海藻生物吸附剂在电镀废水处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用处理过的海藻为生物吸附剂,以含金、银、铜、镍等贵重金属的电镀废水为吸附对象,分析了生物吸附等温线方程及吸附-解吸动力学变化规律,同时研究了吸附剂的循环利用效率,并与先前的研究结果进行了对比。通过对pH、金属离子初始浓度、吸附剂浓度等影响因子的研究确定其最佳吸附条件,进行工厂化海藻生物吸附剂吸附重金属的中试试验。在现场实验的基础上,优化最佳吸附条件。通过以上研究工作,对海藻对Au~(2+)、Ag~+、Cu~(2+)、Ni~(2+)离子的吸附特性可得出以下结论:
     1.海藻对Au~(2+)、Ag~+、Cu~(2+)、Ni~(2+)的吸附,pH值对吸附量有较大影响。海藻藻粉吸附Au~(2+)、Ag~+、Cu~(2+)、Ni~(2+)电镀废水的最适pH范围为4.0-6.0。在生物吸附剂用量一定的情况下,金属离子浓度在5-80 mg/L范围内,随着Au~(2+)、Ag~+、Cu~(2+)、Ni~(2+)金属离子初始浓度的升高,吸附率均有所降低,吸附量均有所升高。超过80 mg/L,吸附率降低得比较明显。海藻作为吸附剂,在低浓度时,相较于其他物理化学处理方法更可显示出其优越性。随着吸附剂浓度的增大,Au~(2+)、Ag~+、Cu~(2+)、Ni~(2+)的吸附率和吸附量均呈现不同的变化。综合两方面原因,实验可选择吸附剂浓度为2.50 g/L。这样即可以达到对金属离子良好的吸附效果,又可以节省藻粉的投入量。因此,选择pH=6.0、吸附剂浓度为2.50 g/L、粒径为60 mesh及金属离子初始浓度小于80 mg/L为适合的吸附条件。
     2.海藻吸附Au~(2+)、Ag~+、Cu~(2+)、Ni~(2+)在开始时均有快速的吸附过程,30分钟左右基本达到平衡,表明吸附作用是一个快速的过程。生物吸附过程符合Langumir模型,根据Langmuir吸附等温模型的计算结果表明,固定化海藻对Au~(2+)、Ag~+、Cu~(2+)、Ni~(2+)的最大吸附量分别为0.96、0.53、7.35、38.46 mg/g,海藻对Ni~(2+)离子的亲和性比其他离子的大。与先前实验室研究结果进行对比,结果表明,共存的Zn~(2+)、Cd~(2+)等金属离子与Cu~(2+)、Ni~(2+)之间存在竞争吸附,导致Cu~(2+)、Ni~(2+)的吸附量下降。
     3.Au~(2+)、Ag~+、Cu~(2+)、Ni~(2+)在Laminaria japonica上第1阶段的吸附进行得很快,10 min即达平衡。随着时间的推移,Au~(2+)、Ag~+、Cu~(2+)、Ni~(2+)的吸附量均略微增加。Au~(2+)、Ag~+、Cu~(2+)、Ni~(2+)在L.japonica上的吸附可以用准二级动力学方程很好地描述(R~2分别为0.977、0.995、0.999、0.999),动力学参数k_2分别为0.1106、0.3818、0.4589、2.6912 g/(mg·min),q_e分别为2.52、0.54、2.46、8.62 mg/g。与先前实验室研究结果进行对比,结果表明,海藻吸附Cu~(2+)、Ni~(2+)平衡时的吸附量q_e规律为:实验室溶液>电镀废水;准二级速率常数k_2规律为:电镀废水>实验室溶液。
     4.用0.1 mol/L的HCl溶液解吸吸附了重金属的L.japonica效果明显,能十分迅速的把Au~(2+)、Ag~+、Cu~(2+)、Ni~(2+)解吸下来,其解吸过程与吸附过程相似。Au~(2+)、Ag~+、Cu~(2+)、Ni~(2+)在L.japonica上的解吸同样可以用准二级动力学方程很好地描述(R~2分别为0.999、0.998、0.999、0.999),动力学参数k_2分别为10.6508、4.9264、0.6556、0.0312g/(mg·min),q_e分别为0.20、0.07、0.84、29.41 mg/g。解吸过的藻粉依然有良好的吸附性能,经过三次吸附.解吸过程藻粉依然保持着很好的吸附能力。
     5.从对三个公司重金属废水的处理情况来看,对于含重金属的废水,藻粉吸附剂表现出了良好的吸附能力,对各种重金属的吸附率都维持在一个较高的水平,平均吸附总量在120-180 mg/g,处理过废水中重金属的浓度基本上可达到国家二级排放标准。藻粉吸附剂的再生特性可同时实现电镀废水中贵重金属的回收以及吸附剂的循环使用。从福建新文行灯饰有限公司电镀废水的循环利用实验结果来看,贵重金属的回收率都能维持在一个较高水平,Ni~(2+)、Au~(2+)均达到了80%以上,Cu~(2+)也在50%左右,为贵重金属的回收提供了一个新的途径,具有良好的发展潜力和应用前景。
The pretreated algae biosorbent was used to treat Au~(2+),Ag~+,Cu~(2+) and Ni~(2+) ions of electroplating wastewater in this paper. Biosorption isotherm equation, biosorption-desorption kinetics and the reuse efficiency of biosorbent were studied, and compared with previous study. In this work, adsorption features of algae were investigated as a function of initial pH, initial concentration of ions and algal dose, and then the optimal biosorption features were obtained. Based on pilot test experiment of factory treatment of heavy metals by marine algae, the optimal biosorption features was optimized. The major conclusions are summarized as follows:
