新型橡胶基路面的开发与废胶粉杂化改性应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对以天然橡胶、丁苯橡胶与顺丁橡胶为基体材料的橡胶产品,进行了不同处理条件下的力学性能、表面摩擦性能、耐磨性能以及阻燃性能的测试,并通过与沥青等传统路面材料相应性能的比较,验证了开发橡胶基路面的可行性。在此基础上为突出橡胶基路面的优势,开发了白炭黑和滑石粉并用的浅色橡胶配方与炭黑和陶土并用的深色橡胶配方。通过硫化性能、耐磨性能与力学性能的测试结果发现:尽管力学性能与加工性能不及由炭黑补强的橡胶配方,由白炭黑补强的橡胶配方却能开发出具有较高性价比的彩色路面,实现绿色环保;采用降低补强体系与填充体系含量提高含胶率的方法,可以在有效控制成本的前提下,显著提高橡胶体系的拉伸性能与耐磨性能,实现成本与综合性能的优化平衡。
     为进一步增强橡胶基路面的优势,本文将废胶粉掺入到橡胶体系中,并利用溶胶-凝胶法对废胶粉进行杂化改性,目的是在其表面原位生成SiO2的网络结构,在混入基体橡胶时增强体系强度,并通过添加含硫硅烷偶联剂增强胶粉与基体橡胶之间的界面强度,由此获得高性能的含胶粉橡胶材料。实验结果发现:傅立叶转换红外光谱和热失重测试结果说明通过改性处理在胶粉表面形成了Si-O-Si网络结构;杂化改性胶粉与共混基体橡胶最优性价比的配方体系是基体橡胶为NR70/SBR30、酸催化杂化改性胶粉以及基体橡胶与废胶粉的质量比为1:1;采用该反应体系对不同粒径种类胶粉进行处理与共混,发现其力学性能得到大幅度提升,较未改性胶粉橡胶体系拉伸强度提高幅度最高可达114.4%,撕裂强度提高幅度最高可达60.3%,且能保持扯断伸长率与硬度基本不变;通过环境模拟老化实验发现含杂化改性胶粉的橡胶材料具有很好的耐环境侵蚀性,能够满足长期室外环境下的使用要求;通过对比分析发现采用40目子午轮胎的改性胶粉填充橡胶可以获得最佳性价比的橡胶制品,较含等量未改性胶粉的橡胶制品其拉伸强度提高了91.4%,撕裂强度提高了60.3%,因此开发此橡胶体系配方作为橡胶基路面材料应用具有巨大的发展潜力。
The rubbers which adopted Natural Rubber (NR), Styrene Butadiene Rubber (SBR) and Butadiene Rubber (BR) as matrix material were studied in the article in order to research the mechanical performance at different conditions, friction performance, abrasion performance and flame retardance property. Through comparing with traditional pavement materials in terms of these properties, it was verified the feasibility of adopting rubber as pavement material. To further outstanding the advantages of rubber based pavement, the article explored the light-colored rubber dopted silica and French chalk, and the heavy-colored rubber dopted carbon black and argil. Through testing vulcanization characteristic, mechanical performance and abrasion performance of the samples, the results as follow: Although the mechanical performance and processing property of the light-colored rubber adding silica with French chalk were not as good as the heavy-colored rubber adding the carbon black with argil, it could be used as colorful pavement material with the excellent balance of cost-effective and general performance , which could also realize green environmental protection. Through reducing the dosage of the filling system and the reinforcing system to increase the percent of the rubber in the formula, the tensile performance and abrasion performance were significantly enhanced under the premise of less cost increase, so the approach achieved the optimized combination of cost and general performance.
