有机改性粘土矿物的制备及其对甲基异柳磷的吸附
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着有机合成农药的大量使用,在农作物、土壤、水体及大气中的农药残留问题逐渐突出。目前,处理农药废水的技术有很多,如活性炭吸附法、催化氧化法、化学絮凝法、活性污泥法等。本文的研究重点为普通粘土矿物—高岭土和硅藻土的改性技术及其对甲基异柳磷的吸附特性研究。
     本文采用十六烷基三甲基溴化铵(HDTMA)对高岭土和硅藻土进行改性,并研究其制备条件对甲基异柳磷的吸附性能影响。结果表明,在室温和pH=4的条件下用0.6 CEC当量的HDTMA反应15 min改性制备的有机高岭土对甲基异柳磷的吸附效果最佳;而有机硅藻土的最宜制备条件为:室温,pH为7,HDTMA:CEC为0.5,反应时间为15 min。
     在静态条件下,研究了甲基异柳磷初始浓度、吸附时间、溶液pH值、吸附剂投加量及盐的加入等因素对吸附效果的影响,求得了有机高岭土和硅藻土的静态吸附等温线。实验结果表明,有机高岭土及硅藻土对甲基异柳磷的吸附反应速率较快,在最佳吸附条件下,即有机高岭土投加量为10 g/L,溶液中甲基异柳磷的初始浓度为30 mg/L,吸附平衡时间为40 min,在所选pH(5-9)范围内甲基异柳磷的去除率均能保持在80%左右;在所实验的pH范围内(4-10),室温、吸附时间20 min、吸附剂投加量10 g/L,有机硅藻土对初始浓度为30 mg/L的甲基异柳磷的吸附率可保持在34.0%左右。溶液中某些共存离子可以明显提高有机高岭土和硅藻土的吸附性能。有机高岭土和硅藻土对甲基异柳磷的吸附行为可较好地采用Freundlich吸附等温式进行描述。
     采用动态吸附实验求得了有机高岭土和有机硅藻土对甲基异柳磷的吸附穿透曲线,同时研究了有机粘土与土壤的质量比及溶液pH值等因素对吸附效果的影响。在到达穿透点前,40 g土壤与80 g有机高岭土对甲基异柳磷的吸附率可高达94.1%,而30 g土壤与30 g有机硅藻土对甲基异柳磷的最高吸附率为66.6%。随着吸附层中有机硅藻土所占比例的增加,甲基异柳磷的去除率呈现增大的趋势。当其它条件一定时,进水溶液pH值对甲基异柳磷的去除率影响很小。
With the vast use of organic man-made pesticide,the pollution of the remnant gradually goes serious.Various techniques have been used to remove pesticide from waste water,including active carbon adsorption,catalyse oxidation,chemical coagulation and activated sludge process.This paper emphasizes the modification techniques of common clay minerals—kaolin and diatomite and the adsorption to the isofenphos-methyl.
     In this paper,Hexadecyltrimethylammonium(HDTMA) was used to modify kaolin and diatomite.The influence of synthetic conditions on the isofenphos-methyl adsorption of modified clays was investigated.The experimental results indicated that the organic kaolin prepared at room temperature,pH of 4,dosage of HDTMA at the proportion of 0.6 CEC and react time of 15 minutes showed the best adsorption performance,while the appropriate condition to make organic diatomite was:room temperature,the pH value was 7,the dosage of HDTMA was 0.5CEC,the react time was 15 minutes.
     The properties and optimal conditions for organic clays to adsorb isofenphos-methyl were investigated under static state in the laboratory and also the effects of the initial concentration,adsorption time,adsorbent concentration,the pH value and salt were discussed.Through the test,made the static adsorption isotherms of organic kaolin and diatomite,the research results indicated that the adsorption rate of isofenphos-methyl with the two kinds of sorbent was rapid.About 80%removal of isofenphos-methyl could be achieved within 40 minutes at the initial concentration of 30 mg/L,dosage of modified kaolin at 10 g/L in the natural water pH range of 5 to 9, while the removal rate by organic diatomite could reach to 34.0%within 20 minutes at room temperature,initial concentration of 30 mg/L,adsorbent concentration of 10 g/L in the pH range of 4-10.Besides,the addition of salt could obviously improve the adsorption capability of organic kaolin and diatomite.The adsorption isotherms of isofenphos-methyl with the two kinds of sorbent all fitted the Freundlich equation.