     1.pH of solution influences greatly on biosorption capacity of Au~(2+),Ag~+,Cu~(2+) and Ni~(2+) ions in the water. The optimal adsorption effect of metal ions on algae was observed at pH 4.0-6.0. The percent removal of metal ions was decreased, and biosorption capacity of algae was increased with increasing initial concentration of Au~(2+),Ag~+,Cu~(2+) and Ni~(2+) ions, while the certain algal dose and metal ions concentration 5-80 mg/L. The biosorption capacity of algae decreased quickly as metal ions concentration beyond 80 mg/L. The algal biosorption is more efficient than the traditional physicochemical methods at low ions concentration. The biosorption efficiencies and capacities of ions showed different variation with increasing biomass concentration. Considering the two aspects: good biosorption effect and saving algal dose, we chose the biomass concentration was 2.50 g/L. So the optimal sorption condition is pH of 6.0, algal dose of 2.50 g/L, particle size of 60 mesh and metal ions concentration being less than 80 mg/L.
     2.The adsorption process is fast, reaching equilibrium state in less than 30 min. The biosorption process followed Langmuir isotherm model, then the calculated result showed: maximum biosorption capacity of immobilized algae was observed 0.96, 0.53, 7.35 and 38.46 mg/g for Au~(2+),Ag~+,Cu~(2+) and Ni~(2+),respectively, and the affinity of Ni~(2+) ion with algae was stronger than the other ions. Compared with previous studies, the result indicated: competitive adsorption of Cu~(2+),Ni~(2+) and coexisting Zn~(2+), Cd~(2+) ions lead to the decrease of biosorption capacity of Cu~(2+),Ni~(2+).
     3. The first stage adsorption process of Au~(2+),Ag~+,Cu~(2+) and Ni~(2+) on Laminaria japonica is fast, reaching equilibrium state in 10 min. The biosorption capacities increased a little as the time going. The adsorption process of Au~(2+),Ag~+,Cu~(2+) and Ni~(2+) on L. japonica followed the pseudo-second order model well (R~2 was 0.977, 0.995, 0.999 and 0.999, respectively), and the kinetics parameter k_2 was 0.1106, 0.3818, 0.4589 and 2.6912 g/(mg·min), respectively, biosorption capacities (q_e) was 2.52, 0.54, 2.46, 8.62 mg/g, respectively. Compared with previous studies, the result indicated: the order for q_e of algae biosorption on Cu~(2+),Ni~(2+) at equilibrium state was experiment solution > electroplating wastewater, but the order for rate constant of the pseudo-second order model was electroplating wastewater > experiment solution.
     4. Desorption experiments showed 0.1 mol/L HC1 was an efficient desorption, metal ions Au~(2+),Ag~+,Cu~(2+) and Ni~(2+) can be desorbed quickly, and the desorption process was similar to adsorption process. The desorption process followed the the pseudo-second order model well (R~2 was 0.999, 0.998, 0.999 and 0.999, respectively), and the kinetics parameter k_2 was 10.6508, 4.9264, 0.6556 and 0.0312 g/(mg·min), respectively, biosorption capacities (q_e) was 0.20, 0.07, 0.84 and 29.41 mg/g, respectively. The adsorption capacity of desorbed algae was very good, which allowed the reuse of the biomass in three biosorption-desorption cycles without any considerable loss of biosorption capacity.
