多孔TiO_2吸附—光催化净化室内典型VOCs的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO2光催化是目前最具应用潜力的室内气态有机污染物净化技术之一,但由于室内有机污染物浓度低(ppb级)、催化净化停留时间短(10ms级),导致TiO2吸附-光催化效率较低。同时,光催化剂表面易附着空气中的颗粒物,造成活性位点失活,制约光催化技术的大规模产业化应用。为此,本文研究了TiO2微孔吸附低浓度气态有机污染物的行为及其强化光催化降解的机制,在此基础上,提出优化微孔稳定性和结晶度的新方法。此外,为阻隔空气中的颗粒物,探索了多孔TiO2外层包覆SiO2绝缘纳米薄膜的制备方法,试图为开发经济高效的光催化剂提供技术支持。论文取得以下主要成果:
     (1)阐明了微孔TiO2吸附及光催化低浓度气态甲苯和环己酮的构效关系。发现随有机污染物浓度降低或停留时间变短,微孔TiO2与P25对污染物去除效率的比值增大;微孔面积和结晶度是决定TiO2对低浓度气态有机污染物吸附-光催化协同效应的关键参数;微孔TiO2表面存在大量TiⅡ和Tim中心,诱导环己酮O=C双键打开,促进环己酮的降解。
     (2)探明了优化微孔TiO2结构的新方法,显著提升了微孔的稳定性和结晶度。制备的无定形微孔TiO2微孔面积达到493m2/g,是同类材料稳定状态下的2.2倍以上,对低浓度甲苯(0.036mg/m3)的平衡吸附量和吸附速率常数分别是P25的36.8倍和1.53倍;制备了具有锐钛晶型的微孔TiO2,微孔面积达到258m2/g,对低浓度甲苯(0.036mg/m3)的平衡吸附量和吸附速率常数分别是P25材料的10.3倍和1.5倍,去除率和矿化率相比P25提高了11.8%和89%。
     (3)提出了多孔TiO2外层包覆SiO2纳米薄膜防止颗粒物占据活性位点的方法。材料内部TiO2呈堆积多孔结构,提供反应界面;外部包覆孔径为5-10nm的Si02纳米薄膜,保护TiO2表面,屏蔽TiO2表面电荷,同时不影响TiO2的光催化活性。
Adsorption and photodegradation are key steps in indoor air purification. Micropores have been introduced to TiO2nanocatalysts in order to enhance the adsorption of the pollutant on the photocatalyst surface, thereby increasing the utilization of the photo-induced electron-hole pairs. Two different nanocomposites, anatase microporous TiO2and amorphous microporous TiO2, have been synthesized under mild hydrothermal conditions using dodecylamine/dodecyl-2-pyridinyl-methylamine as pore-forming agents and varying temperature of preparation. Samples synthesized at different conditions provided interesting insights into the impact of crystallinity, valence of surface elements, and micropore area on the removal efficiency of gas-phase organic pollutants. Among the two, amorphous microporous TiO2had the largest micropore surface area of493m2·g-1but amorphous phase, while anatase micorporous TiO2had both a relatively large micropore urface area of258m2·g-1and anatase crystal structure. Toluene and cyclohexane were chosen as two models of hydrophilic and hydrophobic air pollutants. Experiments were performed in a single-pass reactor under a variety of experimental conditions, such as varying partial pressures of toluene, contact times, and relative humidities of the mobile gas phase, in order to approximate the realistic conditions. The equilibrium-adsorption-amount of toluene and cyclohexane over amorphous microporous TiO2were36.8and8times higher than those of P25, respectively. Moreover, the amorphous microporous TiO2also showed efficient self-recovery ability. Among the two prototype catalysts, anatase micorporous TiO2showed the highest removal and mineralization efficiency. The adsorption capacity and photocatalytic removal efficiency are controlled by the micropore surface area, concentration of surface TiⅡ andTⅢ, and the crystallinity of the photocatalyst. Besides, to protect the surface active sites of TiO2from being infected by the particles generally existed in atmosphere, porous-SiO2-encapsulated TiO2was developed. The pore size of outside SiO2shell can be well controlled between5-10nm. The inside TiO2nanoparticles aggregated together to form porous profile thereby generating relatively large amount of reactive sites. The results showed that the SiO2shell didn't reduce the photocatalytic activity of inner TiO2and shield the electric charge on the TiO2surface.