     To strengthen the advantages of rubber based pavement, the article mixed the matrix rubber with the rubber powder (RP), which was hybrid modified via sol-gel method. In situ generation of nano-particles in RP’s surface effectively achieved the mechanical properties’enhance of rubber containing RP. The high performance rubber containing RP was obtained through adding silane coupling agent (TESPT), by which way the strong interfacial bonding between rubber and RP was enhanced. The experimental results showed as follow: Fourier transform infrared spectroscopy (FT-IR) and thermo gravimetric analysis (TGA) results showed that Si-O-Si networks had been in the surface of RP particles by the modification. RP was hybrid modified at best by acid catalyst while adopting NR70/SBR30 as matrix rubber and 1:1as the quality ratio of matrix rubber and RP were optimized rubber formulation. Through modifying RP with different particle size by the above mentioned approach, it was found that the mechanical performance of rubber containing the modified RP was substantially enhanced. After modification, the tensile strength improved by 114.4% at most while the tear strength improved by 60.3% at most. What’s more, the tensile elongation at break and shore hardness were constant after modification. The rubber containing modified RP had good corrosion-resistant performance in outdoor environment, which was validated by environmental simulation aging test. The rubber containing 40 mesh meridian tyres powder modified via sol-gel method was carried out with the best combination of cost-effective and mechanical performance, whose tensile strength improved by 91.4% and tear strength improved by 60.3% than rubber with unmodified RP. So such rubber containing modified RP has great potential in developing as novel pavement material.
引文
[1]李莉,曾繁森,周彦豪,胡丽萍,陈福林.用废旧橡胶改性塑料技术的研究进展,合成橡胶工业,1998,21(5):314~318.
    [2]韩文俊.树脂/废胶粉热塑性弹性体的制备与性能研究,硕士,北京化工大学,2004.
    [3]朱玉俊.弹性体的力学改性,北京科学技术出版社,1992,7.
    [4]李如林.我国橡胶粉生产应用现状及发展,再生胶信息,2000,4:1.
    [5]袁立.橡胶的回收利用,世界橡胶工业,1998,1(1):29.
    [6]刘玉强.旧轮胎的回收利用,轮胎工业,2000,20(12):710.
    [7]刘玉强,殷晓玲.胶粉的生产方法,弹性体,2001,(3):43.
    [8] Tskahoshi, Toshiki.Method of obtaining hydrocarbon oil from waste plastic material or waste rubber material.EurPat, EP607 994.1995.
    [9] Loeffler M, Straube G.Desulfurization of rubber by thiobacilli. Biohydrometall. techol.Proc. Int .,1993(2):673.
    [10] Isayev A I, Chen J,Tukachinsky A.Novel ultrasonic technology for devulcanization of waste rubbers. RubberChem.Technol., 1995, 68(2):267.
    [11] Debapriya De, Debasish De, G.M. Singharoy.Reclaiming of Ground Rubber Tire by a Novel Reclaiming Agent. I. Virgin Natural Rubber/Reclaimed GRT Vulcanizates.Polymer Engineering and Science.2007:1091~1100.
    [12] Debapriya De, Sukumar Maiti, Basudam Adhikari. Reclaiming of Rubber by a Renewable Resource Material (RRM). II. Comparative Evaluation of Reclaiming Process of NR Vulcanizate by RRM and Diallyl Disulfide. Journal of Applied Polymer Science, 1999, 73 , 2951~2958.
    [13] B. Adhikari, D. De, S. Maiti. Reclamation and recycling of waste rubber. Prog. Polym. Sci. 2000,25 , 909~948.
    [14]贾德民,戴志晟.共轭三组分互穿聚合物网络在胶粉改性中的应用.橡胶工业, 1990 , 37 (9) : 516~520.
    [15] Serena Coiai,Elisa Passaglia,Francesco Ciardelli. Modification of Cross-Linked Rubber Particles by Free Radical Polymerization. Macromol. Symp. 2006, 234, 193~202.
    [16] Serena Coiai,Elisa Passaglia,Francesco Ciardelli. Gradient Density Grafted Polymers on Ground Tire Rubber Particles by Atom Transfer Radical Polymerization. Macromol. Chem. Phys. 2006, 207, 2289~2298.
    [17] Nima Shahidi, Fouad Teymour, Hamid Arastoopour. Amphiphilic particulate phase semi-interpenetrating polymer networks based on recycled rubber matrix. Polymer 2004, 45, 5183~5190.
    [18] F. Cavalieri, F. Padella, F. Cataldo. Mechanochemical Surface Activation of Ground Tire Rubber by Solid-State Devulcanization and Grafting. Journal of Applied Polymer Science, 2003, 90, 1631~1638.