     Through the dynamic adsorption,made the penetrating curves of organic kaolin and diatomite,also has conducted the experimental study to the influence factors, such as the mass ratio of organic clays and soil and the pH value.The results showed that the optimal removal rate of isofenphos-methyl by 40 g soil and 80 g organic kaolin might reach to 94.1%,however,that of 30 g soil and 30 g organic diatomite was only 66.6%.The removal effect was improved with increase in proportion of organic diatomite in adsorption layer.Furthermore,the pH value played a trifling role to the adsorption effect.
引文
[1]张一宾等编.农药[M].北京:中国物资出版社,1997:1-5.
    [2]上海市农药研究所编.农药译丛[M].Vol.16-17(1994-1995).
    [3]D.Pimentel et al.Environmental and effects of reducing pesticide in agriculture[J].Agriculture Ecosystems and Enviroment,1993,46:273-288.
    [4]鲁明中,陈年春.农药生态学[M].北京:中国环境科学出版社,1993.
    [5]Armstrong,DE and Konrad,JG.Pesticides in Soil and Water[M],Wisconsin USA,Soil Science Society of America inc.,Publisher,1974:123-124.
    [6]http://www.chemyq.com/xz/xz8/77073kmdju.htm
    [7]蔡道基.农药环境毒理学研究[M].北京:中国环境科学出版社,1998:7-10.
    [8]王连生.有机污染物化学[M].北京:科学出版社,1990.
    [9]白乃宾编.农药 健康 生态环境[M].北京:中国环境科学出版社,2005:172-175.
    [10]李红莉,孙宗光,宫正宇等.水中重点有机磷农药的毛细管气色谱测定[J].化学分析计量,2001,10(1):15-17.
    [11]徐炜.高效液相色谱法测定环境水体中8种农药残留最[J].健康与环境杂志,2000,17(6):362-363
    [12]尹明泉.农药对地下水污染评价方法的探讨[J].山东地质情报,1992,4:19-23.
    [13]张秋菊,程晓华,魏昭荣等.新疆地下水中农药污染水平调查[J].干旱环境监测,2001,15(3):159-161.
    [14]施国涵,有机磷农药在土壤中的吸附与降解[J].环境科学,1982,3(4):69-72.
    [15]盛光遥,斯蒂芬,博伊德.有机粘土矿物及土壤改性在污染防治和环境修复中的应用[J]自然杂志,1997,19(2):95-104.
    [16]Yaron,B.Saltman,S.Organo-clay formulations of pesticides:reduced leaching and photo degradation[J].Applied Clay Science.2000,(18):309-326.
    [17]Mortland,M.M.Sorption of nonpolar organic compounds,inorganic cations and inorganic oxyanions by surfactant-modified ziolites[J].American Chemical Society,Washinton,DC.1995,(12)54-64.
    [18]亓春英,刘星,周跃飞.高岭土的综合利用与开发前景[J].昆明理工大学学报(理工版),2003,2:427.
    [19]苏家齐.塑料工业辞典[M].北京:化学工业出版社,1994:352.
    [20]曾泽新,汪岳新,叶可舒等.橡胶工业辞典[M].北京:化学工业出版社,198:506-507.
    [21]McBride,M.B..Environmental Chemistry of Soils[M].New York:Oxford University Press,1994:31-56.
    [22]吴宏海.高岭土矿物表面改性与应用[J].桂林工学院学,1996,7:318-321.
    [23]杨宇翔,王鹏,陈荣三.硅藻土比表面的研究[J].南京大学学报,1991,27(4):706-714.
    [24]杨宇翔,陈荣三,戴安邦.国产硅藻土结构的研究[J].化学学报,1996,54:57-64.
    [25]袁鹏,吴大清.硅藻土在一些高附加值产品中的应用及其基础研究[J].矿物岩石,2000,20(1):101-104.
    [26]林俊雄.硅藻土基吸附剂的制备-表征及其染料吸附特性研究[D].浙江:浙江大学,2007:11-12.
    [27]黄成彦.中国硅藻土及其应用[M].北京:科学出版社,1993:123-164.
    [28]王晓蓉等.改性粘土矿物对污染环境修复的研究进展[J].环境化学,1997,16(1):1-14.
    [29]McBride,M.B..Adsorption of aromatic molecules by clays in aqueous suspensions[J],Wiley New York,1997,145.
    [30]朱利中等.阴-阳离子有机膨润士吸附水中苯胺、苯酚的性能[J].环境科学.2000,21(4):42-46.
    [31]朱利中等.苯蒸汽在有机膨润土上的吸附行为研究[J].环境科学学报,2001,21(6),666-671.
    [32]Lee,J.F.,et al.J.Chem.Soc.Faraday Trans[J].I,1989,85:2953-2962.
    [33]Aynes,W.F.,Boyd,S.A.Clays miner.,1991,39:428-436.