     5. The experiments of heavy metal wastewater treatment in three companies indicated that algae biosorbent was a good biosorbent. The mean sorption capacity of algae was 120-180 mg/g, and the concentration of heavy metal ions in the treated wastewater was lower than the nation second grade quality standards. The adsorption features of regenerative allowed the recovery of precious metal from the electroplating wastewater and the reuse of biosorbent simultaneously. Experiment of Wenton Group(Hong Kong) Limited of Fujian showed there was a good recovery rate of precious metal as Ni~(2+),Au~(2+)higher than 80 % and Cu~(2+) higher than 50 %. The biosorption-desorption provide a new approach to recover precious metal, and there will be a very good development potential and application prospect.
引文
[1] 李然,李嘉,赵文谦.水环境中重金属污染研究概述[J].四川环境.1997,16(1):18-22.
    [2] 孟祥和,胡国飞.重金属废水处理[M].北京:化学工业出版社.2000.
    [3] 刘景尧.厂矿有害物质分析[M].北京:劳动人事出版社.1985.
    [4] 朱一民,沈岩柏,魏德洲.海藻酸钠吸附铜离子的研究[J].东北大学学报(自然科学版).2003,24(6):589-592.
    [5] 张仲仪.电镀集中区电镀废水的处理[J].电镀与涂饰.2007,26(3):57-60.
    [6] 赵如金,吴春笃.常沮铁氧体处理重金属离子度水研究[J].化工环保.2005,25(4):263-266.
    [7] 邵刚.膜法水处理技术(第二版)[M].北京:冶金工业出版社.2000.
    [8] 孟宪锋,张延生.膜技术在电镀废水处理中的应用[J].山东表面工程.2006,88(1):17-18.
    [9] 王绍文.重金属废水的危害及防治[J].金属世界.1997(5):12-13.
    [10] 陈芳艳,唐玉斌,茅新华.活性炭纤维对水中重金属离子的吸附研究[J].辽宁城乡环境技术.2002,22(2):22-29.
    [11] 邵红,王冬梅,梁彦秋等.铁硅交联膨润土对Cr~(6+)的吸附研究[J].沈阳化工学院学报.2004,18(2):100-103.
    [12] Cadena F, Ritzvi R, Peters RW. Feasibility studies for the removal of heavy metals from solution using tailored bentonite[A]. Drexel University. Proceedings of the twenty-second mid atlandic industrial waste conference[C]. Philadel phia: Hazardous and industrial wastes. 1990.77-94.
    [13] 叶锦韶,尹华,彭辉等.柱生物曝气法吸附处理含铬废水[J].环境污染治理技术与设备.2006,7(1):102-105.
    [14] Breuer K, Enders D, Raabe G,et al. Heavy metal accumulation(lead and cadmium and ion exchange in three species of sphagnaceae) I Main principles of metal accumulation in sphagnaceae[J]. Oecoligia. 1990, 82(4): 758-764.
    [15] Herrero R, Cordero B, Lodeiro P, et al. Interactions of cadmium (Ⅱ) and protons with dead biomass of marine algae Fucussp[J].Marine Chemis try.2006,99(1-4):106-116.
    [16] Cochrane EL, Lu S, Gibb SW, et al. A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media[J]. Journal of Hazardous Materials. 2006,137(1):198-206.
    [17] Al-Rub FAA, El-Naas MH,Ashour I, et al. Biosorption of copper on Chlorella vulgaris from single, binary and ternary metal aqueous solutions[J]. Process Biochemistry. 2006,(41):457-464.
    [18] 王宪,徐鲁荣,陈丽丹等.海藻生物吸附金属离子技术的特点和功能[J].台湾海峡2003,22(1):120-124
    [19] Murgel GA, Lion LW, Cheson CA, et al. Experimental apparatus for selection of adherent microorganisms under stringent growth conditions[J]. Appl.Environ.Microbiol. 1992, 57(&):1987-1996.
    [20] 杨洪,宁黔冀.褐藻酸钠对Cu~(2+),Pb~(2+)交换与吸附性能的研究[J].离子交换与吸附.2000,16(4):351-355.
