蛋白酶抑制剂OVOS2及TIMP-4与皮肤恶性黑素瘤发病机制的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
皮肤恶性黑素瘤(cutaneous malignant melanoma, CMM)是皮肤科致死率最高的恶性肿瘤,具有进展快、易转移、放化疗不敏感等特点。目前黑素瘤发生的分子机制尚不完全清楚。蛋白酶抑制剂是一种多功能蛋白质肽分子,因其在多种肿瘤中表达异常,并呈现促进和抑制的双向调节作用,成为肿瘤研究的热点之一。本研究首次探讨两种蛋白酶抑制剂卵固蛋白2(Ovostatin2, OVOS2)和组织型基质金属蛋白酶抑制剂4(tissue inhibitor of metallopmteinase-4, TIMP-4)在黑素瘤发生发展中的作用。
     一、蛋白酶抑制剂OVOS2与皮肤恶性黑素瘤发病机制的相关性研究
     1.蛋白酶抑制剂OVOS2在恶性黑素瘤组织和细胞中的表达及意义
     我们前期采用一款全新的全基因组表达谱芯片,发现OVOS2在中国人肢端黑素瘤中呈明显的高表达,为验证基因芯片结果,探讨蛋白酶抑制剂OVOS2表达是否与皮肤黑素瘤的发生发展过程相关,我们通过real-time PCR、Westernblot分析,发现CMM组织中OVOS2mRNA和蛋白水平较瘤旁组织明显上调;与正常人黑素细胞相比,黑素瘤细胞株中OVOS2mRNA和蛋白表达也明显上调,以在A375细胞中上调最为明显。为进一步探讨OVOS2表达与黑素瘤发生发展的相关性,我们进一步通过免疫组化方法检测OVOS2在114例CMM及良性痣组织中的表达,并分析其与临床病理特征及预后指标的关系。结果再次证实OVOS2在CMM中表达增加,其表达水平与黑素瘤恶性程度指标如Breslow厚度、Clark分级、临床分期、KI指数及VEGF表达呈正相关。可见,OVOS2在恶性黑素瘤细胞及组织中均呈现异常高表达,其表达水平与CMM的恶性程度密切相关。
     2.VshRNA-OVOS2重组质粒及稳定转染细胞株的构建
     前文实验结果表明A375细胞株中OVOS2上调最为明显,我们将A375细胞作为研究对象,首先设计4个OVOS2-shRNA片段,并载入pGMLV-SB1RNAi,构建慢病毒干扰载体(VshRNA-OVOS2),包装病毒并感染A375细胞,采用Real-time RT-PCR和Western blot筛选出沉默效果最好的靶细胞,并命名为A375/OVOS2-shRNA,同时将阴性对照慢病毒载体感染A375细胞作为对照组(negative control, NC),命名为A375/NC-shRNA。最后经细胞免疫化学法证实,A375/OVOS2-shRNA中OVOS2表达明显受抑制,所获得的稳定转染细胞株,用于后续实验。
     3.蛋白酶抑制剂OVOS2对A375细胞生物学行为的影响及机制研究
     为探讨OVOS2对人黑素瘤细胞株A375生物学行为的影响及其可能机制,
     我们采用直接细胞计数法、MTT法及克隆形成实验检测细胞增殖能力,流式细胞技术检测细胞凋亡及细胞周期变化,细胞划痕实验及Transwell小室实验检测细胞运动及侵袭能力,裸鼠皮下成瘤实验评估细胞体内致瘤能力,观察未处理A375细胞、A375/OVOS2-shRNA及A375/NC-shRNA三组细胞的体内外生物学行为改变;进一步通过Western blot方法检测细胞中p-FAK、p-AKT、p-ERK、 MMP-2、E-cadherin、N-cadherin和β-catenin以及细胞周期相关蛋白表达情况,分析OVOS2影响黑素瘤细胞生物学行为的可能机制。结果表明,干扰OVOS2表达能够有效抑制黑素瘤细胞A375的体内外增殖活性、导致细胞周期发生G2/M阻滞,但对细胞凋亡促进作用不显著。OVOS2可能通过过度激活FAK/MAPK/ERK和FAK/PI3K/AKT信号通路,对细胞周期和细胞增殖进行调控。沉默OVOS2表达后,细胞的迁移和运动能力显著下降,细胞中上皮表型蛋白E-cadherin,β-catenin表达增加,而间质表型蛋白N-cadherin表达降低。OVOS2可能参与黑素瘤细胞的上皮间质转化,影响肿瘤细胞的迁移和运动能力。
     二、蛋白酶抑制剂TIMP-4在恶性黑素瘤组织和细胞中的表达及意义
     通过Western blot分析,我们发现TIMP-4蛋白水平在CMM组织中较瘤旁组织和良性痣组织明显上调;黑素瘤细胞株中TIMP-4表达较正常人黑素细胞也明显上调。为进一步探讨TIMP-4表达与黑素瘤发生侵袭的相关性,我们通过免疫组化方法检测TIMP-4在94例CMM及良性痣组织中的表达,分析其与CMM临床病理特征和预后指标的相关性。结果进一步证实TIMP-4在CMM中表达升高,其表达水平与黑素瘤恶性程度及MMP-2和VEGF表达相关。TIMP-4表达可能参与CMM的恶性进程,尤其与肿瘤转移倾向及血管生成关系密切。
     结论
     在恶性黑素瘤细胞及组织中,蛋白酶抑制剂OVOS2和TIMP-4表达均明显上调,且二者的高表达均与黑素瘤的恶性程度相关。体内外实验表明阻断OVOS2表达可明显降低黑素瘤细胞A375的增殖活性及迁移运动能力,影响细胞周期进程,OVOS2对肿瘤的正向调控作用可能与其过度激活FAK/MAPK/ERK和FAK/PI3K/AKT信号通路,促进上皮间质转化过程有关。可见,蛋白酶抑制剂OVOS2和TIMP-4与恶性黑素瘤的发生发展关系密切,OVOS2可能在促进黑素瘤细胞的增殖和迁移运动过程中起到重要作用,而TIMP-4表达上调则反映肿瘤转移倾向及血管生成潜能。这些研究结果为恶性黑素瘤的诊断和治疗提供了新的研究方向和思路,充实了蛋白酶抑制剂与黑素瘤发生的相关理论,为进一步研究它们的确切作用及分子机制提供了大量的理论基础和实验依据。
Cutaneous malignant melanoma (CMM) is characterized by aggressive invasion, early metastasis, and resistance to chemotherapy or radiotherapy, accounting for the highest lethality of all dermatological cancers. The molecular mechanisms leading to melanoma are still poorly understood. Protease inhibitors are multifunctional proteins, which display an abnormal expression in several kinds of tumors. Recent data indicate that protease inhibitors have both inhibitory effect and stimulatory effect on tumorigenesis. Due to its dual regulation on tumor progression, protease inhibitors become one of the top areas of cancer research. In the current study, functions of two protease inhibitors OVOS2and TIMP-4in pathogenesis and progression of melanoma were investigated for the first time.
