie temperature of Gd(0001)/W(110) and its dependence on the growth conditions, Phys. Rev. B 1993, 47, 11571.
    [110] J. S. Jiang, D. Davidovi?, D. H. Reich, C. L. Chien, Oscillatory superconducting transition temperature in Nb/Gd multilayers, Phys. Rev. Lett. 1995, 74, 314.
    [111] J. S. Jiang, C. L. Chien, Magnetization and finite-size effects in Gd/W multilayers, J. Appl. Phys. 1996, 79, 5615.
    [112] M. E. Fisher, M. N. Barber, Scaling theory for finite-size effects in the critical region, Phys. Rev. Lett. 1972, 28, 1516.
    [113] R. Zhang, R. F. Willis, Thickness-dependent Curie temperatures of ultrathin magnetic films: effect of the range of spin-spin interactions, Phys. Rev. Lett. 2001, 86, 2665.
    [114] K. Ishikawa, K. Yoshikawa, N. Okada, Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles, Phys. Rev. B 1988, 37, 5852.
    [115] B. A. Strukov, S. T. Davitadze, S. N. Kravchun, S. A. Taraskin, M. Goltzman, V. V. Lemanov, S. G. Shulman, Specific heat and heat conductivity of BaTiO3 polycrystalline films in the thickness range 20-1100 nm, J. Phys.: Condens. Matter 2003, 15, 4331.
    [116] Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanni, Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics, Phys. Rev. B 2004, 70, 024107.
    [117] S. Chattopadhyay, P. Ayyub, V. R. Palkar, A. V. Gurjar, P. M. Wankar, M. Multani, Finite-size effects in antiferroelectric PbZrO3 nanoparticles, J. Phys.: Condens. Matter 1997, 9, 8135.
    [118] T. Yu, Z. X. Shen, W. S. Toh, J. M. Xue, J. Wang, Size effect on the ferroelectric phase transition in SrBi2Ta2O9 nanoparticles, J. Appl. Phys. 2003, 94, 618.
    [119] M. Strongin, R. S. Thompson, O. F. Kammerer, J. E. Crow, Destruction of superconductivity in disordered near-monolayer films, Phys. Rev. B 1970, 1, 1078.
    [120] K. L. Ekinci, J. M. Valles Jr., Morphology of quench condensed Pb films near the insulator to metal transition, Phys. Rev. Lett. 1999, 82, 1518.
    [121] A. P. Tsai, N. Chandrasekhar, K. Chattopadhyay, Size effect on the superconducting transition of embedded lead particles in an Al-Cu-V amorphous matrix, Appl. Phys. Lett. 1999, 75, 1527.
    [122] W. H. Li, C. C. Yang, F. C. Tsao, K. C. Lee, Quantum size effects on the superconducting parameters of zero-dimensional Pb nanoparticles, Phys. Rev. B 2003, 68, 184507.
    [123] Y. Guo, Y. F. Zhang, X. Y. Bao, T. Z. Han, Z. Tang, L. X. Zhang, W. G. Zhu, E. G. Wang, Q. Niu, Z. Q. Qiu, J. F. Jia, Z. X. Zhao, Q. K. Xue, Superconductivity modulated by quantum size effects, Science 2005, 306, 1915.
    [124] A. V. Pogrebnyakov, J. M. Redwing, J. E. Jones, X. X. Xi, S. Y. Xu, Q. Li, V. Vaithyanathan, D. G. Schlom, Thickness dependence of the properties of epitaxial MgB2 thin films grown by hybrid physical-chemical vapor deposition, Appl. Phys. Lett. 2003, 82, 4319.
    [125] K. Ueda, M. Natio, In situ growth of superconducting MgB2 thin films by molecular-beam epitaxy, J. Appl. Phys. 2003, 93, 2113.
    [126] S. Li, T. White, C. Q. Sun, Y. Q. Fu, J. Plevert, K. Lauren, Discriminating lattice structureal effects from electronic contributions to the superconductivity of doped MgB2 with nanotechnology, J. Phys. Chem. B 2004, 108, 16415.
    [127] K. Yoshii, H. Yamamoto, K. Saiki, A. Koma, Superconductivity and electrical properties in single-crystalline ultrathin Nb films grown by molecular-beam epitaxy, Phys. Rev. B 1995, 52, 13570.
    [128] R. Banerjee, P. Vasa, G. B. Thompson, H. L. Fraser, P. Ayyub, Proximity effect in Nb/Zr multilayers with variable Nb/Zr ratio, Solid State Commun. 2003, 127, 349.
    [129] Q. Jiang, J. C. Li, B. Q. Chi, Size-dependent cohesive energy of nanocrystals, Chem. Phys. Lett. 2002, 366, 551.
