水合氧化铈吸附水中三价砷和五价砷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从稀土材料的充分利用以及高效除砷吸附材料开发与应用的角度出发,系统的研究了稀土材料水合氧化铈对As(Ⅲ)和As(Ⅴ)的基本吸附性能和反应机理,确定了解吸的最佳条件,并初步探讨了再生吸附效果及动态柱状试验。
     研究结果表明:水合氧化铈在较宽的pH值范围(4.0~9.0)内对As(Ⅲ)和As(Ⅴ)均表现出较强的吸附能力,其吸附容量都能达到110 mg/g以上。水合氧化铈吸附As(Ⅲ)的最佳pH值范围为中性偏碱,吸附As(Ⅴ)的最佳pH值范围为弱酸性。无论As(Ⅲ)还是As(Ⅴ),在开始阶段吸附速率非常快,随着时间的延长逐渐达到平衡。水合氧化铈对于As(Ⅲ)与As(Ⅴ)的吸附可以很好地用Langmuir方程式进行定量描述.其吸附接近于单分子层描述的化学吸附。水合氧化铈对As(Ⅲ)和As(Ⅴ)的吸附反应是自发进行的吸热过程,As(Ⅲ)和As(Ⅴ)的反应标准吸附热分别为22.02 kJ/moL和20.41 kJ/moL。温度对吸附的影响相对较小,在正常季节温度变化范围内能够稳定发挥其吸附特性。水合氧化铈粒径的改变对As(Ⅲ)和As(Ⅴ)的吸附效果影响不大,共存离子对水合氧化铈对As(Ⅲ)和As(Ⅴ)的吸附效果影响也很小。经过TCLP测试证明吸附后的吸附剂对环境不造成二次污染。水合氧化铈的最佳解吸条件为:解吸液选择NaOH溶液,解吸液浓度2mol/L,体积50 mL。As(Ⅲ)和As(Ⅴ)解吸速率都是相当明显的,在1h解吸时间内就可实现砷的最大限度的解吸脱附。再生实验证明水合氧化铈吸附材料具有解吸后重复利用的可行性。通过柱状试验可知,对于As(Ⅲ)和As(Ⅴ)来说,穿透体积分别为180BV和140BV。水合氧化铈材料中的表面活性羟基在As(Ⅲ)和As(Ⅴ)的吸附中起着重要的作用,其主要吸附反应机理趋向于以化学吸附为主。
In view of taking full advantage of rare earth materials and development and utilization of high effective arsenic adsorption material,this research had studied the adsorption/desorption of arsenate and arsenite onto hydrous ceric oxide(HCO).And the adsorption mechanisms were also investigated.
     It was found that the adsorption capacity of HCO absorbent was constant around a value of 110mg/L over a wide pH range(4.0~9.0).The arsenite was better adsorbed in slight basic medium while arsenate was favorably adsorbed in an acidic pH range. The kinetics of arsenic adsorption by HCO involved an initial fast adsorption process followed by a slower uptake process as time progresses.The adsorption data fit the Langmuir isotherm and its linearized form well.The thermodynamic data revealed that the adsorption was a spontaneous,endothermic and entropy increasing process. The standard enthalpy changes(△H~0) for arsenate and arsenite were 22.02 and 20.42kJ/mol,respectively.The adsorption capacity of arsenate and arsenite did not increase much along with the minishing particle diameter of HCO.And the effect of coexist ions in water were tiny to the adsorption capacity.The TCLP results showed that the spent material was suitable for discharge in landfill deposits.We chose NaOH solution to desorption the arsenic and the best qualification was 50mL 2mol/L of NaOH solution.Both the arsenate and arsenite had their maximum desorption capacity in one hour.Regeneration experiment of HCO powder indicated that the HCO adsorbent was feasible for using repeatedly.The breakthrough volumes for As(Ⅲ) and As(Ⅴ) are 180BV and 140BV.The FTIR analysis demonstrated that the characteristic adsorption made a very important effect during the adsorption of As(Ⅲ) and As(Ⅴ) by HCO,and the substitution of Ce-OH groups made a very important effect during the adsorption of As(Ⅲ) and As(Ⅴ) by HCO.
引文
[1]王丽.钛柱撑蒙脱石(Ti-PLM)吸附饲料砷的研究[D].浙江:浙江大学,2006.