     Part1:Involvement of proteinase inhibitor Ovostatin2(OVOS2) in pathogenesis of cutaneous malignant melanoma
     1) Expression of Ovostatin2(OVOS2) in human cutaneous malignant melanoma tissues and cells
     We previously found the expression of OVOS2gene was apparently higher in acral-melanoma tissues of Chinese patients through an advanced whole-genome oligonucleotide microarray. To confirm results of the preliminary microarray analysis, and to see if expression of OVOS2is associated with the development of CMM, real-time PCR and Western blot analysis were used to detect mRNA and protein expression of OVOS2. The results revealed that OVOS2was overexpressed in mRNA and protein level in CMM compared with paired normal skin and in melanoma cells compared with primary melanocytes. Of four kinds of melanoma cells, A375presented the highest expression level. To investigate the relationship of OVOS2expression with the progression of CMM, immunohistochemical staining was further performed on114tissue samples taken from CMM and benign nevi, followed with clinicopathological significance analysis. We confirmed OVOS2was significantly up-regulated in CMM again, and found the expression of which positively correlated with the known prognostic variables including clinical stage, Clark level and Breslow depth, and significantly associated with the status of ulcer, positivity of Ki-67and expression of VEGF in primary melanoma. These results proved the over-expression of OVOS2in melanoma tissues and cells, and suggested a relationship of OVOS2expression and aggressive behaviours of melanoma.
     2) Inhibition of the expression of OVOS2by VshRNA
     We chosed A375as target cells as they presented the highest expression level of OVOS2. Four shRNA fragment for OVOS2were synthetized and subcloned into pGMLV-SB1RNAi lentiviral vectors respectively(VshRNA-OVOS2). Lentivirus package was conducted in293T cells, followed by transfection with the four OVOS2-shRNA into A375cells. The optimum shRNA fragment against OVOS2was determined by Real-time PCR and Western blot and the corresponding stably transfected A375cells (A375/OVOS2-shRNA) were chosen for further study. A mock lentiviral vector was transfected into A375cells as a negative control (A375/NC-shRNA). Immunocytochemistry confirmed OVOS2expression was obviously inhibited in OVOS2-shRNA transfected A375cells compared with negative control-shRNA transfected A375cells and untreated A375cells. The stably transfectant clones were used for further study.
     3) Effect of OVOS2on biological behaviours of A375cell and mechanism research To evaluate the effect of inhibition of OVOS2on biological behaviours of A375cell and investige the possible involved mechanisms, biological behaviours of untreated A375cell, A375/NC-shRNA and A375/OVOS2-shRNA were evaluated and compared with each other. Cell proliferation ability was observed by cell number counting, MTT assay and Colony formation assay; Cell cycle and apoptosis were detected by Flow cytometer; Cell migration and invasive ability was tested by wound-healing and Transwell study. We also observe the subcutaneous transplanted tumor growth in nude mice to study the proliferation capability in vivo. Western blot was used to detect expression of p-FAK, p-AKT, p-ERK, MMP-2, E-cadherin, N-cadherin, β-catenin and cell cycle regulatory proteins to investigate the possible mechanisms of OVOS2involving in biological behaviours of melanoma cells. These in vivo and in vitro results manifested that inhibition of OVOS2had significantly suppressive effects on the growth of A375, with a G2/M phase arrest in cell cycle process, but affected cell apoptosis rate weakly, indicating high expression of OVOS2can promote cell cycle process and enhance proliferation of melanoma cells. The involved mechanisms may be associated with its over-activation of FAK/MAPK/ERK and FAK/PI3K/AKT signals. Furthermore, down-regulation of OVOS2can reduce motility and migration capability of melanoma cells significantly, accompanied with up-regulated epithelial phenotype E-cadherin and β-catenin and down-regulated mesenchymal phenotype N-cadherin expression, suggesting an important role of OVOS2in process of cell motality and migration, and the underlying mechanisms may related to the epithelial-mesenchymal transition of melanoma cells.
     Part2:Expression of tissue inhibitor of metalloproteinase-4(TIMP-4) in CMM tissue and cells
     Western blot revealed that TIMP-4was overexpressed in CMM tissues compared with paired normal skin and benign nevi and in melanoma cells compared with primary melanocytes. To investigate the relationship of OVOS2expression with the development and progression of CMM, immunohistochemical staining was further performed on94cases tissue samples taken from CMM and benign nevi, followed with clinicopathological significance analysis. We confirmed TIMP-4was significantly up-regulated in CMM again, and found the expression of which was positively correlated with the progression of CMM. Furthermore, it was associated with the expressions of VEGF and MMP-2. These results suggest TIMP-4protein may be closely associated with tumor initiation and progression, especially with the process of metastasis and angiogenesis of CMM.