    [130] R. C. Weast, CRC Handbook of Chemistry and Physics, 69th edition, CRC Press, Boca Raton, FL, 1988-1989, pp. E-125, E-95, E-94, E-112, B-188, E-104, B-219, B-18, B-217, F-12, E-104, F-23, B-224, B-82, F-13, F-35.
    [131] L. T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett. 1990, 57, 1046.
    [132] C. Q. Sun, Oxidation electronics: bond-band-barrier correlation and its applications, Prog. Mater. Sci. 2003, 48, 521 and references therein.
    [133] Y. D. Glinka, S.-H. Lin, L.-P. Hwang, Y.-T. Chen, N. H. Tolk, Size effect in self-trapped exciton photoluminescence from SiO2-based nanoscale materials, Phys. Rev. B 2001, 64, 085421.
    [134] H. Fu, A. Zunger, Local-density-derived semiempirical nonlocal pseudopotentials for InP with applications to large quantum dots, Phys. Rev. B 1997, 55, 1642.
    [135] V. Albe, C. Jouanin, D. Bertho, Confinement and shape effects on the optical spectra of small CdSe nanocrystals, Phys. Rev. B 1998, 58, 4713.
    [136] I. Mi?i?, H. M. Cheong, H. Fu, A. Zunger, J. R. Sprague, A. Mascarenhas, A. J. Nozik, Size-dependent spectroscopy of InP quantum dots, J. Phys. Chem. B 1997, 101, 4904.
    [137] A. D. Yoffe, Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems, Adv. Phys. 2001, 50, 1.
    [138] V. Ranjan, V. A. Singh, G. C. John, Effective exponent for the size dependence of luminescence in semiconductor nanocrystallites, Phys. Rev. B 1998, 58, 1158.
    [139] Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, H. Mimura, Microstructure and optical properties of free-standing porous silicon films: size dependence of absorption spectra in Si nanometer-sized crystallites, Phys. Rev. B 1993, 48, 2827.
    [140] H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri, Quantum size effects on photoluminescence in ultrafine Si particles, Appl. Phys. Lett. 1990, 56, 2379.
    [141] L. Pavesi, G. Giebel, F. Ziglio, G. Mariotto, F. Priolo, S. U. Campisano, C. Spinella, Nanocrystal size modifications in porous silicon by preanodization ion implantation, Appl. Phys. Lett. 1994, 65, 2182.
    [142] S. Schuppler, S. L. Friedman, M. A. Marcus, D. L. Adler, Y.-H. Xie, F. M. Ross, Y. J. Chabal, T. D. Harris, L. E. Brus, W. L. Brown, E. E. Chaban, P. F. Szajowski, S. B. Christman, P. H. Citrin, Size, shape, and composition of luminescent species in oxidized Si nanocrystals and H-passivated porous Si, Phys. Rev. B 1995, 52, 4910.
    [143] B. Garrido, M. Lopez, O. Gonzalez, A. Perez-Rodryguez, J. R. Morante, C. Bonafos, Correlation between structural and optical properties of Si nanocrystals embedded in SiO2: the mechanism of visible light emission, Appl. Phys. Lett. 2000, 77, 3143.
    [144] A. Tomasulo, M. V. Ramakrishna, Quantum confinement effects in semiconductor clusters. II, J. Chem. Phys. 1996, 105, 3612 and references therein.
    [145] D.-S. Chuu, C.-M. Dai, Quantum size effects in CdS thin films, Phys. Rev. B 1992, 45, 11805.
    [146] C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, P. P. Edwards, Size-dependent chemistry: properties of nanocrystals, Chem. Eur. J. 2002, 8, 29.
    [147] C. Q. Sun, S. Li, B. K. Tay, T. P. Chen, Upper limit of blue shift in the photoluminescence of CdSe and CdS nanosolids, Acta Mater. 2002, 50, 4687 and references therein.
    [148] S. Sapra, D. D. Sarma, Evolution of the electronic structure with size in II-VI semiconductor nanocrystals, Phys. Rev. B 2004, 69, 125304.
    [149] Y. Nakaoka, Y. Nosaka, Electron spin resonance study of radicals produced by photoirradiation on quantized and bulk ZnS particles, Langmuir 1997, 13, 708.
    [150] R. Rossetti, R. Hull, J.M. Gibson, L.E. Brus, Excited electronic states and optical spectra of ZnS and CdS crystallites in the ≈ 15 to 50 ? size range: Evolution from molecular to bulk semiconducting properties, J. Chem. Phys. 1985, 82, 552.
    [151] H. Inoue, N. Ichiroku, T. Torimoto, T. Sakata, H. Mori, H. Yoneyama, Photoinduced electron transfer from zinc sulfide microcrystals modified with various alkanethiols to methyl viologen, Langmuir 1994, 10, 4517.