引文
1. Sureda, X.; Fernandez, E.; Lopez, M. J.; Nebot, M., Secondhand tobacco smoke exposure in open and semi-open settings:A systematic review. Environmental Health Perspectives 2013,121, (7),766-773
    2. Clark, M. L.; Peel, J. L.; Balakrishnan, K.; Breysse, P. N.; Chillrud, S. N.; Naeher, L. P.; Rodes, C. E.; Vette, A. F.; Balbus, J. M., Health and household air pollution from solid fuel use:The need for improved exposure assessment. Environmental Health Perspectives 2013,121, (10),1120-1128
    3. Springer, C.; Dere, E.; Hall, S. J.; McDonnell, E. V.; Roberts, S. C.; Butt, C. M.; Stapleton, H. M.; Watkins, D. J.; McClean, M. D.; Webster, T. F.; Schlezinger, J. J.; Boekelheide, K., Rodent thyroid, liver, and fetal testis toxicity of the monoester metabolite of bis-(2-ethylhexyl) tetrabromophthalate (TBPH), a novel brominated flame retardant present in indoor dust. Environmental Health Perspectives 2012, 120,(12),1711-1719
    4. Reid, B. C.; Ghazarian, A. A.; DeMarini, D. M.; Sapkota, A.; Jack, D.; Lan, Q.; Winn, D. M.; Birnbaum, L. S., Research opportunities for cancer associated with indoor air pollution from solid-fuel combustion. Environmental Health Perspectives 2012,120, (11),1495-1498
    5. Logue, J. M.; Price, P. N.; Sherman, M. H.; Singer, B. C., A method to estimate the chronic health impact of air pollutants in U.S. residences. Environmental Health Perspectives 2012,120, (2),216-222
    6. Dadvand, P.; de Nazelle, A.; Triguero-Mas, M.; Schembari, A.; Cirach, M.; Amoly, E.; Figueras, F.; Basagana, X.; Ostro, B.; Nieuwenhuijsen, M., Surrounding greenness and exposure to air pollution during pregnancy:An analysis of personal monitoring data. Environmental Health Perspectives 2012,120, (9),1286-1290
    7. United States Environmental Protection Agency, U. S. C. P. S. C., The Inside Story: A Guide to Indoor Air Quality. In 1995; Vol. EPA Document#40-K-93-007
    8. Sidheswaran, M. A.; Destaillats, H.; Sullivan, D. P.; Cohn, S.; Fisk, W. J., Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters. Building and Environment 2012,47,(1),357-367
    9. An, H. B.; Yu, M. J.; Kim, J. M.; Jin, M.; Jeon, J. K.; Park, S. H.; Kim, S. S.; Park, Y. K., Indoor formaldehyde removal over CMK-3. Nanoscale Research Letters 2012,7,1-14
    10. Mo, J.; Zhang, Y.; Xu, Q., Effect of water vapor on the by-products and decomposition rate of ppb-level toluene by photocatalytic oxidation. Applied Catalysis B:Environmental 2013,132-133,212-218
    11. Waring, M. S.; Siegel, J. A., The effect of an ion generator on indoor air quality in a residential room. Indoor Air 2011,21, (4),267-276
    12. Cho, M. S.; Ko, H. J.; Kim, D.; Kim, K. Y., On-site application of air cleaner emitting plasma ion to reduce airborne contaminants in pig building. Atmospheric Environment 2012,63,276-281
    13. Chen, H. L.; Lee, H. M.; Chen, S. H.; Chang, M. B.; Yu, S. J.; Li, S. N., Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems:A review of the performance enhancement mechanisms, current status, and suitable applications. Environmental Science and Technology 2009,43, (7), 2216-2227
    14. Lu, Y.; Liu, J.; Lu, B.; Jiang, A.; Wan, C., Study on the removal of indoor VOCs using biotechnology. Journal of Hazardous Materials 2010,182, (1-3),204-209.
    15. Fujishima, A.; Honda, K., Electrochemical photolysis of water at a semiconductor electrode. Nature 1972,238, (5358),37-38
    16. Paz, Y., Application of TiO2 photocatalysis for air treatment:Patents' overview. Applied Catalysis B:Environmental 2010,99, (3-4),448-460
    17. Mills, A.; Lee, S. K., A web-based overview of semiconductor photochemistry-based current commercial applications. Journal of Photochemistry and Photobiology A:Chemistry 2002,152, (1-3),233-247
    18. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W., Environmental applications of semiconductor photocatalysis. Chemical Reviews 1995,95, (1),69-96
    19. Herrmann, J.-M., Heterogeneous photocatalysis:fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today 1999,53, (1), 115-129
    20. Chen, X.; Mao, S. S., Titanium dioxide nanomaterials:Synthesis, properties, modifications and applications. Chemical Reviews 2007,107, (7),2891-2959
    21. Thompson, T. L.; Yates Jr, J. T., Surface science studies of the photoactivation of TIO2-New photochemical processes. Chemical Reviews 2006,106, (10),4428-4453
    22. Markowska-Szczupak, A.; Ulfig, K.; Morawski, A. W., The application of titanium dioxide for deactivation of bioparticulates:An overview. Catalysis Today 2011,169, (1),249-257
    23. Chen, X.; Burda, C., The electronic origin of the visible-light absorption properties of C-, N-and S-doped TiO2 nanomaterials. Journal of the American Chemical Society 2008, 130, (15),5018-5019
    24. Gole, J. L.; Prokes, S. M.; Glembocki, O. J.; Wang, J.; Qiu, X.; Burda, C., Study of concentration-dependent cobalt ion doping of TiO2 and TiO2-xNx at the nanoscale. Nanoscale 2010,2, (7),1134-1140
    25. Ji, Y.; Lin, K.-C.; Zheng, H.; Liu, C.-C.; Dudik, L.; Zhu, J.; Burda, C., Solar-Light Photoamperometric and Photocatalytic Properties of Quasi-transparent TiO2 Nanoporous Thin Films. Acs Applied Materials & Interfaces 2010,2,(11),3075-3082