     Conclusions
     Proteinase inhibitors OVOS2and TIMP-4were significantly overexpressed in melanoma tissues and cells, and the expression of which was positively correlated with the aggressive progression of CMM. The in vivo and in vitro results manifested that inhibition of OVOS2had significantly suppressive effects on the proliferation, motility and migration capability of A375, and can blocked cell cycle process, suggesting a promotive role of OVOS2in pathogenesis of melanoma. The involved mechanisms may be associated with the over-activation of FAK/MAPK/ERK and FAK/PI3K/AKT signals and the enhancement of epithelial-mesenchymal transition caused by over-expressed OVOS2. These results suggest proteinase inhibitors OVOS2and TIMP-4may play an important role in development and progression of CMM, as OVOS2mainly effects cell proliferation and migration, while overexpression of TIMP-4may be associated with the potential of metastasis and angiogenesis in CMM. The current study enriched the concept that protease inhibitors are multifunctional with key regulation on tumor progression, which represents new insights and areas for diagnostic and therapeutic research of melanoma, and provided valuable theoretical basis and experimental data for further investigation on the precise function and molecular mechanisms of these two proteinase inhibitors.
引文
[1]Miller A J, Mihm M J. Melanoma[J]. N Engl J Med,2006,355(1):51-65.
    [2]Criscione V D, Weinstock M A. Melanoma thickness trends in the United States,1988-2006[J]. J Invest Dermatol,2010,130(3):793-797.
    [3]Miyata S, Fukushima T, Kohama K, et al. Roles of Kunitz domains in the anti-invasive effect of hepatocyte growth factor activator inhibitor type 1 in human glioblastoma cells[J]. Hum Cell, 2007,20(4):100-106.
    [4]Bhowmick N A, Moses H L. Tumor-stroma interactions[J]. Curr Opin Genet Dev,2005,15(1):97-101.
    [5]Hofmann U B, Eggert A A, Blass K, et al. Expression of matrix metalloproteinases in the microenvironment of spontaneous and experimental melanoma metastases reflects the requirements for tumor formation[J]. Cancer Res,2003,63(23):8221-8225.
    [6]Hofmann U B, Westphal J R, Van Muijen G N, et al. Matrix metalloproteinases in human melanoma[J]. J Invest Dermatol,2000,115(3):337-344.
    [7]Donia M, Maksimovic-Ivanic D, Mijatovic S, et al. In vitro and in vivo anticancer action of Saquinavir-NO, a novel nitric oxide-derivative of the protease inhibitor saquinavir, on hormone resistant prostate cancer cells[J]. Cell Cycle,2011,10(3):492-499.
    [8]Bergeron S, Lemieux E, Durand V, et al. The serine protease inhibitor serpinE2 is a novel target of ERK signaling involved in human colorectal tumorigenesis[J]. Mol Cancer,2010,9:271.
    [9} Donkor I O. Calpain inhibitors:a survey of compounds reported in the patent and scientific literature[J]. Expert Opin Ther Pat,2011,21 (5):601-636.
    [10]Baker A H, Zaltsman A B, George S J, et al. Divergent effects of tissue inhibitor of metalloproteinase-1,-2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis[J]. J Clin Invest, 1998,101(6):1478-1487.
    [11]Hayakawa T, Yamashita K, Ohuchi E, et al. Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2)[J]. J Cell Sci,1994,107 (Pt 9):2373-2379.
    [12]Chirco R, Liu X W, Jung K K, et al. Novel functions of TIMPs in cell signaling[J]. Cancer Metastasis Rev,2006,25(1):99-113.
    [13]Enghild J J, Salvesen G, Brew K, et al. Interaction of human rheumatoid synovial collagenase (matrix metalloproteinase 1) and stromelysin (matrix metalloproteinase 3) with human alpha 2-macroglobulin and chicken ovostatin. Binding kinetics and identification of matrix metalloproteinase cleavage sites[J]. J Biol Chem,1989,264(15):8779-8785.
    [14]Nagase H, Harris E J, Woessner J J, et al. Ovostatin:a novel proteinase inhibitor from chicken egg white. I. Purification, physicochemical properties, and tissue distribution of ovostatin[J]. J Biol Chem,1983,258(12):7481-7489.
    [15]Nagase H, Harris E J. Ovostatin:a novel proteinase inhibitor from chicken egg white. II. Mechanism of inhibition studied with collagenase and thermolysin[J]. J Biol Chem,1983,258(12):7490-7498.
    [16]Airola K, Karonen T, Vaalamo M, et al. Expression of collagenases-1 and -3 and their inhibitors TIMP-1 and -3 correlates with the level of invasion in malignant melanomas[J]. Br J Cancer, 1999,80(5-6):733-743.
    [17]Rey M C, Bonamigo R R, Cartell A, et al. MMP-2 and TIMP-2 in cutaneous melanoma:association with prognostic factors and description in cutaneous metastases[J]. Am J Dermatopathol, 2011,33(4):413-414.
    [18]Melendez-Zajgla J, Del P L, Ceballos G, et al. Tissue inhibitor of metalloproteinases-4. The road less traveled[J]. Mol Cancer,2008,7:85.
    [19]Ibarrola-Villava M, Hu H H, Guedj M, et al. MC1R, SLC45A2 and TYR genetic variants involved in melanoma susceptibility in southern European populations:results from a meta-analysis[J]. Eur J Cancer,2012,48(14):2183-2191.
    [20]Fernandez L P, Milne R L, Pita G, et al. SLC45A2:a novel malignant melanoma-associated gene[J]. Hum Mutat,2008,29(9):1161-1167.
    [1]Hayakawa T, Yamashita K, Ohuchi E, et al. Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2)[J]. J Cell Sci,1994,107 (Pt 9):2373-2379.
    [2]Chirco R, Liu X W, Jung K K, et al. Novel functions of TIMPs in cell signaling[J]. Cancer Metastasis Rev,2006,25(1):99-113.
    [3]Baker A H, Zaltsman A B, George S J, et al. Divergent effects of tissue inhibitor of metalloproteinase-1,-2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis[J]. J Clin Invest, 1998,101(6):1478-1487.
    [4]Airola K, Karonen T, Vaalamo M, et al. Expression of collagenases-1 and -3 and their inhibitors TIMP-1 and -3 correlates with the level of invasion in malignant melanomas[J]. Br J Cancer, 1999,80(5-6):733-743.