    [152] S. Yanagida, T. Yoshiya, T. Shiragami, C. Pac, Semiconductor photocatalysis. Quantitative photoreduction of allphatic ketones to alcohols using defect-free ZnS quantum crystallites, J. Phys. Chem. 1990, 94, 3104.
    [153] J. Nanda, S. Sapra, D. D. Sarma, N. Chandrasekharan, G. Hodes, Size-selected zinc sulfide nanocrystallites: synthesis, structure, and optical studies, Chem. Mater. 2000, 12, 1018.
    [154] F. T. Quinlan, J. Kuther, W. Tremel, W. Knoll, S. Risbud, P. Stroeve, Reverse micelle synthesis and characterization of ZnSe nanoparticles, Langmuir 2000, 16, 4049.
    [155] M. A. Hines, P. Guyot-Sionnest, Bright UV-blue luminescent colloidal ZnSe nanocrystals, J. Phys. Chem. B 1998, 102, 3655.
    [156] J. Mazher, A. K. Shrivastav, R. V. Nandedkar, R. K. Pandey, Strained ZnSe nanostructures investigated by x-ray diffraction, atomic force microscopy, transmission electron microscopy and optical absorption and luminescence spectroscopy, Nanotechnology 2004, 15, 572.
    [157] Y.-W. Jun, C.-S. Choi, J. Cheon, Size and shape controlled ZnTe nanocrystals with quantum confinement effect, Chem. Commun. 2001, 2001, 101.
    [158] Y. Mastai, G. Hodes, Size quantization in electrodeposited CdTe nanocrystalline films, J. Phys. Chem. B 1997, 101, 2685.
    [159] Y. Masumoto, K. Sonobe, Size-dependent energy levels of CdTe quantum dots, Phys. Rev. B 1997, 56, 9734.
    [160] V. N. Soloviev, A. Eichh?fer, D. Fenske, U. Banin, Molecular limit of a bulk semiconductor: size dependence of the ′′band gap′′ in CdSe cluster molecules, J. Am. Chem. Soc. 2000, 122, 2673.
    [161] T. T. M. Palstra, B. Batlogg, R. B. van Dover, L. F. Schneemeyer, J. V. Waszczak, Dissipative flux motion in high-temperature superconductors, Phys. Rev. B 1990, 41, 6621.
    [162] R. Zallen, The Physics of Amorphous Solids, Wiley-Interscience, New York, 1983, p. 277.
    [163] J. C. Jamieson, Crystal structures at high pressures of metallic modifications of silicon and germanium, Science 1963, 139, 762.
    [164] A. Jayaraman, W. Klement JR., G. C. Kennedy, Melting and polymorphism at high pressures in some group IV elements and III-V compounds with the diamond/zincblende structure, Phys. Rev. 1963, 130, 540.
    [165] F. P. Bundy, Phase diagrams of silicon and germanium to 200 kbar, 1000 °C, J. Chem. Phys. 1964, 41, 3809.
    [166] J. Lees, B. H. J. Williamson, Combined very high pressure/high temperature calibration of the tetrahedral anvil apparatus, fusion curves of zinc, aluminium, germanium and silicon to 60 kilobars, Nature 1965, 208, 278.
    [167] J. A. van Vechten, Quantum dielectric theory of electronegativity in covalent systems. III. Pressure-temperature phase diagrams, heats of mixing, and distribution coefficients, Phys. Rev. B 1973, 7, 1479.
    [168] J. F. Cannon, Behavior of the elements at high pressures, J. Phys. Chem. Ref. Data 1974, 3, 781.
    [169] M. T. Yin, M. L. Cohen, Theory of static structural properties, crystal stability, and phase transformations: application to Si and Ge, Phys. Rev. B 1982, 26, 5668.
    [170] R. J. Needs, R. M. Martin, Transition from β–tin to simple hexagonal silicon under pressure, Phys. Rev. B 1984, 30, 5390.
    [171] J. Z. Hu, I. L. Spain, Phases of silicon at high pressure, Solid State Commun. 1984, 51, 263.
    [172] K. J. Chang, M. L. Cohen, Solid-solid phase transitions and soft phonon modes in highly condensed Si, Phys. Rev. B 1985, 31, 7819.
    [173] J. Z. Hu, L. D. Merkle, C. S. Menoni, I. L. Spain, Crystal data for high-pressure phases of silicon, Phys. Rev. B 1986, 34, 4679.
    [174] M. I. McMahon, R. J. Nelmes, New high-pressure phase of Si, Phys. Rev. B 1993, 47, 8337.
    [175] S. H. Tolbert, A. B. Herhold, L. E. Brus, A. P. Alivisatos, Pressure-induced structural transformations in Si nanocrystals: surface and shape effects, Phys. Rev. Lett. 1996, 76, 4384.
    [176] K. Gaál-Nagy, A. Bauer, M. Schmitt, K. Karch, P. Pavone, D. Strauch, Temperature and dynamical effects on the high-pressure cubic-diamond ? β-Tin phase transition in Si and Ge, Phys. Status Solidi B 1999, 211, 275.