    26. Ochiai, T.; Fujishima, A., Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. Journal of Photochemistry and Photobiology C-Photochemistry Reviews 2012,13, (4),247-262
    27. 塔里克,王雪松,陈春城,马万红,赵进才,有毒难降解有机污染物的光催化降解.催化学报2007,12,1117-1122
    28. Wang, S.; Ang, H. M.; Tade, M. O., Volatile organic compounds in indoor environment and photocatalytic oxidation:State of the art. Environment International 2007,33, (5),694-705
    29. Ohura, T.; Amagai, T.; Shen, X.; Li, S.; Zhang, P.; Zhu, L., Comparative study on indoor air quality in Japan and China:Characteristics of residential indoor and outdoor VOCs. Atmospheric Environment 2009,43, (40),6352-6359
    30. Weng, M.; Zhu, L.; Yang, K.; Chen, S., Levels, sources, and health risks of carbonyls in residential indoor air in Hangzhou, China. Environmental Monitoring and Assessment 2010,163, (1-4),573-581
    31. Liu, Y. J.; Zhu, L. Z.; Shen, X. Y., Polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of Hangzhou, China. Environmental Science & Technology 2001,35, (5),840-844
    32.于季红,纳米光催化技术在净化室内空气中的应用.环境保护与循环经济2010,5,60-62
    33. Bui, T. D.; Kimura, A.; Ikeda, S.; Matsumura, M., Determination of oxygen sources for oxidation of benzene on TiO2 photocatalysts in aqueous solutions containing molecular oxygen. Journal of the American Chemical Society 2010, 132, (24),8453-8458
    34. Zhang, Z.; Yates, J. T., Band bending in semiconductors:Chemical and physical consequences at surfaces and interfaces. Chemical Reviews 2012,112, (10),5520-5551
    35. Nakamura, R.; Tanaka, T.; Nakato, Y., Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. Journal of Physical Chemistry B 2004,108, (30),10617-10620
    36. Sene, J. J.; Zeltner, W. A.; Anderson, M. A., Fundamental photoelectrocatalytic and electrophoretic mobility studies of TiO2 and v-doped TiO2 thin-film electrode materials. Journal of Physical Chemistry B 2003,107, (7),1597-1603
    37. Wisthaler, A.; Str(?)m-Tejsen, P.; Fang, L.; Arnaud, T. J.; Hansel, A.; Mark, T. D.; Wyon, D. P., PTR-MS assessment of photocatalytic and sorption-based purification of recirculated cabin air during simulated 7-h flights with high passenger density. Environmental Science and Technology 2007,41, (1),229-234
    38. Hodgson, A. T.; Destaillats, H.; Sullivan, D. P.; Fisk, W. J., Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications. Indoor Air 2007,17, (4),305-316
    39. Destaillats, H.; Sleiman, M.; Sullivan, D. P.; Jacquiod, C.; Sablayrolles, J.; Molins, L., Key parameters influencing the performance of photocatalytic oxidation (PCO) air purification under realistic indoor conditions. Applied Catalysis B: Environmental 2012,128,159-170
    40. Jacoby, W. A.; Blake, D. M.; Fennell, J. A.; Boulter, J. E.; Vargo, L. M.; George, M. C.; Dolberg, S. K., Heterogeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor Air. Journal of the Air and Waste Management Association 1996,46, (9),891-898
    41. Maudhuit, A.; Raillard, C.; Hequet, V.; Le Coq, L.; Sablayrolles, J.; Molins, L., Adsorption phenomena in photocatalytic reactions:The case of toluene, acetone and heptane. Chemical Engineering Journal 2011,170, (2-3),464-470
    42. Coronado, J. M.; Zorn, M. E.; Tejedor-Tejedor, I.; Anderson, M. A., Photocatalytic oxidation of ketones in the gas phase over TiO2 thin films:a kinetic study on the influence of water vapor. Applied Catalysis B-Environmental 2003, 43, (4),329-344
    43. Zhao, J.; Yang, X., Photocatalytic oxidation for indoor air purification:A literature review. Building and Environment 2003,38, (5),645-654
    44. Mills, A.; Le Hunte, S., An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A:Chemistry 1997,108, (1),1-35
    45. Bouzaza, A.; Laplanche, A., Photocatalytic degradation of toluene in the gas phase: Comparative study of some TiO2 supports. Journal of Photochemistry and Photobiology A:Chemistry 2002,150,(1-3),207-212
    46. Pulido Melian, E.; Gonzalez Diaz, O.; Arana, J.; Dona Rodriguez, J. M.; Tello Rendon, E.; Herrera Melian, J. A., Kinetics and adsorption comparative study on the photocatalytic degradation of o-, m- and p-cresol. Catalysis Today 2007,129, (1-2),256-262
    47. Wang, J.; Mao, B.; Gole, J. L.; Burda, C., Visible-light-driven reversible and switchable hydrophobic to hydrophilic nitrogen-doped titania surfaces:Correlation with photocatalysis. Nanoscale 2010,2,(10),2257-2261
    48. Larsson, A.-C. Study of Catalyst Deactivation in Three Different Industrial Processes. Vaxjo University,2007
    49. Zhang, L.; Dillert, R.; Bahnemann, D.; Vormoor, M., Photo-induced hydrophilicity and self-cleaning:Models and reality. Energy and Environmental Science 2012,5,(6),7491-7507
    50. Nakajima, A.; Koizumi, S. I.; Watanabe, T.; Hashimoto, K., Photoinduced amphiphilic surface on polycrystalline anatase TiO2 thin films. Langmuir 2000,16, (17),7048-7050
    51. Shibata, T.; Irie, H.; Hashimoto, K., Photoinduced hardness change on TiO2 single crystal surfaces. Chemical Communications 2009, (25),3735-3737
    52. Wolkoff, P.; Wilkins, C. K.; Clausen, P. A.; Nielsen, G. D., Organic compounds in office environments-Sensory irritation, odor, measurements and the role of reactive chemistry. Indoor Air 2006,16, (1),7-19