    [19]周文,赵素合. RD2F机械化学法对胶粉活化改性的研究.橡胶工业,1996 ,43 (9) :529~535.
    [20]周文,赵素合. RD2F机械化学法对胶料加工性能的影响.橡胶工业,1996 ,43 (11) :658~662.
    [21]姜智.硫化胶粉的活化改性.橡胶工业,1992 ,39 (11) : 660~661.
    [22] R.Bagheri , M. A. Williams. Use of Surface Modified RecycledRubber Particles for Toughening of Epoxy Polymers. Polym Eng Sci. 1997 , 37 (2) :245~251.
    [23]赵素合,白国春.胶粉“核2壳”活化改性:壳改性.合成橡胶工业,1998 ,21 (3) :153~157.
    [24]邱清华,贾德民.废胶粉利用研究进展.橡胶工业,1997 , 44 (11) :691~695.
    [25] J . I. Kim, Y. W. Chang. Mechanical and Dynamic Mechanical Properties of Waste rubber Powder/ HDPE Composite . J . Appl. Polym. Sci. ,2000 ,77 (12) :2595~ 2602.
    [26] A. A. Yehia, M. A. Mull, M. N. Ismail,et al.Effect of Chemically Modified Waste Rubber Powder as a Filler in Natural Rubber Vulcanizates。Journal of Applied Polymer Science, 2004, 93:30~36.
    [27]O.P.Grigoryeva, A.M.Fainleib, A.L.Tolstov, et al. Thermoplastic Elastomers Based on Recycled High-Density Polyethylene, Ethylene–Propylene–Diene Monomer Rubber, and Ground Tire Rubber. Journal of Applied Polymer Science, 2005, 95:659~671.
    [28]J.I.KIM, S.H.RYU, Y.W.CHANG. Mechanical and Dynamic Mechanical Properties of Waste Rubber Powder/HDPE Composite. Journal of Applied Polymer Science, 2000, 77:2595~2602.
    [29]Alexander Tolstov,Olga Grigoryeva,Alexander Fainleib,et al.Reactive Compatibilization of Polyethylene/Ground Tire Rubber Inhomogeneous Blends via Interactions of Pre-Functionalized Polymers in Interface. Macromol.Symp. 2007, 254:226~232.
    [30]AMIT K. NASKAR,S.K.DE,ANIL K.BHOWMICK.Thermoplastic Elastomeric Composition based on Maleic Anhydride–Grafted Ground Rubber Tire. Journal of Applied Polymer Science, 2002, 84:370~378.
    [31]R.Sonnier,E.Leroy,L.Clerc,et al.Polyethylene/ground tyre rubber blends: Influence of particle morphology and oxidation on mechanical properties.Polymer Testing,2007,26:274~281.
    [32]A. M. Shanmugharaj, Jin Kook Kim, Sung Hun Ryu.Modification of Rubber Powder with Peroxide and roperties of Polypropylene/Rubber Composites. Journal of Applied Polymer Science, 2007, 104:2237~2243.
    [33] Sung Hyo Lee, Maridass Balasubramanian, Jin Kuk Kim. Dynamic Reaction inside Co-Rotating Twin Screw Extruder. I. Truck Tire Model Material/Polypropylene Blends. Journal of Applied Polymer Science, 2007, 106:3193~3208.
    [34]Sung Hyo Lee, Maridass Balasubramanian, Jin Kuk Kim. Dynamic Reaction inside Co-Rotating Twin Screw Extruder. II. Waste Ground Rubber Tire Powder/ Polypropylene Blends. Journal of Applied Polymer Science,2007, 106:3209~3219.
    [35]冯予星,王益庆,童亚明等.废胶粉/聚丙烯热塑性弹性体的界面增容研究.合成橡胶工业,2003,26(1):32-36.
    [36]鲁闻生,陈占勋,刘本国.轮胎胶粉/LLDPE共混材料性能的研究.现代塑料加工应用,2002,15(3):6~8.
    [37] Li Y, Zhang Y, Zhang YX. Structure and mechanical properties of SRP/HDPE/POE (EPR or EPDM) composites.Polymer Testing, 2003, 22(8): 859~865.