    [177] K. Gaál-Nagy, M. Schmitt, P. Pavone, D. Strauch, Ab initio study of the high-pressure phase transition from the cubic-diamond to the β–tin structure of Si, Comput. Mater. Sci. 2001, 22, 49.
    [178] S. K. Deb, M. Wilding, M. Somayazulu, P. F. McMillan, Pressure-induced amorphization and an amorphous-amorphous transition in densified porous silicon, Nature 2001, 414, 528.
    [179] P. F. McMillan, New materials from high-pressure experiments, Nature Mater. 2002, 1, 19.
    [180] L. Liu, Dry ice II, a new polymorph of CO2, Nature 1983, 303, 508.
    [181] K. Aoki, H. Yamawaki, M. Sakashita, Y. Gotoh, K. Takemura, Crystals structure of the high-pressure phase of solid CO2, Science 1994, 263, 356.
    [182] V. Iota, C. S. Yoo, Phase diagram of carbon dioxide: Evidence for a new associated phase, Phys. Rev. Lett. 2001, 86, 5922.
    [183] S. A. Bonev, F. Gygi, T. Ogitsu, G. Galli, High-pressure molecular phases of solid carbon dioxide, Phys. Rev. Lett. 2003, 91, 065501.
    [184] V. Iota, J-H. Park, C. S. Yoo, Phase diagram of nitrous oxide: Analogy with carbon dioxide, Phys. Rev. B 2004, 69, 064106.
    [185] H. Olijnyk, H. D?ufer, H.-J. Jodl, H. D. Hochheimer, Effect of pressure and temperature on the Raman spectra of solid CO2, J. Chem. Phys. 1988, 88, 4204.
    [186] H. Shimizu, T. Kitagawa, S. Sasaki, Acoustic velocities, refractive index, and elastic constants of liquid and solid CO2 at high pressures up to 6 GPa, Phys. Rev. B 1993, 47, 11567.
    [187] K. Aoki, H. Yamawaki, M. Sakashita, Phase study of solid CO2 to 20 GPa by infrared-absorption spectroscopy, Phys. Rev. B 1993, 48, 9231.
    [188] R. Span, W. Wagner, A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 Mpa, J. Phys. Chem. Ref. Data 1996, 25, 1509.
    [189] C. S. Yoo, H. Cynn, F. Gygi, G. Galli, V. Iota, M. Nicol, S. Carlson, D. H?usermann, C. Mailhiot, Crystal structure of carbon dioxide at high pressure: ′′superhard′′ polymeric carbon dioxide, Phys. Rev. Lett. 1999, 83, 5527.
    [190] V. Schettino, R. Bini, Molecules under extreme conditions: Chemical reactions at high pressure, Phys. Chem. Chem. Phys. 2003, 5, 1951.
    [191] L. Q. Lobo, A. G. M. Ferreira, Phase equilibria from the exactly integrated Clapeyron equation, J. Chem. Thermodyn. 2001, 33, 1597.
    [192] Q. Jiang, L. H. Liang, D. S. Zhao, Lattice contraction and surface stress of fcc nanocrystals, J. Phys. Chem. B 2001, 105, 6275.
    [193] J. D. Hoffman, Thermodynamic driving force in nucleation and growth processes, J. Chem. Phys. 1958, 29, 1192.
    [194] W. Kauzmann, The nature of the glassy state and the behavior of liquids at low temperatures, Chem. Rev. 1948, 43, 219.
    [195] Q. Jiang, J. C. Li, J. Tong, Cp measurements around the martensitic transformation temperature of a CuAlNi alloy, Mat. Sci. Eng. A 1995, 196, 165.
    [196] J. M. Soler, M. R. Beltrán, K. Michaelian, I. L. Garzón, P. Ordejón, D. Sánchez-Portal, E. Artacho, Metallic bonding and cluster structure, Phys. Rev. B 2000, 61, 5771.
    [197] C. C. Yang, J. C. Li, Q. Jiang, Effect of pressure on melting temperature of silicon determined by Clapeyron equation, Chem. Phys. Lett. 2003, 372, 156.
    [198] W. Rhim, K. Ohsaka, Thermophysical properties measurement of molten silicon by high-temperature electrostaic levitator: density, volume expansion, specific heat capacity, emissivity, surface tension and viscosity, J. Cryst. Growth 2000, 208, 313.
    [199] C. C. Yang, G. Li, Q. Jiang, Effect of pressure on melting temperature of silicon, J. Phys.: Condens. Matter 2003, 15, 4961.
    [200] C. C. Yang, Q. Jiang, Effect of pressure on melting temperature of carbon dioxide, J. Chem. Thermodyn. 2005, 37, 1019.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700