    53. Harrad, S.; De Wit, C. A.; Abdallah, M. A. E.; Bergh, C; Bjorklund, J. A.; Covaci, A.; Darnerud, P. O.; De Boer, J.; Diamond, M.; Huber, S.; Leonards, P.; Mandalakis, M.; Ostman, C.; Haug, L. S.; Thomsen, C.; Webster, T. F., Indoor contamination with hexabromocyclododecanes, polybrominated diphenyl ethers, and perfluoroalkyl compounds:An important exposure pathway for people? Environmental Science and Technology 2010,44, (9),3221-3231
    54. Weng, M.; Zhu, L.; Yang, K.; Chen, S., Levels and health risks of carbonyl compounds in selected public places in Hangzhou, China. Journal of Hazardous Materials 2009,164, (2-3),700-706
    55. Zhu, L.; Lu, H.; Chen, S.; Amagai, T., Pollution level, phase distribution and source analysis of polycyclic aromatic hydrocarbons in residential air in Hangzhou, China. Journal of Hazardous Materials 2009,162, (2-3),1165-1170
    56. van der Veen, I.; de Boer, J., Phosphorus flame retardants:Properties, production, environmental occurrence, toxicity and analysis. Chemosphere 2012,88, (10), 1119-1153
    57. Golden, R., Identifying an indoor air exposure limit for formaldehyde considering both irritation and cancer hazards. Critical Reviews in Toxicology 2011,41, (8), 672-721
    58. Sarigiannis, D. A.; Karakitsios, S. P.; Gotti, A.; Liakos, I. L.; Katsoyiannis, A., Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk. Environment International 2011,37, (4), 743-765
    59. Stevens, L.; Lanning, J. A.; Andersen, L. G.; Jacoby, W. A.; Chornet, N., Investigation of the photocatalytic oxidation of low-level carbonyl compounds. Journal of the Air and Waste Management Association 1998,48, (10),979-984
    60. Obee, T. N.; Brown, R. T., TiO2 photocatalysis for indoor air applications-effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environmental Science & Technology 1995,29, (5), 1223-1231
    61. Yu, K. P.; Lee, G. W. M.; Huang, W. M.; Wu, C.; Yang, S., The correlation between photocatalytic oxidation performance and chemical/physical properties of indoor volatile organic compounds. Atmospheric Environment 2006,40, (2),375-385
    62. Raillard, C.; Hequet, V.; Le Cloirec, P.; Legrand, J., Kinetic study of ketones photocatalytic oxidation in gas phase using TiO2-containing paper:Effect of water vapor. Journal of Photochemistry and Photobiology A:Chemistry 2004,163, (3), 425-431
    63. Shiraishi, F.; Yamaguchi, S.; Ohbuchi, Y., A rapid treatment of formaldehyde in a highly tight room using a photocatalytic reactor combined with a continuous adsorption and desorption apparatus. Chemical Engineering Science 2003,58, (3-6),929-934
    64. Mo, J.; Zhang, Y.; Xu, Q.; Lamson, J. J.; Zhao, R., Photocatalytic purification of volatile organic compounds in indoor air:A literature review. Atmospheric Environment 2009,43, (14),2229-2246
    65. Quici, N.; Vera, M. L.; Choi, H.; Puma, G. L.; Dionysiou, D. D.; Litter, M. I.; Destaillats, H., Effect of key parameters on the photocatalytic oxidation of toluene at low concentrations in air under 254+185 nm UV irradiation. Applied Catalysis B:Environmental 2010,95, (3-4),312-319
    66. Ao, C. H.; Lee, S. C., Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level. Applied Catalysis B:Environmental 2003,44, (3),191-205
    67. Zhu, J.; Newhook, R.; Marro, L.; Chan, C. C., Selected volatile organic compounds in residential air in the city of Ottawa, Canada. Environmental Science and Technology 2005,39, (11),3964-3971
    68. Lu, H.; Zhu, L.; Chen, S., Pollution level, phase distribution and health risk of polycyclic aromatic hydrocarbons in indoor air at public places of Hangzhou, China. Environmental Pollution 2008,152,(3),569-575
    69. Kolarik, B.; Lagercrantz, L.; Sundell, J., Nitric oxide in exhaled and aspirated nasal air as an objective measure of human response to indoor air pollution. Indoor Air 2009,19,(2),145-152
    70. Hersoug, L. G.; Husemoen, L. L. N.; Thomsen, S. F.; Sigsgaard, T.; Thuesen, B. H.; Linneberg, A., Association of indoor air pollution with rhinitis symptoms, atopy and nitric oxide levels in exhaled air. International Archives of Allergy and Immunology 2010,153, (4),403-412
    71. Chen, H. Y.; Zahraa, O.; Bouchy, M., Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO2 by inorganic ions. Journal of Photochemistry and Photobiology A:Chemistry 1997,108,(1),37-44
    72. Zom, M. E.; Hay, S. O.; Anderson, M. A., Effect of molecular functionality on the photocatalytic oxidation of gas-phase mixtures. Applied Catalysis B: Environmental 2010,99, (3-4),420-427
    73. Ao, C. H.; Lee, S. C.; Zou, S. C.; Mak, C. L., Inhibition effect of SO2 on NOx and VOCs during the photodegradation of synchronous indoor air pollutants at parts per billion (ppb) level by TiO2. Applied Catalysis B:Environmental 2004,49, (3), 187-193
    74. Zhang, Y. P.; Yang, R.; Xu, Q. J.; Mo, J. H., Characteristics of photocatalytic oxidation of toluene, benzene, and their mixture. Journal of the Air and Waste Management Association 2007,57, (1),94-101
    75. Vildozo, D.; Portela, R.; Ferronato, C.; Chovelon, J. M., Photocatalytic oxidation of 2-propanol/toluene binary mixtures at indoor air concentration levels. Applied Catalysis B:Environmental 2011,107, (3-4),347-354