    [38]Yan Li,Yong Zhang,Yinxi Zhang.Mechanical Properties of High-Density Polyethylene/Scrap Rubber Powder Composites Modified with Ethylene–Propylene–Diene Terpolymer, Dicumyl Peroxide, and Silicone Oil. Journal of Applied Polymer Science, 2003, 88:2020~2027.
    [39]Yan Li,Yong Zhang,Yinxi Zhang. Morphology and mechanical properties of HDPE/SRP/elastomer composites: effect of elastomer polarity. Polymer Testing, 2004, 23:83~90.
    [40]陈福林,冯英晖,周彦豪等.“重油”与苯乙烯共聚改性胶粉增韧废PP复合材料的研究.橡胶工业,1998(45):334~338.
    [41]尚贵才,周彦豪,童速玲等.废聚丙烯/废轮胎胶粉/废尼龙短纤维复合材料(Ⅰ):配方.合成橡胶工业,2004,27(2):87~91.
    [42]尚贵才,周彦豪,童速玲等.废聚丙烯/废轮胎胶粉/废尼龙短纤维复合材料(Ⅱ):工艺条件.合成橡胶工业,2004,27(4):234~235.
    [43]Baochun Guo,Yan Cao,Demin Jia,et al.Thermoplastic Elastomers Derived from Scrap Rubber Powder/LLDPE Blend with LLDPE-graft-Epoxidized NaturalRubber Dual Compatibilizer.Macromol.Mater.Eng.2004,289:360~367.
    [44]王华林,史铁钧.翟林峰疏水型多孔有机无机杂化材料的研究.高分子材料科学与工程,2005,21(3):250~252.
    [45]邱泽皓,叶巧明.溶胶-凝胶法制备有机/无机杂化材料工艺及其应用.广州化学.2006,31(1):40~45.
    [46]段先健,张立群,伍社毛等.用溶胶-凝胶法原位生成SiO2增强橡胶.合成橡胶工业,2000,23(3):148~152.
    [47]Yuko Ikeda Sirilux Poompradub. Preparation of high performance nanocomposite elastomer: effect of reaction conditions on in situ silica generation of high content in natural rubber. J Sol-Gel Sci Technol , 2008, 45:299~306.
    [48]Bandyopadhyay A, De Sarkar M, Bhowmick AK. Epoxidized natural rubber/silica nanoscale organic-inorganic hybrid composites prepared by sol-gel technique. Rubber Chemistry and Technology, 2004, 77:830~846.
    [49]Zhou DH, Mark JE. Preparation and characterization of trans-1,4-polybutadiene nanocomposites containing in situ generated silica. Journal of Macromolecular Science.2004,A41:1221~1232.
    [50] Zaborski M, Pietrasik J. Properties of carboxylated acrylonitrile/ butadiene rubber containing "in situ" synthesized silica fillers. Polimery. 2002,47:643~648.
    [51] Debapriya De et al. Reinforcing Effect of Silica on the Properties of Styrene Butadiene Rubber–Reclaim Rubber Blend System. Journal of Applied Polymer Science, 2006, 99:957~968.
    [52]Hashim AS, Azahari B, Ikeda Y, Kohjiya S. The effect of bis(3-triethoxysilylpropyl)tetrasulfide on silica reinforcement of styrene-butadiene rubber. Rubber Chemistry and Technology. 1998,71:289~299.
    [53]刘岚,鹿海华,罗远芳,贾德民.废胶粉的杂化改性及其在NR中的应用研究. 2007年全国高分子学术论文报告会论文摘要集(下册) , 2007,F-0-011.
    [54]田振辉,谭惠丰,谢礼立.橡胶复合材料疲劳破坏特性.复合材料学报,2005,22(1): 1~3.
    [55]张登良.沥青及沥青混合料.北京:人民交通出版社,1993.76~82.
    [56]Ikeda Y, Tanaka A, Kohjiya S. Reinforcement styrene-butadiene rubber vulcanizate by in-situ Prepared the sol-gel reaction of tetraethoxysila [J].Journal of Materials Chemistry, 1997, 7(8):1497 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700