    [2]牛凤奇,纪锐琳,朱义年,刘辉利.地下水砷污染的研究进展[J].广西轻工业,资源与环境,2007,(4):85-87.
    [3]赵素莲,王玲芬,梁京辉.饮用水中砷的危害及除砷措施[J].现代预防医学,2002,(29):651-652.
    [4]Jeffer A L,Robert F S,Christopher T D.Environmental toxicants[J].Priority Health Conditions,1993,77.
    [5]齐藤隆彦,加藤滕,物心名,史一.净水处理技术中逆向连续流动床式过滤法饮水除砷方法[N].公开特许公报(A),1995年,特开平,7288482.
    [6]Hoerner G.Remove of arsenic experiences of commercial plants[J].DV GW-Schriftenr,Wasser,1993,(82):189.
    [7]李树猷,何淑敏,郑宇.混凝沉淀法饮水除砷研究[J].卫生研究,1989,18(4):17-20.
    [8]梅树珍等.内蒙古右旗木头湖村慢性砷中毒流行病学调查[J].中国地方病学杂志,1996,4:237.
    [9]李树猷等.饮用水中砷的危害及除砷措施[J].中国供水卫生,1993,1:43.
    [10]Tseng W P,Chu H M,et al.Pervalenee of skin cancer in an endemic area of chronic arsenicism in Taiwan[J].Natl.Cancer Inst,1968,40:453-463.
    [11]Cebrian M E,Albores A,et al.Chronic arsenic poisoning in the north of Mexico[J].Hum.Toxicol,1983,2:121- 133.
    [12]Kono Y,Fridovich I.Superoxide radicals inhibit catalase[J].Biol.Chem,1982,257:5751-5754.
    [13]肖唐付等.砷的水地球化学及其环境效应[J].地质科技情报,2001,20(1):71-76.
    [14]谢立靖,邱丽君,娄涛,荣煜,张志红.硫酸生产废水中砷去除方法的研究[J].化工环保,1998,5(18):285-291.
    [15]王爱平.活性炭对溶液中重金属的吸附研究[D].云南:昆明理工大学,2003.
    [16]陈佛顺.有色冶金环境保护[M].北京:冶金工业出版社,1984.
    [17]中国标准出版社第二编辑室.中国环境保护标准汇编(废气、废水、废渣分析方法)[S].北京:中国标准出版社,2001.
    [18]汪大晕,徐新华,宋爽.工业废水中专项污染物处理手册[S].北京:化工出版社,2000.
    [19]Shen YS.Study of arsenic removal from drinking water[J].JourAWWA,1973,65:543.
    [20]赵宗昇.氧化铁砷体系除砷机理探讨[J].中国环境科学,1995,15(1):18-20.
    [21]Jiang J Q.Removing arsenic from groundwater for the developing world-a review[J].Wat SciTech,2001,(44):89-98.
    [22]赵月朝,陈亚妍,林少彬.饮水复合材料除砷滤芯的研制与效果评价[J].卫生研究,2004,33(4):413-415.
    [23]赵雅萍,王军锋,尹静等.载Fe(Ⅲ)和La(Ⅲ)-氨基磷酸型螯合树脂选择性吸附痕量砷(Ⅴ)[J].南开大学学报(自然科学版),2002,35(4):85-89.
    [24]赵萌,宁平.含砷污泥的固化处理[J].昆明理工大学学报(理工版),2003,28(5):100-104.
    [25]赵雅萍,王军锋,陈甫华.载铁(Ⅲ)-配位体交换棉纤维素吸附剂对饮用水中砷(Ⅴ)和氟联合去除的研究[J].高等学校化学学报,2003,24(4):643-647.
    [26]Wasay S A,Haron MD J,ToKunage S.Adsorption of fluoride,phosphate and arsenate ions on lanthanum-impregnated silica gel[J].Water Environ Res,1996,68(3):295-300.
    [27]SonerAltundoganH.et al.Arsenic adsorption from aqueous solutions by activated redmud[J].Waste management,2002,22:357-363.
    [28]袁涛.运用涂铁砂粒进行分散式饮水除砷的效果[J].环境科学,2001,22(3):25-29.
    [29]梁美娜,刘海玲,朱义年等.复合铁铝氢氧化物的制备及其对水中砷(Ⅴ)的去除[J].环境科学学报,2006,26(3):438-446.