    76. Jan, Y. H.; Lin, L. Y.; Karthik, M.; Bai, H., Titanium dioxide/zeolite catalytic adsorbent for the removal of NO and acetone vapors. Journal of the Air and Waste Management Association 2009,59, (10),1186-1193
    77. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T., Light-induced amphiphilic surfaces. Nature 1997,388, (6641),431-432
    78. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T., Photogeneration of highly amphiphilic TiO2 surfaces. Advanced Materials 1998,10, (2),135-138
    79. Pichat, P., Some views about indoor air photocatalytic treatment using TiO2: Conceptualization of humidity effects, active oxygen species, problem of C1-C3 carbonyl pollutants. Applied Catalysis B:Environmental 2010,99, (3-4),428-434
    80. Nosaka, A. Y.; Fujiwara, T.; Yagi, H.; Akutsu, H.; Nosaka, Y., Characteristics of water adsorbed on TiO2 photocatalytic systems with increasing temperature as studied by solid-state 1H NMR Spectroscopy. Journal of Physical Chemistry B 2004,108, (26),9121-9125
    81. Zhang, L.; Anderson, W. A.; Sawell, S.; Moralejo, C., Mechanistic analysis on the influence of humidity on photocatalytic decomposition of gas-phase chlorobenzene. Chemosphere 2007,68, (3),546-553
    82. Zhao, W.; Dai, J.; Liu, F.; Bao, J.; Wang, Y.; Yang, Y.; Zhao, D., Photocatalytic oxidation of indoor toluene:Process risk analysis and influence of relative humidity, photocatalysts, and VUV irradiation. Science of the Total Environment 2012,438,201-209
    83. Ou, H.-H.; Lo, S.-L., Photocatalysis of gaseous trichloroethylene (TCE) over TiO2: The effect of oxygen and relative humidity on the generation of dichloroacetyl chloride (DCAC) and phosgene. Journal of Hazardous Materials 2007,146, (1-2), 302-308
    84. Bouazza, N.; Lillo-Rodenas, M. A.; Linares-Solano, A., Photocatalytic activity of TiO(2)-based materials for the oxidation of propene and benzene at low concentration in presence of humidity. Applied Catalysis B-Environmental 2008, 84. (3-4),691-698
    85. Raillard, C.; Hequet, V.; Le Cloirec, P.; Legrand, J., TiO2 coating types influencing the role of water vapor on the photocatalytic oxidation of methyl ethyl ketone in the gas phase. Applied Catalysis B-Environmental 2005,59, (3-4),213-220
    86. Mo, J.; Zhang, Y.; Xu, Q.; Zhu, Y.; Lamson, J. J.; Zhao, R., Determination and risk assessment of by-products resulting from photocatalytic oxidation of toluene. Applied Catalysis B:Environmental 2009,89, (3-4),570-576
    87. Sleiman, M.; Conchon, P.; Ferronato, C.; Chovelon, J. M., Photocatalytic oxidation of toluene at indoor air levels (ppbv):Towards a better assessment of conversion, reaction intermediates and mineralization. Applied Catalysis B: Environmental 2009,86,(3-4),159-165
    88. Ao, C. H.; Lee, S. C., Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level. Journal of Photochemistry and Photobiology A:Chemistry 2004,161,(2-3),131-140
    89. Sleiman, M.; Ferronato, C.; Chovelon, J. M., Photocatalytic removal of pesticide dichlorvos from indoor air:A study of reaction parameters, intermediates and mineralization. Environmental Science and Technology 2008,42, (8),3018-3024
    90. Tsai, C. W.; Chang, C. T.; Chiou, C. S.; Shie, J. L.; Chang, Y. M., Study on the indoor volatile organic compound treatment and performance assessment with TiO2/MCM-41 and TiO2/quartz photoreactor under ultraviolet irradiation. Journal of the Air and Waste Management Association 2008,58,(10),1266-1273
    91. Tasbihi, M.; Kete, M.; Raichur, A. M.; Tusar, N. N.; Stangar, U. L., Photocatalytic degradation of gaseous toluene by using immobilized titania/silica on aluminum sheets. Environmental Science and Pollution Research 2012,19,(9),3735-3742
    92. Takeda, N.; Torimoto, T.; Sampath, S.; Kuwabata, S.; Yoneyama, H., Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde. Journal of Physical Chemistry 1995,99, (24), 9986-9991
    93. Taranto, J.; Frochot, D.; Pichat, P., Photocatalytic Treatment of Air:Comparison of Various TiO2, Coating Methods, and Supports Using Methanol or n-Octane as Test Pollutant. Industrial & Engineering Chemistry Research 2009,48, (13), 6229-6236
    94. De Witte, K.; Meynen, V.; Mertens, M.; Lebedev, O. I.; Van Tendeloo, G.; Sepulveda-Escribano, A.; Rodriguez-Reinoso, F.; Vansant, E. F.; Cool, P., Multi-step loading of titania on mesoporous silica:Influence of the morphology and the porosity on the catalytic degradation of aqueous pollutants and VOCs. Applied Catalysis B-Environmental 2008,84, (1-2),125-132
    95. Zhang, M.; An, T.; Fu, J.; Sheng, G.; Wang, X.; Hu, X.; Ding, X., Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor. Chemosphere 2006,64, (3), 423-431
    96. Thevenet, F.; Guaitella, O.; Herrmann, J. M.; Rousseau, A.; Guillard, C, Photocatalytic degradation of acetylene over various titanium dioxide-based photocatalysts. Applied Catalysis B-Environmental 2005,61,(1-2),58-68
    97. Rodrigues, S.; Ranjit, K. T.; Uma, S.; Martyanov, I. N.; Klabunde, K. J., Single-step synthesis of a highly active visible-light photocatalyst for oxidation of a common indoor air pollutant:Acetaldehyde. Advanced Materials 2005,17, (20), 2467-2471
    98. Jo, W.-K.; Kim, K.-H., Feasibility of Carbonaceous Nanomaterial-Assisted Photocatalysts Calcined at Different Temperatures for Indoor Air Applications. International Journal of Photoenergy 2012