    [5]Rey M C, Bonamigo R R, Cartell A, et al. MMP-2 and TIMP-2 in cutaneous melanoma:association with prognostic factors and description in cutaneous metastases[J]. Am J Dermatopathol, 2011,33(4):413-414.
    [6]Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs):an ancient family with structural and functional diversity[J]. Biochim Biophys Acta,2010,1803(1):55-71.
    [7]Ibarrola-Villava M, Hu H H, Guedj M, et al. MC1R, SLC45A2 and TYR genetic variants involved in melanoma susceptibility in southern European populations:results from a meta-analysis[J]. Eur J Cancer,2012,48(14):2183-2191.
    [8]Fernandez L P, Milne R L, Pita G, et al. SLC45A2:a novel malignant melanoma-associated gene[J]. Hum Mutat,2008,29(9):1161-1167.
    [9]Enghild J J, Salvesen G, Brew K, et al. Interaction of human rheumatoid synovial collagenase (matrix metalloproteinase 1) and stromelysin (matrix metalloproteinase 3) with human alpha 2-macroglobulin and chicken ovostatin. Binding kinetics and identification of matrix metalloproteinase cleavage sites[J]. J Biol Chem,1989,264(15):8779-8785.
    [10]Nagase H, Harris E J, Woessner J J, et al. Ovostatin:a novel proteinase inhibitor from chicken egg white. I. Purification, physicochemical properties, and tissue distribution of ovostatin[J]. J Biol Chem,1983,258(12):7481-7489.
    [11]Nagase H, Harris E J. Ovostatin:a novel proteinase inhibitor from chicken egg white. Ⅱ. Mechanism of inhibition studied with collagenase and thermolysin[J]. J Biol Chem,1983,258(12):7490-7498.
    [1]Miyata S, Fukushima T, Kohama K, et al. Roles of Kunitz domains in the anti-invasive effect of hepatocyte growth factor activator inhibitor type 1 in human glioblastoma cells[J]. Hum Cell, 2007,20(4):100-106.
    [2]Bhowmick N A, Moses H L. Tumor-stroma interactions[J]. Curr Opin Genet Dev,2005,15(1):97-101.
    [3]Hofmann U B, Eggert A A, Blass K, et al. Expression of matrix metalloproteinases in the microenvironment of spontaneous and experimental melanoma metastases reflects the requirements for tumor formation[J]. Cancer Res,2003,63(23):8221-8225.
    [4]Hofmann U B, Westphal J R, Van Muijen G N, et al. Matrix metalloproteinases in human melanoma[J]. J Invest Dermatol,2000,115(3):337-344.
    [5]Donia M, Maksimovic-Ivanic D, Mijatovic S, et al. In vitro and in vivo anticancer action of Saquinavir-NO, a novel nitric oxide-derivative of the protease inhibitor saquinavir, on hormone resistant prostate cancer cells[J]. Cell Cycle,2011,10(3):492-499.
    [6]Bergeron S, Lemieux E, Durand V, et al. The serine protease inhibitor serpinE2 is a novel target of ERK signaling involved in human colorectal tumorigenesis[J]. Mol Cancer,2010,9:271.
    [7]Donkor I O. Calpain inhibitors:a survey of compounds reported in the patent and scientific literature[J]. Expert Opin Ther Pat,2011,21(5):601-636.
    [8]Baker A H, Zaltsman A B, George S J, et al. Divergent effects of tissue inhibitor of metalloproteinase-1,-2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis[J], J Clin Invest, 1998,101(6):1478-1487.
    [9]Hayakawa T, Yamashita K, Ohuchi E, et al. Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2)[J]. J Cell Sci,1994,107 (Pt 9):2373-2379.
    [10]Chirco R, Liu X W, Jung K K, et al. Novel functions of TIMPs in cell signaling[J]. Cancer Metastasis Rev,2006,25(1):99-113.
    [11]Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs):an ancient family with structural and functional diversity[J]. Biochim Biophys Acta,2010,1803(1):55-71.
    [12]Enghild J J, Salvesen G, Brew K, et al. Interaction of human rheumatoid synovial collagenase (matrix metalloproteinase 1) and stromelysin (matrix metalloproteinase 3) with human alpha 2-macroglobulin and chicken ovostatin. Binding kinetics and identification of matrix metalloproteinase cleavage sites[J]. J Biol Chem,1989,264(15):8779-8785.
    [13]Nagase H, Harris E J, Woessner J J, et al. Ovostatin:a novel proteinase inhibitor from chicken egg white. I. Purification, physicochemical properties, and tissue distribution of ovostatin[J]. J Biol Chem,1983,258(12):7481-7489.
    [14]Nagase H, Harris E J. Ovostatin:a novel proteinase inhibitor from chicken egg white.Ⅱ. Mechanism of inhibition studied with collagenase and thermolysin[J]. J Biol Chem,1983,258(12):7490-7498.
    [15]Lindner I, Hemdan N Y, Buchold M, et al. Alpha2-macroglobulin inhibits the malignant properties of astrocytoma cells by impeding beta-catenin signaling[J]. Cancer Res,2010,70(1):277-287.
    [16]赵辩.中国临床皮肤病学[M].南京:江苏科学技术出版社,2010:1650
    [17]Nagore E, Oliver V, Botella-Estrada R, et al. Prognostic factors in localized invasive cutaneous melanoma:high value of mitotic rate, vascular invasion and microscopic satellitosis[J]. Melanoma Res,2005,15(3):169-177.
    [18]Rao U N, Lee S J, Luo W, et al. Presence of tumor-infiltrating lymphocytes and a dominant nodule within primary melanoma are prognostic factors for relapse-free survival of patients with thick (t4) primary melanoma:pathologic analysis of the e1690 and e1694 intergroup trials[J]. Am J Clin Pathol, 2010,133(4):646-653.
    [19]Lee S J, Lim H J, Choi Y H, et al. The clinical significance of tumor-infiltrating lymphocytes and microscopic satellites in acral melanoma in a korean population[J]. Ann Dermatol,2013,25(1):61-66.
    [20]Hofinann U B, Houben R, Brocker E B, et al. Role of matrix metalloproteinases in melanoma cell invasion[J]. Biochimie,2005,87(3-4):307-314.