    [30]陈春宁,石林,熊正为.Fe~0对饮用水中砷的去除效率及影响因素[J].安全与环境学报,2007,7(4):46-49.
    [31]张昱,杨敏,高迎新,王峰.用于地下水中砷去除的铈铁复合材料的制备和作用机制[J].中国科学,2003,33(2):127-133.
    [32]张昱.利用稀_十基无机材料去除饮用水中砷的研究[J].环境化学,2001,20(1):70-75.
    [33]欧阳通.稀士材料氢氧化铈吸附水中亚砷酸与砷酸阴离子的特性效果[J].环境科学,2004,25:43-47.
    [34]张岚,陈昌杰.我国高砷饮水的地理分布与暴露人群[J].卫生研究,1997,26(5):310-313.
    [35]德永修三.水中からのヒ素の除去技术[J].水环境学会,1997,20(7):452-454.
    [36]Pierce A L,Moore C B.Adsorption of arsenite and arsenate on amorphous iron hydroxide[J].Water Res.,1982,16:1247-1253.
    [37]Hayes K F,Papelis C,Leckie J O.Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interface[J].Colloid Interface Sci,1988,125:717-726.
    [38]肖亚兵,钱沙华,黄进泉等.纳米二氧化钛对砷(Ⅲ)砷(Ⅴ)吸附性能的研究[J].分析科学学报,2003,19(2):172-174.
    [39]Maria E.Pena,George P.Korfiatis,Manish Patet,Lee Lippincott,Xiaoguang Meng.Adsorption of As(Ⅴ) and As(Ⅲ) by nanocrystalline titaniumdioxide[J].Water Research,2005(39):2327-2337.
    [40]丁亮,陈焕新,黄承武.美国Albuquerque市的地下水除砷方法介绍[J].地方病通报,2001,16(2):108-110.
    [41]Shevade,Siddhesh.Ford,Robert.Am.ChemSoc[J].Div.Environ.Chem.(computer opticadisk),2001,4(12):131-134.
    [42]刘瑞霞,王亚雄,汤鸿霄.新型离子交换纤维去除水中砷酸根离子的研究[J].环境科学,2002,23(5):88-91.
    [43]Ljubinka VR,Milam MM.Arsenic removal from water by chemisorption filters[J].Environmental pollution,1992,75:279.
    [44]Elizalda-Gonzalez,M.P,Mattush J,Wen-nrich,R.Environ.Monit[J],2001,3(1):22-26.
    [45]夏圣骥,高乃云,张巧丽,董秉直,徐斌.纳滤膜去除水中砷的研究[J].中国矿业大学学报,2007,36(4):565-568.
    [46]廖敏,谢正苗,王锐.菌藻共生体去除废中砷初探[J].环境污染与防治,1997,19(2):11-14.
    [47]苏廷芝,顾国维.活性污泥法处理含砷废水初探[J].四川环境,2006,25(4):68-71.
    [48]许晓路.三价砷和五价砷对活性污泥几种酶活性的影响[J].环境科学学报,1991,11(4):447-449.
    [49]许晓路,中秀英.半联系活性污泥法对污水中五价砷的去除[J].环境科学与技术,1995,70(3):31-34.
    [50]许晓路.As(Ⅲ)对活性污泥处理城市污水影响的动态模拟研究[J].环境科学学报,1995,15(4):416-422
    [51]Maniatis T,Pickett.Biological removal of arsenic from tailings pond water at Canadianmine [J].ArsenicMetallurgy,2005,(2):209-214.
    [52]Robert Y,Ning.Arsenic removal by reverse osmosis[J].De-salination,2002,143(3):237-241.
    [53]朱连超,唐功本,石强,殷敬华.稀土化合物在高分子科学中的应用研究进展[J].高分子通报,2007,3:55-60.
    [54]黎心懿,荣联清.稀土应用研究进展[J].萍乡高等专科学校学报,2002,4:33-37.
    [55]Chulsu Jo,Juexian Cao,Aniketa Shinde,et al.First principles studies of adsorption of Pd,Ag,Pt,and Au on yttrium disilicide nanowires[J].CHEMICAL PHYSICS LETTERS,2008,1-5.
    [56]徐应明,戴晓华,金家志.活性氧化铈/介孔分子筛除氟剂对环境水体的脱氟行为研究[J].农业环境保护,200l,20(1):48-50.