    99. Yang, Y.; Chiang, K.; Burke, N., Porous carbon-supported catalysts for energy and environmental applications:A short review. Catalysis Today 2011,178,(1),197-205
    100. Zhang, Y.; Tang, Z. R.; Fu, X.; Xu, Y. J., TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant:Is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano 2010,4, (12),7303-7314
    101. Wang, W.; Yu, J.; Xiang, Q.; Cheng, B., Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2-graphene composites for photodegradation of acetone in air. Applied Catalysis B:Environmental 2012,119-120, (0),109-116
    102. Kibanova, D.; Cervini-Silva, J.; Destaillats, H., Efficiency of Clay-TiO2 Nanocomposites on the Photocatalytic Elimination of a Model Hydrophobic Air Pollutant. Environmental Science & Technology 2009,43, (5),1500-1506
    103. Kibanova, D.; Trejo, M.; Destaillats, H.; Cervini-Silva, J., Synthesis of hectorite-TiO2 and kaolinite-TiO2 nanocomposites with photocatalytic activity for the degradation of model air pollutants. Applied Clay Science 2009,42, (3-4),563-568
    104. Sharmin, R.; Ray, M. B., Application of ultraviolet light-emitting diode photocatalysis to remove volatile organic compounds from indoor air. Journal of the Air & Waste Management Association 2012,62, (9)
    105. Yu, H. G.; Lee, S. C.; Yu, J. G.; Ao, C. H., Photocatalytic activity of dispersed TiO2 particles deposited on glass fibers. Journal of Molecular Catalysis a-Chemical 2006,246,(1-2),206-211
    106. Mo, J.; Zhang, Y.; Xu, Q.; Yang, R., Effect of TiO2/adsorbent hybrid photocatalysts for toluene decomposition in gas phase. Journal of Hazardous Materials 2009,168, (1),276-281
    107. Antonelli, D. M.; Ying, J. Y., Synthesis of hexagonally packed mesoporous tio2 by a modified sol-gel method. Angewandte Chemie-International Edition in English 1995,34, (18),2014-2017
    108. Wang, Z. M.; Kaneko, K., Effect of pore width on micropore filling mechanism of SO2 in carbon micropores. Journal of Physical Chemistry B 1998,102, (16),2863-2868
    109. Hanzawa, Y.; Suzuki, T.; Kaneko, K., Entrance-enriched micropore filling of n-nonane. Langmuir 1994,10, (9),2857-2859
    110. Lee, J.; Orilall, M. C.; Warren, S. C.; Kamperman, M.; Disalvo, F. J.; Wiesner, U., Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nature Materials 2008,7, (3),222-228
    111. Xuan Zhang, C. H., Hua Bai, Yan Yan, Junfang Li, Haifeng Yang, Xiaojing Lu, Guangcheng Xi, Construction of Self-Supported Three-Dimensional TiO2 Sheeted Networks with Enhanced Photocatalytic Activity.3 2013,1-6
    112. Zhang, Z.; Zhou, Y.; Zhang, Y.; Zhou, S.; Shi, J.; Kong, J.; Zhang, S., Well-crystallized mesoporous TiO2 shells for enhanced photocatalytic activity:Prepared by carbon coating and silica-protected calcination. Dalton Transactions 2013,42, (14),5004-5012
    113. Masuda, Y.; Kato, K., Micropore size distribution in nanocrystal assembled TiO2 particles. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan 2008,116, (1351),426-430
    114. Li, F. B.; Li, X. Z.; Ao, C. H.; Lee, S. C.; Hou, M. F., Enhanced photocatalytic degradation of VOCs using Ln3+-Ti02 catalysts for indoor air purification. Chemosphere 2005,59, (6),787-800
    115. Chandra, D.; Bhaumik, A., Super-microporous TiO2 synthesized by using new designed chelating structure directing agents. Microporous and Mesoporous Materials 2008,112, (1-3),533-541
    116. Ismail, A. A.; Bahnemann, D. W., Mesoporous titania photocatalysts:Preparation, characterization and reaction mechanisms. Journal of Materials Chemistry 2011, 21,(32),11686-11707
    117. Miao, G.; Chen, L.; Qi, Z., Facile Synthesis and Active Photocatalysis of Mesoporous and Microporous TiO2 Nanoparticles. European Journal of Inorganic Chemistry 2012, (35),5864-5871
    118. Kun, R.; Tarjan, S.; Oszko, A.; Seemann, T.; Zoellmer, V.; Busse, M.; Dekany, I., Preparation and characterization of mesoporous N-doped and sulfuric acid treated anatase TiO2 catalysts and their photocatalytic activity under UV and Vis illumination. Journal of Solid State Chemistry 2009,182, (11),3076-3084
    119. Chang, S. M.; Lee, C. Y., A salt-assisted approach for the pore-size-tailoring of the ionic-liquid-templated TiO2 photocatalysts exhibiting high activity. Applied Catalysis B:Environmental 2013,132-133,219-228
    120. Pan, J. H.; Zhang, X.; Du, A. J.; Sun, D. D.; Leckie, J. O., Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications. Journal of the American Chemical Society 2008,130,(34),11256-11257
    121. Zhao, Y.; Qiu, X.; Burda, C., The effects of sintering on the photocatalytic activity of N-doped TiO2 nanoparticles. Chemistry of Materials 2008,20, (8),2629-2636
    122. Puddu, V.; Choi, H.; Dionysiou, D. D.; Puma, G. L., TiO2 photocatalyst for indoor air remediation:Influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylene degradation. Applied Catalysis B:Environmental 2010,94, (3-4),211-218
    123. Dong, W.; Sun, Y.; Chul, W. L.; Hua, W.; Lu, X.; Shi, Y.; Zhang, S.; Chen, J.; Zhao, D., Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures. Journal of the American Chemical Society 2007,129, (45),13894-13904