    [21]Frohlich E. Proteases in cutaneous malignant melanoma:relevance as biomarker and therapeutic target[J]. Cell Mol Life Sci,2010,67(23):3947-3960.
    [22]Goovaerts G, Buyssens N. Nevus cell maturation or atrophy?[J]. Am J Dermatopathol, 1988,10(1):20-27.
    [23]Abdou A G, Maraee A H, El-Monaem S M, et al. Maspin expression in epithelial skin tumours:an immunohistochemical study[J]. J Cutan Aesthet Surg,2011,4(2):111-117.
    [24]Minami S, Lum C A, Kitagawa K M, et al. Immunohistochemical expression of cyclooxygenage-2 in melanocytic skin lesions[J]. Int J Dermatol,2011,50(1):24-29.
    [25]Fullen D R, Poynter J N, Lowe L, et al. BRAF and NRAS mutations in spitzoid melanocytic lesions[J]. Mod Pathol,2006,19(10):1324-1332.
    [26]Guerry D T, Synnestvedt M, Elder D E, et al. Lessons from tumor progression:the invasive radial growth phase of melanoma is common, incapable of metastasis, and indolent[J]. J Invest Dermatol, 1993,100(3):342S-345S.
    [27]Oliveira F R, Ferreira L M, Biasi L J, et al. Vertical growth phase and positive sentinel node in thin melanoma[J]. Braz J Med Biol Res,2003,36(3):347-350.
    [28]Balch C M, Gershenwald J E, Soong S J, et al. Final version of 2009 AJCC melanoma staging and classification[J]. J Clin Oncol,2009,27(36):6199-6206.
    [29]Garbe C, Eigentler T K. Diagnosis and treatment of cutaneous melanoma:state of the art 2006[J]. Melanoma Res,2007,17(2):117-127.
    [30]Masback A, Olsson H, Westerdahl J, et al. Prognostic factors in invasive cutaneous malignant melanoma:a population-based study and review[J]. Melanoma Res,2001,11(5):435-445.
    [31]Lindholm C, Andersson R, Dufmats M, et al. Invasive cutaneous malignant melanoma in Sweden, 1990-1999. A prospective, population-based study of survival and prognostic factors[J]. Cancer, 2004,101(9):2067-2078.
    [32]Benjamin C L, Melnikova V O, Ananthaswamy H N. Models and mechanisms in malignant melanoma[J]. Mol Carcinog,2007,46(8):671-678.
    [33]Saldanha G, Potter L, Daforno P, et al. Cutaneous melanoma subtypes show different BRAF and NRAS mutation frequencies[J]. Clin Cancer Res,2006,12(15):4499-4505.
    [34]Straume O, Sviland L, Akslen L A. Loss of nuclear p16 protein expression correlates with increased tumor cell proliferation (Ki-67) and poor prognosis in patients with vertical growth phase melanoma[J]. Clin Cancer Res,2000,6(5):1845-1853.
    [35]Winnepenninckx V, van den Oord J J. Gene expression profiling and clinical outcome in melanoma: in search of novel prognostic factors[J]. Expert RevAnticancer Ther,2007,7(11):1611-1631.
    [36]Gould R B, Bracken M B, Rimm D L. Tissue biomarkers for prognosis in cutaneous melanoma:a systematic review and meta-analysis[J]. J Natl Cancer Inst,2009,101(7):452-474.
    [37]Ladstein R G, Bachmann I M, Straume O, et al. Ki-67 expression is superior to mitotic count and novel proliferation markers PHH3, MCM4 and mitosin as a prognostic factor in thick cutaneous melanoma[J]. BMC Cancer,2010,10:140.
    [38]Proniewska-Skretek E, Mariak Z. Tumor angiogensis in uveal melanoma. Role of vascular endothelial growth factor (VEGF)[J]. Klin Oczna,2004,106(4-5):682-685.
    [39]Kim S, Park H S, Son H J, et al. The role of angiostatin, vascular endothelial growth factor, matrix metalloproteinase 9 and 12 in the angiogenesis of hepatocellular carcinoma[J]. Korean J Hepatol, 2004,10(1):62-72.
    [40]Brauer R, Beck I M, Roderfeld M, et al. Matrix metalloproteinase-19 inhibits growth of endothelial cells by generating angiostatin-like fragments from plasminogen[J]. BMC Biochem,2011,12:38.
    [1]Waterhouse P M, Wang M B, Lough T. Gene silencing as an adaptive defence against viruses[J]. Nature,2001,411(6839):834-842.
    [2]Yoshinouchi M, Yamada T, Kizaki M, et al. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by E6 siRNA[J]. Mol Ther,2003,8(5):762-768.
    [3]Kozlov G, Cheng J, Ziomek E, et al. Structural insights into molecular function of the metastasis-associated phosphatase PRL-3[J]. J Biol Chem,2004,279(12):11882-11889.
    [4]Gao L F, Wen L J, Yu H, et al. Knockdown of Stat3 expression using RNAi inhibits growth of laryngeal tumors in vivo[J]. Acta Pharmacol Sin,2006,27(3):347-352.
    [5]Zhang L, Yang N, Mohamed-Hadley A, et al. Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer[J]. Biochem Biophys Res Commun,2003,303(4):1169-1178.
    [6]Tang Y, Ge Y Z, Yin J Q. Exploring in vitro roles of siRNA in cardiovascular disease[J]. Acta Pharmacol Sin,2007,28(1):1-9.
    [7]Aagaard L, Rossi J J. RNAi therapeutics:principles, prospects and challenges[J]. Adv Drug Deliv Rev,2007,59(2-3):75-86.
    [8]Fish R J, Kruithof E K. Short-term cytotoxic effects and long-term instability of RNAi delivered using lentiviral vectors[J]. BMC Mol Biol,2004,5:9.
    [9]Wang H, Tan S S, Wang X Y, et al. Silencing livin gene by siRNA leads to apoptosis induction, cell cycle arrest, and proliferation inhibition in malignant melanoma LiBr cells[J]. Acta Pharmacol Sin, 2007,28(12):1968-1974.