    [21] Prasher SO, Beaugeard M,Hawari J, et al. Biosorption of heavy metals by red algae (Palmaria palmata)[J]. Environ Technol. 2004, 25(10):1097-1106.
    [22] Lau TC, Ang PO, Wong PK. Development of seaweed biomass as a biosorbent for metalions[J]. Water sci Technol. 2003, 47(10): 49-54.
    [23] Chaisulsant Y. Biosorption of cadmium (Ⅱ) and copper (Ⅱ) by pretreat-biomass of marine alga Gracilariafisheri[J].Environ Technol.2003,24(2):1505-1508.
    [24] 徐鲁荣,陈丽丹,钱爱红等.两种大型海藻粉对重金属离子吸附热力学的研究[J].台湾海峡.2003,22(4):493-498
    [25] Yoshida N,Ikeda R, Okuno T.Identification and characterization of heavy metal-resistant unicellular alga isolated from soil and its potential for phytoremediation[J]. Biores Technol. 2006,97: 1843-1849.
    [26] Holan ZR,Volesky B. Biosorption of lead and nickel by biomass of marine algae[J].Biotechnol Bioeng.1994,43:1001-1009.
    [27] Kadukova J, Vircikova E.Comparison of differences between copper bioaccumulation and biosorption[J]. Environ Intern. 2005,31(2):227-232.
    [28] Pirszel J, Pawlik-Skowronska B, Skowronski T. Cation-exchange capacity of algae and cyanobacteria: A parameter of their metal sorption abilities[J]. Indus Microbiol Biotechnology.1995, 14:319-322.
    [29] Hassen A, Saidi N, Cherif M, et al. Effects of heavy metal On Pseudomonas aeruginosa and Bacillus thuringiensis[J]. BioresTechnol. 1998, 65(1-2): 73-82.
    [30] Mohamed ZA. Removal of cadmium and manganese by a non-toxic strain of the freshwater cyanobacterium Gloeothece magna[J]. Wat Res. 2001, 35(18): 4405-4409.
    [31] Matheickal JT, Yu QM. Biosorption of lead from aqueous solutions by marine algae Ecklonia radiate[J]. Wat Sci Tech. 1996, 34(9): 1-7.
    [32] Hashim MA, Chu KH. Biosorption of cadmium by brown, green, and red seaweeds[J]. Chemical Engineering Journal. 2004, 97: 249-255.
    [33] Holan ZR, Volesky B. Biosorption of lead and nickel by biomass of marine algae[J]. Biotechnol Bioeng. 1994, 43: 1001-1009.
    [34] Marques PASS, Rosa MF, Pinheiro HM. pH effects on the removal of Cu, Cd and Pb from aqueous solution by waste brewery biomass[J]. Bioprocess Engineering. 2000,23: 135-141.
    [35] Fourest E, Canal C, Toux JC. Improvement of heavy metal biosorption by micelial dead biomass(Rhizopus arrhizus, Mucormiehei and Penicillium chrysogenun), pH control and cation activation[J]. FEMS Microbiol. Rev. 1994(14): 325-332.
    [36] Schiewer S, Wong MH. Ionic strength effects in biosorption of metals by marine algae[J]. Chemosphere. 2000, 41(1-2): 271-282.
    [37] Gin KYH, Tang YZ, Aziz MA. Derivation and application of a new model for heavy metal biosorption by algae[J]. WatRes. 2002, 36: 1313-1323.
    [38] Chojnacka K, Chojnacki A, Gorecka H. Biosorption of Cr~(3+), Cd~(2+) and Cu~(2+) ions by blue-green algae Spirulina sp. Kinetics, equilibrium and the mechanism of the process[J]. Chemosphere. 2005, 59(1): 75-84.
    [39] Cruz CCV, da Costa ACA, Henriques CA, et al. Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. biomass[J]. Biores Technol . 2004, 91(3): 249-257.
    [40] Cong R, Ding Y, Liu H, et al. Lead biosorption and desorption by intact and pretreated Spirulina maxima biomass[J]. Chemosphere. 2005, 58(1): 125-130.
    [41] Ofer R, Yerachmiel A, Shmuel Y. Marine macroalgae as biosorbents for cadmium and nickel in wate[J]. Water Environ Res. 2003, 75(3): 246-53.
    [42] Volesky B, Weber J, Park JM. Continuous-flow metal biosorption in a regenerable Sargassum column[J]. Water Res. 2003, 37(2): 297-306.