    [57]马刚平,刘振儒,赵春禄.镧氧化膜硅胶吸附氟性能研究[J].中国环境科学,1999,19(4):345-348.
    [58]J.Nomura,H.Imai,T.Miyake.Removal of Fluoride Ion from Wastewater by a Hydrous Cerium Oxide Adsorbent[C].American Chemical Society,1990,Chapter 10,157-172.
    [59]谢晓梅,廖敏,石韦勇.稀土的应用研究-铈在含砷废水处理研究中的应用[J].广东微 量元素科学,1999,6(6):7-11.
    [60]孟传奎.新型稀土功能材料在饮用水中的应用[J].上海有色金属,2001,22(1):26-28.
    [61]魏玉娟等.新型稀土复合混凝剂在印染废水中的应用[J].工业水处理,2002,22(11):37-39.
    [62]张光华,顾玲,韩萍.淀粉阳离子改性絮凝剂的制备及其对造纸白水的絮凝作用[J].西北轻工业学院学报,2002,20(3):42-44.
    [63]徐赋海,陈铁龙,陈集.DJG-1阳离子絮凝剂合成的影响因素[J].钻井液与完井液,2003,20(2):13-16.
    [64]芮玉兰,韩利华,梁英华.稀土系列催化剂对焦化废水的催化湿式氧化[J].环境科学与技术,2002,25(3):40-42.
    [65]余亦政.纺织印染废水处理新技术-BIO-UNIOUT研究和应用[J].纺织导报,2001,(6):56-58.
    [66]杨娇兰,何公里.饮用水除砷技术研究[J].中国地方病学杂志,1998,17(5):338-340
    [1]IMAI H,NOMURA J,ISHIBASHI Y,et al.Anion adsorption behavior of rare earth oxide hydrates[J].Nihon Kagaku Kaishi,1987,5:807-813.
    [2]国家环保总局编.水和废水监测分析方法[M].3版.北京:中国环境科学出版社,1997.
    [3]倪红宇,樊霞.原子荧光法测定地表水中的痕量砷[J].污染防治技术,2005,18(5):48-50.
    [1]张志峰,吴浩汀.赤泥处理含磷废水的实验研究[J].安全与环境工程,2005,12(4):49-51.
    [2]Xu H,Allard B,Grimvall A.Effect of acidification and natural organic materials on the mobility of arsenic in the environment[J].Water Air Soil Pollut,1991,57-58,269-278.
    [3]Tokunnaga,S,Hardon,M J,Wasay,S A.Removal of fluoride ions from aqueous solution by multivalent metal compounds[J].Environ Studies,1995,48(1):17-28.
    [4]Sposito G.The Surface Chemistry of Soils[M].New York:Oxford University Press,1984.
    [5]Nyffeler UP,Li Y,Santschi PH.A Kinetic approach to describe trace-element distribution between particles and solution in natural aquatic systems[J].Geochim Cosmochim Acta,1984,48(7):1513-1522.
    [6]Li GB,Du X,Zhou X W.Actual standard of China water environment[J].China Standardization,2002,8:57-58.
    [7]Aksu Z.Biosorption of reactive dyes by dired activated sludge:Equilibrium and kinetic modeling[J].Biochem End J,2001,7(1):79-84.
    [8]Ho Y S.Adsorption of heavy metals from waste streams by peat(PhD thesis)[D].Birmingham:The University of Birmingham,1995.
    [9]孙庆业,杨林章.改性泥碳.树脂颗粒对水溶液中酸性橙Ⅱ的吸附[J].环境科学,2007,28(6):1300-1304.
    [10]吴大清,彭金莲,魏俊峰等.蒙脱石与铅锌溶液界面反应动力学[J].矿物学报,2000,20(2):97-101.
    [11]吴大清,彭金莲,刁桂仪等.沉积CaCO_3与重金属离子反应动力学研究[J].地球化学,2000.29(1):56-61.
    [12]Davis JA,Kent DB.Surface complexation modeling in aqueous geochemistry[C].Washington DC:Miner Soc Am,1990,23:177-259.
    [13]Scheidegger AM,Sparks DL.Kinetics of the formation and the dissolution of nickel surface precipitates on pyrophyllite[J].Chem Geol,1996,132:157-164.
    [14]Strawn DG,Scheidegger AM,Sparks DL.Kinetics and mechanisms of Pb(Ⅱ) sorption and desorption at the aluminum oxide-water interface[J].Environ Sci Technol,1998,32(17):2596-2601.