    [10]Thomas M, Greil J, Heidenreich O. Targeting leukemic fusion proteins with small interfering RNAs: recent advances and therapeutic potentials[J]. Acta Pharmacol Sin,2006,27(3):273-281.
    [1]Misra U K, Deedwania R, Pizzo S V. Activation and cross-talk between Akt, NF-kappaB, and unfolded protein response signaling in 1-LN prostate cancer cells consequent to ligation of cell surface-associated GRP78[J]. J Biol Chem,2006,281(19):13694-13707.
    [2]Misra U K, Deedwania R, Pizzo S V. Binding of activated alpha2-macroglobulin to its cell surface receptor GRP78 in 1-LN prostate cancer cells regulates PAK-2-dependent activation of LIMK[J]. J Biol Chem,2005,280(28):26278-26286.
    [3]Misra U K, Gonzalez-Gronow M, Gawdi G, et al. The role of Grp 78 in alpha 2-macroglobulin-induced signal transduction. Evidence from RNA interference that the low density lipoprotein receptor-related protein is associated with, but not necessary for, GRP 78-mediated signal transduction[J]. J Biol Chem,2002,277(44):42082-42087.
    [4]Misra U K, Gonzalez-Gronow M, Gawdi G, et al. A novel receptor function for the heat shock protein Grp78:silencing of Grp78 gene expression attenuates alpha2M*-induced signalling[J]. Cell Signal, 2004,16(8):929-938.
    [5]Misra U K, Payne S, Pizzo S V. Ligation of prostate cancer cell surface GRP78 activates a proproliferative and antiapoptotic feedback loop:a role for secreted prostate-specific antigen[J]. J Biol Chem,2011,286(2):1248-1259.
    [6]Misra U K, Pizzo S V. Potentiation of signal transduction mitogenesis and cellular proliferation upon binding of receptor-recognized forms of alpha2-macroglobulin to 1-LN prostate cancer cells[J]. Cell Signal,2004,16(4):487-496.
    [7]Hanahan D, Weinberg R A. The hallmarks of cancer[J]. Cell,2000,100(1):57-70.
    [8]Lim S, Kaldis P. Cdks, cyclins and CKIs:roles beyond cell cycle regulation[J]. Development, 2013,140(15):3079-3093.
    [9]Sanchez I, Dynlacht B D. New insights into cyclins, CDKs, and cell cycle control[J]. Semin Cell Dev Biol,2005,16(3):311-321.
    [10]Ballif B A, Blenis J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals[J]. Cell Growth Differ,2001,12(8):397-408.
    [11]Meloche S, Pouyssegur J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1-to S-phase transition[J]. Oncogene,2007,26(22):3227-3239.
    [12]Chambard J C, Lefloch R, Pouyssegur J, et al. ERK implication in cell cycle regulation[J]. Biochim Biophys Acta,2007,1773(8):1299-1310.
    [13]Davies H, Bignell G R, Cox C, et al. Mutations of the BRAF gene in human cancer[J]. Nature, 2002,417(6892):949-954.
    [14]Davies M A. The role of the P13K-AKT pathway in melanoma[J]. Cancer J,2012,18(2):142-147.
    [15]Hennessy B T, Smith D L, Ram P T, et al. Exploiting the PI3K/AKT pathway for cancer drug discovery[J]. Nat Rev Drug Discov,2005,4(12):988-1004.
    [16]Luo J, Manning B D, Cantley L C. Targeting the PI3K-Akt pathway in human cancer:rationale and promise[J]. Cancer Cell,2003,4(4):257-262.
    [17]Parsons J T, Martin K H, Slack J K, et al. Focal adhesion kinase:a regulator of focal adhesion dynamics and cell movement[J]. Oncogene,2000,19(49):5606-5613.
    [18]Hsia D A, Mitra S K, Hauck C R, et al. Differential regulation of cell motility and invasion by FAK[J]. J Cell Biol,2003,160(5):753-767.
    [19]Renshaw M W, Price L S, Schwartz M A. Focal adhesion kinase mediates the integrin signaling requirement for growth factor activation of MAP kinase[J]. J Cell Biol,1999,147(3):611-618.
    [20]Zhao J, Guan J L. Signal transduction by focal adhesion kinase in cancer[J]. Cancer Metastasis Rev, 2009,28(1-2):35-49.
    [21]Kahana O, Micksche M, Witz I P, et al. The focal adhesion kinase (P125FAK) is constitutively active in human malignant melanoma[J]. Oncogene,2002,21 (25):3969-3977.
    [22]Fehr A R, Yu D. Control the host cell cycle:viral regulation of the anaphase-promoting complex[J]. J Virol,2013,87(16):8818-8825.
    [23]Yew P R. Ubiquitin-mediated proteolysis of vertebrate G1-and S-phase regulators[J]. J Cell Physiol, 2001,187(1):1-10.
    [24]Misra U K, Pizzo S V. Regulation of cytosolic phospholipase A2 activity in macrophages stimulated with receptor-recognized forms of alpha 2-macroglobulin:role in mitogenesis and cell proliferation[J]. J Biol Chem,2002,277(6):4069-4078.
    [25]Cavallaro U, Schaffhauser B, Christofori G. Cadherins and the tumour progression:is it all in a switch?[J]. Cancer Lett,2002,176(2):123-128.
    [26]Geiger T R, Peeper D S. Metastasis mechanisms[J]. Biochim Biophys Acta,2009,1796(2):293-308.
    [27]Kang Y, Massague J. Epithelial-mesenchymal transitions:twist in development and metastasis[J]. Cell,2004,118(3):277-279.
    [28]Maher M T, Flozak A S, Stocker A M, et al. Activity of the beta-catenin phosphodestruction complex at cell-cell contacts is enhanced by cadherin-based adhesion[J]. J Cell Biol,2009,186(2):219-228.
    [29]Tominaga J, Fukunaga Y, Abelardo E, et al. Defining the function of beta-catenin tyrosine phosphorylation in cadherin-mediated cell-cell adhesion[J]. Genes Cells,2008,13(1):67-77.