    [43] Lin RG, Huang PL, Zhou JI. Study on the adsorption and desorption of copper and Cadmium in water on two species of brown algae[J]. Mar Environ Sci. 1999,18(4): 8-13.
    [44] Chu KH, Hashim MA, Phang SM, et al. Biosorption of cadmium by algal biomass, Adsorption and desorption characteristics[J]. Water Sci Technol. 1997, 35(7): 115-122.
    [45] Lee DC, Park CJ, Yang JE, el al. Screening of hexavalent chromium biosorbent for marine algae[J]. Appl Microbiol Biotechnol. 2000, 54(3): 445-448.
    [46] Jalali R, Ghafourlan H, Asef Y, et al. Removal and recovery of lead using nonliving biomass of marine algae[J]. Hazard Mater. 2002,92(3): 253-262.
    [1] Murgel GA, Lion LW, Cheson CA, et al. Experimental apparatus for selection of adherent microorganisms under stringent growth conditions[J]. Appl.Environ.Microbiol. 1992, 57(&):1987-1996.
    [2] Aualiitia TU, Pickering WF. The specifric sorption of trace amounts of Cu, Pb, Cd by inorganic particulates water,Air and Soil[J]. Pollution. 1987, 35: 171-185.
    [3] Balistrieri LS, Murray JW. Metal solid interactions in the marine environment; Estimationg apparent equilibrium binding constants Geochimet Cosmochim[J]. Acta. 1983, 47:10-19.
    [4] Salim R.Adsorption of lead on the suspended particles of river water[J]. Wat. Res. 1983, 17:423-429.
    [5] Murray JW. Mechanisms controlling the distribution of trace elements in oceans and lake[J].Adv Chem Ser.1987, 216:153-184.
    [6] Taylor H, Davisoon JW, Morfett K. The biogeochemical cycling of Zn, Cu, Fe, Mn and dissolved organiccina seasonally anoxic lake Limnol [J]. Oceanogr. 1996,41(30): 408-418.
    [7] 文竹青,高伟,何少华.藻类吸附法去除废水中的重金属[J].江苏环境科技.2006,19(2):49-51.
    [8] Hongve D. Cycling of iron, manganese,and phosphate in a meromictic lake, Limnol[J].Oceanogr. 1997, 42(4): 635-647.
    [9] Perret D, Gaillard JF, Dominik J, et al. The diversity of natural hydrous iron oxides[J].Environ.Sci.Technol. 2000, 34: 3540-3546.
    [10] Posselt HS, Anderson FJ, et al. Cation sorption on colloidal hydrous manganese dioxide.Environ[J]. Sci.Technol. 1968, 2(12): 1087-1093.
    [1] 文竹青,高伟,何少华.藻类吸附法去除废水中的重金属[J].江苏环境科技.2006.19(2):49-51.
    [2] Al-Rub FAA, El-Naas MH, Ashour I, et al. Biosorption of copper on Chlorella vulgaris from single, binary and ternary metal aqueous solutions[J]. Process Biochemistry. 2006(41): 457-464.
    [3] 孟令芝,徐容.固定化产黄青霉废菌体吸附铅与脱附平衡[J].环境科学.1998,19(4)72-75.
    [4] Lin RG, Huang PL, Zhou JI.Study on the adsorption and desorption of copper and Cadmium in water on two species of brown algae[J]. Mar Environ Sci. 1999,18(4): 8-13.
    [5] Pairat K. Biosorption of copper(Ⅱ) from aqueous solutions by pre-treated biomass of marine algae Padina sp.[J]. Chemosphere. 2002, 47: 1081-1085.
    [6] Zhou JL, Huang PL, Lin RG. Sorption and desorption of Cu and Cd by macroalgae and microaolgae[J]. Envioronmental Pollution. 1998, 101:67-75.
    [7] Ucun HY, Bayhan K, Kaya Y, et al. Biosorption of chromium(Ⅵ) from aqueous solution by cone biomass of Pinus sylvestris[J]. Bioresource Technology. 2002, 85: 155-158.
    [8] Donmez G, Aksu Z. Removal of chromium(Ⅵ) from saline wastewaters by Dunaliellaspecies[J].Process Biochemistry. 2002,38:751-762.
    [9] Akhtar N,Iqbal J,Iqbal M. Removal and recovery of nickel(Ⅱ) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characte-rization studies[J]. Journal of Hazardous Materials. 2004,B108:85-94.