    124. Li, Y.; Kim, S. J., Synthesis and characterization of nano titania particles embedded in mesoporous silica with both high photocatalytic activity and adsorption capability. Journal of Physical Chemistry B 2005,109, (25),12309-12315
    125. Destaillats, H.; Maddalena, R. L.; Singer, B. C.; Hodgson, A. T.; McKone, T. E., Indoor pollutants emitted by office equipment:A review of reported data and information needs. Atmospheric Environment 2008,42, (7),1371-1388
    126. Yang, R; Zhang, Y.; Xu, Q.; Mo, J., A mass transfer based method for measuring the reaction coefficients of a photocatalyst. Atmospheric Environment 2007,41, (6),1221-1229
    127. Ao, C. H.; Lee, S. C., Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner. Chemical Engineering Science2005,60, (1),103-109
    128. Kibanova, D.; Sleiman, M.; Cervini-Silva, J.; Destaillats, H., Adsorption and photocatalytic oxidation of formaldehyde on a clay-TiO composite. Journal of Hazardous Materials 2012,211-212,233-239
    129. Kagi, N.; Fujii, S.; Tamura, H.; Namiki, N., Secondary VOC emissions from flooring material surfaces exposed to ozone or UV irradiation. Building and Environment 2009,44,(6),1199-1205
    130. Tirendi, S.; Geiss, O.; Barrero-Moreno, J.; Kotzias, D., Chemical emissions from toys-the case of stink blasters. International Journal of Environmental Analytical Chemistry 2009,89, (8-12),929-938
    131. Lu, Y.; Wang, D.; Ma, C.; Yang, H., The effect of activated carbon adsorption on the photocatalytic removal of formaldehyde. Building and Environment 2010,45, (3),615-621
    132. Chandra, D.; Bhaumik, A., Super-microporous TiO2 synthesized by using new designed chelating structure directing agents. Microporous and Mesoporous Materials 2008,112, (1-3),533-541
    133. Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q., Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant{001} facets. Journal of the American Chemical Society 2009,131, (11),4078-4083
    134. Yu, J.; Wang, W.; Cheng, B.; Su, B. L., Enhancement of photocatalytic activity of Mesporous TiO2 powders by hydrothermal surface fluorination treatment. Journal of Physical Chemistry C 2009,113, (16),6743-6750
    135. Shan, G. B.; Demopoulos, G. P., The synthesis of aqueous-dispersible anatase TiO2 nanoplatelets. Nanotechnology 2010,21, (2)
    136. Einaga, H.; Futamura, S.; Ibusuki, T., Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air:Comparison of decomposition behavior on photoirradiated TiO2 catalyst. Applied Catalysis B: Environmental 2002,38, (3),215-225
    137. Li, Q.; Sun, D.; Kim, H., Fabrication of porous TiO2 nanofiber and its photocatalytic activity. Materials Research Bulletin 2011,46, (11),2094-2099
    138. Brunauer; Emmet; Teller, Journal of the American Chemical Society 1938,60,309
    139. Voogd, P.; Scholten, J. J. F.; van Bekkum, H., Use of the t-plot-De Boer method in pore volume determinations of ZSM-5 type zeolites. Colloids and Surfaces 1991, 55, (C),163-171
    140. de Boer, J. H.; Lippens, B. C.; Linsen, B. G.; Broekhoff, J. C. P.; van den Heuvel, A.; Osinga, T. J., Thet-curve of multimolecular N2-adsorption. Journal of Colloid and Interface Science 1966,21, (4),405-414
    141. Lippens, B. C.; de Boer, J. H., Studies on pore systems in catalysts. V. The t method. Journal of Catalysis 1965,4, (3),319-323
    142. Johnson, M. F. L., Estimation of the zeolite content of a catalyst from nitrogen adsorption isotherms. Journal of Catalysis 1978,52, (3),425-431
    143. Mieville, R. L., Measurement of microporosity in the presence of mesopores. Journal of Colloid and Interface Science 1972,41, (2),371-373
    144. Kowalczyk, P.; Terzyk, A. P.; Gauden, P. A.; Leboda, R.; Szmechtig-Gauden, E.; Rychlicki, G.; Ryu, Z.; Rong, H., Estimation of the pore-size distribution function from the nitrogen adsorption isotherm. Comparison of density functional theory and the method of Do and co-workers. Carbon 2003,41, (6),1113-1125
    145. Kong, M.; Li, Y.; Chen, X.; Tian, T.; Fang, P.; Zheng, F.; Zhao, X., Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. Journal of the American Chemical Society 2011,133, (41),16414-16417
    146. Jiang, Z.; Kong, L.; Alenazey, F. S.; Qian, Y.; France, L.; Xiao, T.; Edwards, P. P., Enhanced visible-light-driven photocatalytic activity of mesoporous TiO2-xNx derived from the ethylenediamine-based complex. Nanoscale 2013,5, (12),5396-5402
    147. Zhang, Z.; Shao, C.; Li, X.; Sun, Y.; Zhang, M.; Mu, J.; Zhang, P.; Guo, Z.; Liu, Y., Hierarchical assembly of ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers:Enhanced photocatalytic activity based on photoinduced interfacial charge transfer. Nanoscale 2013,5, (2),606-618
    148. Wu, J. M.; Tang, M. L., One-pot synthesis of N-F-Cr-doped anatase TiO2 microspheres with nearly all-(001) surface for enhanced solar absorption. Nanoscale 2011,3, (9),3915-3922
    149. Ma, T.; Akiyama, M.; Abe, E.; Imai, I., High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode. Nano Letters 2005,5, (12),2543-2547
    150. Diwald, O.; Thompson, T. L.; Zubkov, T.; Goralski, E. G.; Walck, S. D.; Yates Jr, J. T., Photochemical activity of nitrogen-doped rutile TiO2(110) in visible light. Journal of Physical Chemistry B 2004,108, (19),6004-6008