    [34]Barrer,R.M.,Kelsey,K.E.Trans.Faraday Soc.,1960,56:452-462.
    [35]Gao B et al.Influence of modified soils on the remove of diesel fuel oil from water and the growth of oil degradation microorganism[J].Chemosphere,2000,41:419-428.
    [36]邓友军等.有机粘土化学研究进展与展望[J].地球科学进展,2000,15(2):197-203.
    [37]Boyd S A et al.Attenuating Organic Contaminant Mobility by Soil Modification[J].Nature,1988,333:345-347.
    [38]Wada K.Lattice expansion of kaolinite mineral by treatment with potassium acetate[J].Amer Min,1961,46(1):78-91.
    [39]Adams J M et al.Catalysis by montmorillonites[J].Clay Minerals,1983,18(4):411-421.
    [40]Jordan J W et al.Organophilic bentonites I.Swelling in Organic Liquids[J].J.Phys.Colloid Chem.,1949,53:294-306.
    [41]Fukushima Y,Okada O,Kawasumi M,et al.Swelling behaviour of montmorillonite by poly-6-amide[J].Clay Minerals,1988,23(1):27-34.
    [42]Boyd,S.A.et al.,Immobilization of organic contaminants by organic clays:Application to soil restoration and hazardous waste contaminants,In:Baker,R.A.(ed) Organic Substances and Sediments in Wafer[J],Lewis Publishers,MI,1991,1:181-200.
    [1]http://www.instrument.com.cn/show/download/shtml/051254.shtml
    [2]杨宏伟,乌云其木格.快速测定水、土壤中有机磷含量的研究[J].内蒙古师范大学学报,2003,32(4):380-384.
    [3]Wang,S.,Boyjoo,Y.,Choueib,A.,Zhu,Z.H.Removal of dyes from aqueous solution using fly ash and red mud[J].Water Res.,2005,39:129-138.
    [4]WANG Z.L.,YANG Y.X.,ZHU H.,et al.A study on adsorption properties of Zhejiang diatomites[J].功能材料,2006,37(1):160-168.
    [5]王利剑,郑水林,陈骏涛.硅藻土提纯及其吸附性能研究[J].非金属矿,2006,29(2):3-5.
    [1]郭小芳.改性粘土矿物在重金属废水处理中的应用研究[D].长沙:湖南大学,2006.
    [2]Ozdemir O.,Armagan B.,Turan M.,et al.Comparison of the adsorption characteristics of azo-resctive dyes on mezoporous minerals[J].Dyes Pigments,2004,62:49-60.
    [3]Wang S.,Soudi M.,Li L.,Zhu,Z.H.Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater[J].Journal of Hazardous Materials,2006,133(2):243-251.
    [4]朱利中等.CTMAB-粘土吸附水中苯酚、苯胺和对硝基苯酚的性能及应用研究[J].水处理技术,1997,23(5):291-296.
    [5]Baskaralingam P.,Pulikesi M.,Ramamurthi V.,et al.Adsorption of acid dye onto organobentonite[J].Journal of Hazardous Materials,2006,B128:138-144.
    [6]Kuan W.H.,Lo S.L.,Wang M.K.,et al.Removal of Se(Ⅳ) and Se(Ⅵ) from water by aluminum-oxide-coated sand[J].Water Research,1998,32:915-923.
    [7]Meng X.,Letterman R.D.Modeling ion adsorption on aluminum hydroxide modified silica[J].Environ.Sci.Technol,1993,27:1924-1929.
    [8]何媛媛,李正山,范莉等.TiO_2硅藻土复合光催化剂研制及光催化氧化水中亚甲基蓝的研究[J].染料与染色,2005,42(1):53-55.
    [9]Brando M.,Galembeck F.Copper,lead and zinc adsorption on MnO_2 inpregated cellulose acetate[J].Colloids Surf.,1990,48:351-362.
    [10]林俊雄.硅藻土基吸附剂的制备、表征及其燃料吸附特性研究[D].浙江:浙江大学,2007:42-45.
    [11]庞艳华等.有机高岭土的制备及对船舶压载水入侵生物的治理[J].大连海事大学学报,2007,33(2):58-62.
    [12]Xu S,Boyd SA.Cationic surfactant sorption to a vermiculite subsoil via bydrophobic bonding[J].Environ.Sci.Tech.,1995,29:312-320.
    [13]孟昭福.有机改性土表面特性及对有机、重金属污染物吸附特性和机理的研究[D].杨 凌:西北农林科技大学,2004.
    [14]吴平霄.黏土矿物材料与环境修复[M].北京:化学工业出版社,2004:11-13.