    [10] Yalcinkaya Y, Soysal L, Denizli A, et al. Biosorption of cadmium from aquatic systems by carboxymethylcellulose and immobilized Trametes versicolor[J].Hydrometallurgy. 2002,63:31-40.
    [11] Al-Asheh S, Duvnjak Z. Adsorption of copper and chromium by Aspergillus carbonarius[J].Biotechnology Progress. 1995, 11:638-642.
    [12] Ting YP, Lawson F, Prince IG.Uptake of cadmium and zinc by the alga Chlorella vulgaris:Ⅱ.Multi-ion situation[J]. Biotechnol Bioeng. 1991, 37: 445-455.
    [13] Kutsal T, Sag Y. Biosorption of heavy metals by Zoogloea ramigera: use adsorption isotherms and a comparison of biosorption characteristics[J]. Themical EngineeringJournal.1995,60(1-3): 181-188.
    [14] Ting YP, Lawson F, Prince IG.Uptake of cadmium and zinc by the alga Chlorella vulgaris:part 1.Individual ion species[J]. Biotech and Bioeng. 1989, 34(7): 990-999.
    [15] Kuyucak N,Volesky B. The mechanism of cobalt biosorption[J]. Biotech and Bioeng.1989,33(7): 823-831.
    [16] Holan ZR, Volesky B. Biosorption of lead and nickel by biomass of marine algae[J].Biotech and Bioeng. 1994,43(11): 1001-1009.
    [17] Mullen MD, Wolf DC, et al.Bacterial sorption of heavy metals[J]. Appl.Environ,microbial.1989, 55(12): 3143-3149.
    [18] 唐莉,李家熙.藻吸附金属离子的研究-斜生栅藻富积金[J].岩矿测试.1994,13(3):161-167.
    [19] Chubar N, Carvalho JR, Correia MJN. Cork biomass as biosorbent for Cu(Ⅱ),Zn(Ⅱ) and Ni(Ⅱ)[J].Colloids and Surfaces A: Physicochem.Eng.Aspects. 2003, 230(1-3): 57-65.
    [1] R. Jalali-Rad, H. Ghafourian, Y. Asef, et al.Biosorption of cesium by native and chemically modified biomass of marine algae: introduce the new biosorbents for biotechnology applications[J]. Journal of Hazardous Materials. 2004, B116:125-134.
    [2] Niu H,Volesky B. Biosorption of chromate and vanadate species with waste crab shells[J].Hydrometallurgy. 2006, 84: 28-36.
    [3] Pavasant P, Apiratikul R, Sungkhum V,et al. Biosorption of Cu~(2+),Cd~(2+),Pb~(2+) and Zn~(2+) using dried marine green macroalga Caulerpa lentillifera[J]. Bioresource Technology. 2006, 97(18):2321-2329.
    [4] Sari A, Tuze M, Uluozlu OD, et al. Biosorption of Pb(Ⅱ) and Ni(Ⅱ) from aqueous solution by lichen (Cladonia furcata) biomass[J]. Biochemical Engineering Journal. 2007, 37(2):151-158.
    [5] Tobin JM, Copprt DJ, Neufeld RJ. Uptake of metal ions by Rhizopus arrihizus biomass[J].Environ. Microbiol. 1984, 47: 821-824.
    [6] Marcus Y, Kertes AS. Ion Exchange and Solvent Extraction of Metal Complexes[M]. John Wiley, New York. 1969.
    [7] Aksu Z,G.Donmez. Binary biosorption of cadmium(Ⅱ) and nickel(Ⅱ) onto dried Chlorella vulgaris:Co-ion effect on mono-component isotherm parameters[J].Process Biochemistry. 2006,41:860-868.
    [8] 刘刚,李清彪.重金属生物吸附的基础和过程研究[J].水处理技术.2002,28(1):17-21.
    [9] Wong JPK, Wong YS, Tarn NFY. Nickel biosorption by two chlorella species, C. vulgaris (a commercial species) and C.miniata(a local isolate)[J]. Bioresource Technology. 2000, 73:133-137.
    [10] Feng D, Aldrich C. Adsorption of heavy metals by biomaterials derived from the marine alga Exklonia maxima[J]. Hydrometallurgy. 2004,73:1-10.
    [11] Kadukova J, Vircikova E. Comparison of differences between copper accumulation and biosorption[J]. Environment International. 2005, 31(2): 227-232.