    [30]Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer[J]. Cancer Metastasis Rev,2009,28(1-2):151-166.
    [31]Reddy P, Liu L, Ren C, et al. Formation of E-cadherin-mediated cell-cell adhesion activates AKT and mitogen activated protein kinase via phosphatidylinositol 3 kinase and ligand-independent activation of epidermal growth factor receptor in ovarian cancer cells[J]. Mol Endocrinol, 2005,19(10):2564-2578.
    [32]Li G, Satyamoorthy K, Herlyn M. N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells[J]. Cancer Res,2001,61(9):3819-3825.
    [33]Zhang N. [Vimentin and tumor diagnosis][J]. Zhonghua Bing Li Xue Za Zhi,1990,19(2):122-124.
    [34]McInroy L, Maatta A. Down-regulation of vimentin expression inhibits carcinoma cell migration and adhesion[J]. Biochem Biophys Res Commun,2007,360(1):109-114.
    [35]Tsuruta D, Jones J C. The vimentin cytoskeleton regulates focal contact size and adhesion of endothelial cells subjected to shear stress[J]. J Cell Sci,2003,116(Pt 24):4977-4984.
    [36]Hofmann U B, Eggert A A, Blass K, et al. Expression of matrix metalloproteinases in the microenvironment of spontaneous and experimental melanoma metastases reflects the requirements for tumor formation[J]. Cancer Res,2003,63(23):8221-8225.
    [37]Rotte A, Martinka M, Li G. MMP2 expression is a prognostic marker for primary melanoma patients[J]. Cell Oncol (Dordr),2012,35(3):207-216.
    [38]Proniewska-Skretek E, Mariak Z. [Tumor angiogensis in uveal melanoma. Role of vascular endothelial growth factor (VEGF)][J]. Klin Oczna,2004,106(4-5):682-685.
    [1]Cox G, O'Byrne K J. Matrix metalloproteinases and cancer[J]. Anticancer Res, 2001,21(6B):4207-4219.
    [2]黄莹雪,徐秀莲,孙建方.皮肤恶性黑素瘤与组织型基质金属蛋白酶抑制剂[J].国际皮肤性病学杂志,2013,39(1):25-28.
    [3]Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs):an ancient family with structural and functional diversity [J]. Biochim Biophys Acta,2010,1803(1):55-71.
    [4]Airola K, Karonen T, Vaalamo M, et al. Expression of collagenases-1 and -3 and their inhibitors TIMP-1 and -3 correlates with the level of invasion in malignant melanomas[J]. Br J Cancer, 1999,80(5-6):733-743.
    [5]Rey M C, Bonamigo R R, Cartell A, et al. MMP-2 and TIMP-2 in cutaneous melanoma:association with prognostic factors and description in cutaneous metastases[J]. Am J Dermatopathol, 2011,33(4):413-414.
    [6]Zheng H C, Takahashi H, Murai Y, et al. Upregulated EMMPRIN/CD147 might contribute to growth and angiogenesis of gastric carcinoma:a good marker for local invasion and prognosis[J]. Br J Cancer,2006,95(10):1371-1378.
    [7]Melendez-Zajgla J, Del P L, Ceballos G, et al. Tissue inhibitor of metalloproteinases-4. The road less traveled[J]. Mol Cancer,2008,7:85.
    [8]Rorive S, Lopez X M, Maris C, et al. TIMP-4 and CD63:new prognostic biomarkers in human astrocytomas[J]. Mod Pathol, 2010,23(10):1418-1428.
    [9]Lee S, Desai K K, Iczkowski K A, et al. Coordinated peak expression of MMP-26 and TIMP-4 in preinvasive human prostate tumor[J]. Cell Res,2006,16(9):750-758.
    [10]Balch C M, Gershenwald J E, Soong S J, et al. Final version of 2009 AJCC melanoma staging and classification[J]. J Clin Oncol,2009,27(36):6199-6206.
    [11]Lee S J, Lim H J, Choi Y H, et al. The clinical significance of tumor-infiltrating lymphocytes and microscopic satellites in acral melanoma in a korean population[J]. Ann Dermatol,2013,25(1):61-66.
    [12]Ladstein R G, Bachmann I M, Straume O, et al. Ki-67 expression is superior to mitotic count and novel proliferation markers PHH3, MCM4 and mitosin as a prognostic factor in thick cutaneous melanoma[J]. BMC Cancer,2010,10:140.
    [13]Proniewska-Skretek E, Mariak Z. [Tumor angiogensis in uveal melanoma. Role of vascular endothelial growth factor (VEGF)][J]. Klin Oczna,2004,106(4-5):682-685.
    [14]Fernandez C A, Moses M A. Modulation of angiogenesis by tissue inhibitor of metalloproteinase-4[J]. Biochem Biophys Res Commun,2006,345(1):523-529.
    [15]Jiang Y, Goldberg I D, Shi Y E. Complex roles of tissue inhibitors of metalloproteinases in cancer[J]. Oncogene,2002,21(14):2245-2252.
    [16]Rotte A, Martinka M, Li G. MMP2 expression is a prognostic marker for primary melanoma patients[J]. Cell Oncol (Dordr),2012,35(3):207-216.
    [17]Zaman K, Driscoll R, Hahn D, et al. Monitoring multiple angiogenesis-related molecules in the blood of cancer patients shows a correlation between VEGF-A and MMP-9 levels before treatment and divergent changes after surgical vs. conservative therapy[J]. Int J Cancer,2006,118(3):755-764.
    [1]Curran S, Murray G I. Matrix metalloproteinases:molecular aspects of their roles in tumour invasion and metastasis[J]. Eur J Cancer,2000,36(13 Spec No):1621-1630.
    [2]Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs):an ancient family with structural and functional diversity[J]. Biochim Biophys Acta,2010,1803(1):55-71.
    [3]Hofmann U B, Westphal J R, Van Muijen G N, et al. Matrix metalloproteinases in human melanoma[J]. J Invest Dermatol,2000,115(3):337-344.