    [15]李佩玉,袁慰顺,林鸿福等.对影响蒙脱石层间距诸因素的探索[J].中国地质科学院南京地矿所所刊,1986,7(1):61-74.
    [16]刘树堂等.有机膨润土的制备及特性研究[J].地质实验室,1994,10(1):51-53.
    [17]GIESKINGJ E.Mechanism of cation exchange in montmorllonite-beidellite-nontronite type of clay[J].Soil Sci.,1999,47:1-13.
    [1]庞艳华等.有机高岭土的制备及对船舶压载水入侵生物的治理[J].大连海事大学学报,2007,33(2):58-62.
    [2]李万山,高斌,冯建坊等.HDTMA改性粘士对模拟地下水中苯系物的吸附[J].中国环境学,1999,19(3):211-214.
    [3]Palheiros I.B.,Duarte A.C.,Oliveira J.P.,Hall A.,The influence of pH,ionic strength and chloride concentration on the adsorption of cadmium by sediment[J].Water Sci.Technol.1989,21:1873-1876.
    [4]Mortland,M.M.Sorption of nonpolar organic compounds,inorganic cations and inorganic oxyanions by surfactant-modified ziolites[J].American Chemical Society,Washinton,DC.1995,(12)54-64.
    [5]BRETT KB,GERHARD H J,LEONARD W L.Effects of salinity changes and the formation of dissolved organic matter coatings on the sorption of phenanthrene:Implications for pollutant trapping in estuaries[J].Environ.Sci.Techno.,1997,31:119-125.
    [6]唐受印,戴友芝,汪大翠.废水处理工程[M].北京:化学工业出版社,2004.
    [7]冯孝庭.吸附分离技术[M].北京:北京化学工业出版社,2000.
    [8]唐受印,戴友芝,汪大翠.废水处理工程[M].北京:化学工业出版社,2004.
    [9]许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社,2000.
    [10]张辉编.土壤环境学[M].北京:北京化学工业出版社,2005:40-41.
    [1]吴平霄.黏土矿物材料与环境修复[M].北京:化学工业出版社,2004:11-13.
    [2]刘树堂等.有机膨润土的制备及特性研究[J].地质实验室,1994,10(1):51-53.
    [3]王晓蓉等.改性粘土矿物对污染环境修复的研究进展[J].环境化学,1997,16(1):1-14.
    [4]杨柳燕.有机蒙托土和微生物联合处理有机污染物的机理及应用[M].北京:中国环境科学出版社,2004.
    [5]陈丰等.矿物物理学概论[M].北京:科学出版社,1995.
    [6]李红阳,牛树根,王宝德.矿物材料与环境污染治理—以黏土矿物和沸石为例[J].北京地质.2001,13(4):8-12.
    [7]Verburg,K,Baveye,P.Hysteresis in the binary exchange of cations on 2:1 clay minerals:a critical review[J].Clay and Clay Mineral,1994,42:207-220.
    [8]何宏平,郭久皋,朱建喜等.蒙脱石、高岭石、伊利石对重金属离子吸附容量的实验研究[J].岩石矿物学杂志,2001,20(4):573-578.
    [9]任磊夫.黏土矿物与黏土岩[M].北京:地质出版社,1992.
    [10]孟昭福.有机改性土表面特性及对有机、重金属污染物吸附特性和机理的研究[D].杨凌:西北农林科技大学,2004.
    [11]郭小芳.改性粘土矿物在重金属废水处理中的应用研究[D].长沙:湖南大学,2006.
    [12]杨雅秀,张乃娴等.中国黏土矿物[M].北京:地质出版社,1994.
    [13]Xu S,Boyd SA.Cationic surfactant sorption to a vermiculite subsoil via hydrophobic bonding[J].Environ.Sci.Tech.,1995,29:312-320.
    [14]Wu S C et al.Sorption Kinetics of Hydrophobic Organic Compounds to Natural Seniments and Soils[J].Environ.Sci.Tech.,1986,20:717-725.
    [15]Sheng G et al.Mechanism controlling sorption of neutral organic contaminants by surfactant derived and natural organic matter[J].Environ.Sci.Technol.,1995,30:1553-1557.
    [16]Xu S et al.Cation Exchange Chemistry of Hexadecyltrimethylammonium in Subsoil Containing Vernative[J].Soi Sci.Soc.Am.J.,1994,58:1382-1391.
    [17]Mcbride M B et al.Adsorption of aromatic molecules by clays in aqueous suspensions,in:Fate of Pollutants in the Air and Water Environments Part Ⅰ,Wiley New York,1977,145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700