    [12] Chen XC, Wang YP, Lin Q, et al. Biosorption of copper (Ⅱ) and zinc (Ⅱ) from aqueous solution by Pseudomonas putida CZ1[J]. Colloids and Surfaces B: Biointerfaces . 2005 , 46:101-107.
    [13] Miretzky P, Saralegui A, Cirelli AF. Simultaneous heavy metal removal mechanism by dead macrophytes[J]. Chemosphere.2006,62:247-254.
    [14] 郜瑞莹,王建龙.Ni~(2+)生物吸附动力学及吸附平衡研究[J].环境科学.2007,28(10):2315-2319.
    [15] Yan GY,Viraraghavan T. Heavy-metal removal from aqueoussolution by fungus Mucor rouxii[J]. Water Research .2003, 37: 4486-4496.
    [16] Padmavathy V, Vasudevan P, Dhingra SC.Biosorption of nickel(####) ions on Baker's yeast [J].Process Biochemistry. 2003,38:1389-1395.
    [17] Norton L, Baskaran K, McKenzie T. Biosorption of zinc from aqueous solutions using biosolids [J ]. Advin Environm Res. 2004, 8: 629-635.
    [18] Al-Saraj M, Abdel-Latif MS, El-Nahal I,et al. Bioaccumulation of some hazardous metals by solgel entrapped microorganisms[J]. Journal of Non-Crystalline Solids. 1999, 248: 137-140.
    [19] Cruz CCV, da Costa ACA, Henriques CA, et al. Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. biomass[J]. Biores Technol.2004, 91(3):249-257.
    [20] Gong RM, Ding Y, Liu HJ, et al. Lead biosorption and desorption by intact and pretreated Spirulina maxima biomass[J]. Chemosphere. 2005, 58(1):125-130.
    [21] Kadukova J, Vircikova E. Comparison of differences between copper bioaccumulation and biosorption[J].Environ Intern. 2005,31(2):227-232.
    [22] Ofer R, Yerachmiel A, Shmuel Y. Marine macroalgae as biosorbents for cadmium and nickel in water[J]. Water Environ Res. 2003, 75(3): 246-53.
    [23] Volesky B, Weber J, Park JM. Continuous-flow metal biosorption in a regenerable Sargassum column[J]. Water Res. 2003, 37(2): 297-306.
    [24] Tsezos M. Recovery of Uranium from Biological Adsorptions-Desorption Equilibrium[J].Biotechnology and Bioengneering. 1984, 26: 973-981.
    [1] 王俊峰,尹艳芬,邱廷省.非活性红色链霉菌处理含pb~(2+)废水的试验研究[J].能源环境保护.2006,20(1):34-37.
    [2] GB8978-1996中华人民共和国国家标准,污水综合排放标准[S].
    [1] Lawrence RD, Shan L, Gary DR. Chemical Modification and Metal Binding Studies of Datura innoxia[J].Environmental science & technology. 1996,1(30):110-114.
    [2] Kapoor A, Viraraghavan T. Heavy metal biosorption sites in Aspergillus niger[J].Bioresource Technology. 1997,61:221-227.
    [3] Kim YH, Park JY, Yoo YJ, et al.Removal of lead using xanthated marine brown alga, Undaria pinnatifida[J].Process Biochemistry.1999,34:647-652.
    [4] de Carvalho RP, Freitas JR, de Sousa AMG,et al.Biosorption of copper ions by dried leaves:chemical bonds and site symmetry[J]. Hydrometallurgy. 2003,71:277-283.
    [5] Schneegurt MA, Jain JC, Menicucci JA, et al. Biomass Byproducts for the Remediation of Wastewaters Contaminated with Toxic Metal[J]. Environ.Sci.Technol.2001, 35: 3786-3791.
    [6] Genc O,Yalcinkaya Y, Buyuktuncel E, et al. Uranium recovery by immobilized and dried powdered biomass: characterization and comparison[J]. Int. J. Miner. Process. 2003, 68:93-107.
    [7] Figueira MM,Volesky B, Mathieu HJ. Instrumental Analysis Study of Iron Species Biosorption by Sargassum Biomass[J]. Environ.Sci.Technol. 1999, 33(11):1840-1846.
    [8] 张利,孔德领,屠娟等.发酵废渣黑根霉菌对铅离子吸附机理的研究[J].离子交换与吸附.1996,12(4):317-323

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700