    151. Kowalczyk, P.; Ustinov, E. A.; Terzyk, A. P.; Gauden, P. A.; Kaneko, K.; Rychlicki, G., Description of benzene adsorption in slit-like pores. Theoretical foundations of the improved Horvath-Kawazoe method. Carbon 2004,42, (4), 851-864
    152. Cui, X.; Bustin, R. M.; Dipple, G., Selective transport of CO2, CH4, and N2 in coals:insights from modeling of experimental gas adsorption data. Fuel 2004,83, (3),293-303
    153. Obee, T. N., Photooxidation of sub-parts-per-million toluene and formaldehyde levels on titania using a glass-plate reactor. Environmental Science and Technology 1996,30, (12),3578-3584
    154. Lv, J.; Zhu, L., Highly efficient indoor air purification using adsorption-enhanced-photocatalysis-based microporous TiO2 at short residence time. Environmental Technology (United Kingdom) 2013
    155. Li, W.; Yang, J.; Wu, Z.; Wang, J.; Li, B.; Feng, S.; Deng, Y.; Zhang, F.; Zhao, D., A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core-shell structures. Journal of the American Chemical Society 2012,134, (29),11864-11867
    156. Tobaldi, D. M.; Gao, L.; Gualtieri, A. F.; Skapin, A. S.; Tucci, A.; Giacobbe, C., Mineralogical and optical characterization of SiO2-, N-, and SiO2/N-Co-doped titania nanopowders. Journal of the American Ceramic Society 2012,95, (5), 1709-1716
    157. Carretero-Genevrier, A.; Boissiere, C.; Nicole, L.; Grosso, D., Distance dependence of the photocatalytic efficiency of TiO2 revealed by in situ ellipsometry. Journal of the American Chemical Society 2012,134, (26),10761-10764
    158. Son, H. J.; Wang, X.; Prasittichai, C.; Jeong, N. C.; Aaltonen, T.; Gordon, R. G.; Hupp, J. T., Glass-encapsulated light harvesters:More efficient dye-sensitized solar cells by deposition of self-aligned, conformal, and self-limited silica layers. Journal of the American Chemical Society 2012,134, (23),9537-9540
    159. Song, X.; Gao, L., Fabrication of hollow hybrid microspheres coated with silica/titania via sol-gel process and enhanced photocatalytic activities. Journal of Physical Chemistry C 2007, 111,(23),8180-8187
    160. Faustini, M.; Nicole, L.; Boissiere, C.; Innocenzi, P.; Sanchez, C.; Grosso, D., Hydrophobic, antireflective, self-cleaning, and antifogging sol-gel coatings:An example of multifunctional nanostructured materials for photovoltaic cells. Chemistry of Materials 2010,22,(15),4406-4413
    161. Kim, C.; Choi, M.; Jang, J., Nitrogen-doped SiO2/TiO2 core/shell nanoparticles as highly efficient visible light photocatalyst. Catalysis Communications 2010,11, (5),378-382
    162. Miyata, H.; Fukushima, Y.; Okamoto, K.; Takahashi, M.; Watanabe, M.; Kubo, W.; Komoto, A.; Kitamura, S.; Kanno, Y.; Kuroda, K., Remarkable birefringence in a TiO2-SiO2 composite film with an aligned mesoporous structure. Journal of the American Chemical Society 2011,133, (34),13539-13544
    163. Gohin, M.; Allain, E.; Chemin, N.; Maurin, I.; Gacoin, T.; Boilot, J. P., Sol-gel nanoparticulate mesoporous films with enhanced self-cleaning properties. Journal of Photochemistry and Photobiology A:Chemistry 2010,216, (2-3),142-148
    164. Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society 1951,73, (1),373-380
    165. Ye, J.; Liu, W.; Cai, J.; Chen, S.; Zhao, X.; Zhou, H.; Qi, L., Nanoporous anatase TiO2 mesocrystals:Additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. Journal of the American Chemical Society 2011,133, (4),933-940
    166. Chen, X.; Low, Y.; Samia, A. C. S.; Burda, C.; Gole, J. L., Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts:Comparison to a commercial nanopowder. Advanced Functional Materials 2005,15, (1),41-49
    167. Chun, H.; Yizhong, W.; Hongxiao, T., Preparation and characterization of surface bond-conjugated TiO2/SiO2 and photocatalysis for azo dyes. Applied Catalysis B: Environmental 2001,30,(3-4),277-285
    168. Venezia, A. M.; Di Carlo, G.; Pantaleo, G.; Liotta, L. F.; Melaet, G.; Kruse, N., Oxidation of CH4 over Pd supported on TiO2-doped SiO2:Effect of Ti(IV) loading and influence of SO2. Applied Catalysis B:Environmental 2009,88,(3-4),430-437
    169. Yan, X.; He, J.; G. Evans, D.; Duan, X.; Zhu, Y., Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors. Applied Catalysis B:Environmental 2005,55, (4),243-252
    170. Kronik, L.; Shapira, Y., Surface photovoltage phenomena:theory, experiment, and applications. Surface Science Reports 1999,37,(1-5),1-206
    171. Zhao, W.; Feng, L.; Yang, R.; Zheng, J.; Li, X., Synthesis, characterization, and photocatalytic properties of Ag modified hollow SiO2/TiO2 hybrid microspheres. Applied Catalysis B:Environmental 2011,103, (1-2),181-189
    172. Ang, T. P.; Toh, C. S.; Han, Y. F., Synthesis, characterization, and activity of visible-light-driven nitrogen-doped TiO2-SiO2 mixed oxide photocatalysts. Journal of Physical Chemistry C 2009,113, (24),10560-10567
    173. Dong, W.; Lee, C. W.; Lu, X.; Sun, Y.; Hua, W.; Zhuang, G.; Zhang, S.; Chen, J.; Hou, H.; Zhao, D., Synchronous role of coupled adsorption and photocatalytic oxidation on ordered mesoporous anatase TiO2-SiO2 nanocomposites generating excellent degradation activity of RhB dye. Applied Catalysis B:Environmental 2010,95, (3-4),197-207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700