    [4]Han X, Zhang H, Jia M, et al. Expression of TIMP-3 gene by construction of a eukaryotic cell expression vector and its role in reduction of metastasis in a human breast cancer cell line[J]. Cell Mol Immunol,2004,1 (4):308-310.
    [5]Yu X F, Yang C, Liang L H, et al. Inhibition of human leukemia xenograft in nude mice by adenovirus-mediated tissue inhibitor of metalloproteinase-3[J]. Leukemia,2006,20(1):1-8.
    [6]Powe D G, Brough J L, Carter G I, et al. TIMP-3 mRNA expression is regionally increased in moderately and poorly differentiated colorectal adenocarcinoma[J]. Br J Cancer, 1997,75(11):1678-1683.
    [7]Bond M, Murphy G, Bennett M R, et al. Localization of the death domain of tissue inhibitor of metalloproteinase-3 to the N terminus. Metalloproteinase inhibition is associated with proapoptotic activity[J]. J Biol Chem,2000,275(52):41358-41363.
    [8]Feldman A L, Stetler-Stevenson W G, Costouros N G, et al. Modulation of tumor-host interactions, angiogenesis, and tumor growth by tissue inhibitor of metalloproteinase 2 via a novel mechanism[J]. Cancer Res,2004,64(13):4481-4486.
    [9]Jiang Y, Wang M, Celiker M Y, et al. Stimulation of mammary tumorigenesis by systemic tissue inhibitor of matrix metalloproteinase 4 gene delivery[J]. Cancer Res,2001,61(6):2365-2370.
    [10]Jiang Y, Goldberg I D, Shi Y E. Complex roles of tissue inhibitors of metalloproteinases in cancer[J]. Oncogene,2002,21(14):2245-2252.
    [11]Handsley M M, Edwards D R. Metalloproteinases and their inhibitors in tumor angiogenesis[J]. Int J Cancer,2005,115(6):849-860.
    [12]Fernandez C A, Moses M A. Modulation of angiogenesis by tissue inhibitor of metalloproteinase-4[J]. Biochem Biophys Res Commun,2006,345(1):523-529.
    [13]Sun J. Matrix metalloproteinases and tissue inhibitor of metalloproteinases are essential for the inflammatory response in cancer cells[J]. J Signal Transduct,2010,2010:985132.
    [14]Steffensen K D, Waldstrom M, Christensen R K, et al. Lack of relationship between TIMP-1 tumour cell immunoreactivity, treatment efficacy and prognosis in patients with advanced epithelial ovarian cancer[J]. BMC Cancer,2010,10:185.
    [15]Asai M, Kato M, Asai N, et al. Differential regulation of MMP-9 and TIMP-2 expression in malignant melanoma developed in metallothionein/RET transgenic mice[J]. Jpn J Cancer Res, 1999,90(1):86-92.
    [16]MacDougall J R, Bani M R, Lin Y, et al.'Proteolytic switching':opposite patterns of regulation of gelatinase B and its inhibitor TIMP-1 during human melanoma progression and consequences of gelatinase B overexpression[J]. Br J Cancer,1999,80(3-4):504-512.
    [17]Khokha R. Suppression of the tumorigenic and metastatic abilities of murine B16-F10 melanoma cells in vivo by the overexpression of the tissue inhibitor of the metalloproteinases-1 [J]. J Natl Cancer Inst,1994,86(4):299-304.
    [18]Valente P, Fassina G, Melchiori A, et al. TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis[J]. Int J Cancer,1998,75(2):246-253.
    [19]Ahonen M, Baker A H, Kahari V M. Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells[J]. Cancer Res, 1998,58(11):2310-2315.
    [20]Ahonen M, Poukkula M, Baker A H, et al. Tissue inhibitor of metalloproteinases-3 induces apoptosis in melanoma cells by stabilization of death receptors[J]. Oncogene,2003,22(14):2121-2134.
    [21]Cruz-Munoz W, Kim I, Khokha R. TIMP-3 deficiency in the host, but not in the tumor, enhances tumor growth and angiogenesis[J]. Oncogene,2006,25(4):650-655.
    [22]Cruz-Munoz W, Sanchez O H, Di Grappa M, et al. Enhanced metastatic dissemination to multiple organs by melanoma and lymphoma cells in timp-3-/- mice[J]. Oncogene,2006,25(49):6489-6496.
    [23]Nemeth J A, Rafe A, Steiner M, et al. TIMP-2 growth-stimulatory activity:a concentration- and cell type-specific response in the presence of insulin[J]. Exp Cell Res,1996,224(1):110-115.
    [24]Hoashi T, Kadono T, Kikuchi K, et al. Differential growth regulation in human melanoma cell lines by TIMP-1 and TIMP-2[J]. Biochem Biophys Res Commun,2001,288(2):371-379.
    [25]Airola K, Karonen T, Vaalamo M, et al. Expression of collagenases-1 and -3 and their inhibitors TIMP-1 and -3 correlates with the level of invasion in malignant melanomas[J]. Br J Cancer, 1999,80(5-6):733-743.
    [26]Rey M C, Bonamigo R R, Cartell A, et al. MMP-2 and TIMP-2 in cutaneous melanoma:association with prognostic factors and description in cutaneous metastases[J]. Am J Dermatopathol, 2011,33(4):413-414.
    [27]Yoshino Y, Kageshita T, Nakajima M, et al. Clinical relevance of serum levels of matrix metallopeptidase-2, and tissue inhibitor of metalloproteinase-1 and -2 in patients with malignant melanoma[J]. J Dermatol,2008,35(4):206-214.
    [28]Tas F, Duranyildiz D, Oguz H, et al. Serum matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 in patients with malignant melanoma[J]. Med Oncol,2005,22(1):39-44.
    [29]Sun J, Stetler-Stevenson W G. Overexpression of tissue inhibitors of metalloproteinase 2 up-regulates NF-kappaB activity in melanoma cells[J]. J Mol Signal,2009,4:4.
    [30]Hofmann U B, Becker J C, Brocker E B. [Role of matrix-degrading enzymes in melanoma progression][J]. Hautarzt,2002,53(9):587-595.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700