    [15]欧阳通.稀土材料氢氧化铈吸附水中亚砷酸与砷酸阴离子的特性效果[J].环境科学,2005,25:43-47.
    [16]Pierce A L,Moore C B.Adsorption of arsenite and arsenate on amorphous iron hydroxide[J].WaterRes,1982,16:1247-1253.
    [17]Hayes K F,Papelis C,Leckie J O.Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces[J].Colloid Interface Sci,1988,125:717-726.
    [18]朱利中,杨坤,徐高金.对硝基苯酚在沉积物上的吸附特征-吸附等温线和吸附热力学[J].环境科学学报,2001,21(6):674-678.
    [19]H S A,S A,Fikret T,M B.Arsenic removal from aqueous solutions by adsorption on red mud[J].Waste Management,2000,20:761-767.
    [20]Eleonora D,Virginia STC.,Wolfgang H H.Removal of As(Ⅲ) and As(Ⅴ) from water using a natural Fe and Mn enriched sample[J].Water Res,2005,39:5212-5220.
    [1]Hingston F J,Atkonson R J,Posner A M,Quirk J P.Specific Adsorption of Anions[J].Nature,1967,215:1459-1461.
    [2]Strawn D G,Scheidergger A M,Sparks D L.Kinetics and mechanisms of Pb(Ⅱ) sorption and desorption at the aluminum oxide-water interface[J].Environ Sci Technol,1998,32(17):2596-2601.
    [3]涂从.士壤体系中的化学动力学方程及其应用[J].热带亚热带土壤科学,1994,3(3):175-182.
    [1]张兵,李平.活性炭纤维填充床脱除水中苯和氯苯及其再生的研究[J].沈阳化工学院学报,2003,3:188-192.
    [2]傅敏.活性炭纤维改性及对焦化废水中有机物吸附作用的研究[D].重庆:重庆大学,2004.
    [3]刘秋兰.纤维堆囊菌胞外多糖对重金属离子的吸附特性[D].江苏:南京理工大学,2004.
    [4]焦中志.无机稀士基吸附剂对饮用水中氟、砷的吸附研究[D].吉林:东北师范大学,2002.
    [5]陈新庆,潘丙才,潘丙军等.新型树脂基水合氧化铁对水体中微量砷的吸附性能研究[J].离子交换与吸附,2007,23(1):16-23.
    [6]赵雅萍,王军锋,陈甫华.载铁(Ⅲ)-配位体交换棉纤维素吸附剂对饮用水中砷(Ⅴ)和氟联合去除的研究[J].高等学校化学学报,2003,4(24):643-647.
    [7]Veera M.Boddu,Krishnaiah Abburi,Jofiathan L.Talbott,et al.Removal of arsenic(Ⅲ) and arsenic(Ⅴ) from aqueous medium using chitosan-coated biosorbent[J].Water Research,2008,42:633-642.
    [8]M.Biterna,A.Arditsoglou,E.Tsikouras,et al.Arsenate remocal by zero valent iron:Batch and column tests[J].Journal of Hazardous Materials,2007,149:548-552.
    [1]Kirmiburgh,D G,Syers,J K,Jackson,M L.Specific adsorption of trace amounts of calcium and strontium by hydrous oxides of iron and aluminum[J].Soil Sci,1975,39:464-470.
    [2]张昱,杨敏,高迎新等.用于地下水中砷去除的铈铁复合材料的制备和作用机理[J].中国科学,2003,33(2):127-133.
    [3]邓春玲.稀十吸附剂废水深度脱磷[D].云南:昆明理工大学,2002.
    [4]马刚平等.镧氧化膜硅胶吸附除氟[J].中国环境科学,1999,19(4):345-348.
    [5]Altundogan,H S,Altundogan,S,T(u|¨)men,F,Bildik,M.Arsenic removal from aqueous solutions by adsorption on red mud[J].Waste Manage,2002,20:761-767.
    [1]Cox C D,Ghosh M M.Surface Complexation of Methylated Arsenates by Hydrous Oxides.Water Research,1994,28(5):1181-1188.
    [2]Hayes K F,Papelis C,Leckie J O.Modeling Ionic Strength Effects on Anion Adsorption at Hydrous Oxide/Solution Interfaces.Journal of Colloid and Interface Science,1988,125:717-726.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700