复合污染条件下水环境中污染物质的迁移转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了复合污染条件下泥沙吸附污染物和泥沙冲淤运动对污染物输移扩散特性的影响,建立了非恒定非饱和输沙模型和污染物迁移转化模型,计算了观音岩水电站下游河道水流泥沙的变化分布和长江清溪场-万县河段总磷污染物浓度分布,验证了模型的准确性和可靠性。针对黄河河口段利津至清7河段芳烃类污染物的分布特性,分析研究在一定水流、泥沙条件下,芳烃类污染物在该河段的迁移转化规律,重点讨论了多组分共存的复合污染条件下三种芳烃类污染物之间的吸附竞争关系及其浓度变化情况。
     首先,以水流运动方程和泥沙输移方程为基础建立非恒定非饱和输沙模型,通过观音岩水电站下游河道水位过程和泥沙冲淤分布的实测资料对此模型进行了验证。其次,分别以溶解态和吸附态污染物为研究对象,建立了溶解态和吸附态污染物迁移转化的数学模型,采用悬移质吸附动力学方程作为确定模型参数的补充条件,通过长江清溪场-万县河段溶解态和吸附态总磷的实际监测结果验证了模型的有效性。对两种模型的验证,均取得了令人满意的结果。
     黄河的工业废污水排入量较大,污染物种类较多,尤其是黄河河口段利津至清7河段存在明显的有机复合污染情况。为此,建立了芳烃类污染物(包括苯酚、苯胺和氯苯)泥沙水质模型。在水流、泥沙计算的基础上,对复合污染条件下苯酚、苯胺和氯苯的迁移转化规律进行研究,并与单组分污染情况对比,分析了复合污染条件下三种污染物之间的竞争吸附关系。计算结果表明:研究河段从上游到下游先冲刷后淤积,溶解态污染物浓度值沿程降低,水量沙量越大,溶解态浓度值越低,吸附态浓度值变化与此相反。与单组分体系相比,三组分复合体系下各污染物之间的竞争吸附影响明显,苯酚和氯苯在泥沙上的吸附作用受到抑制,吸附态浓度值有所下降,溶解态浓度值升高,总体来说,吸附竞争能力苯胺>氯苯>苯酚。
The influence of the pollutants adsorption and sediment motion on the pollutants transfer characteristics was studied in this paper. Unsteady-unsaturated sediment transport model and pollutants transport and transformation model were developed. The models were tested by numerical simulation of the water flow and sediment transport in the lower channel of Guanyinyan Hydro-power Station and of the concentration distribution of TP (Total Phosphorus) in the Yangtze River from Qingxichang to Wanxian section. The sediment motion and water quality model were established based on the characteristics of aromatic hydrocarbons in the Yellow River from Lijin to Qing7 section, and the transport and transformation of the aromatic hydrocarbons, especially the adsorption competition of the combined pollutants, were discussed.
     The unsteady-unsaturated sediment transport model was developed based on the water and sediment motion equations. The validity of the model was verified by the measurement data of water level and sediment deposition and erosion in the lower channel of Guanyinyan Hydro-power Station. The soluble and absorbable pollutants transport and transformation models were built and the absorption dynamic equation was used to determine the parameters of models. The observation data of soluble and absorbable TP in the Yangtze River from Qingxichang to Wanxian section were used to test the models. The test results were satisfied.
     The Yellow River has been polluted by combined organic pollutants, especially the estuarine zone from Lijin to Qing7 section. Therefore the water quality model of aromatic hydrocarbons (including phenol, aniline and chlorobenzene)is established. Based on the calculation of the water flow and sediment motion, the transport and transformation of combined these three pollutants have been studied, and the adsorption competition of the combined pollutants has been analyzed. The calculated results showed that the erosion happens in the upper river and the deposition appears in the lower river, the concentration of soluble pollutants decreases along the river, especially when the quantity of the runoff and sediment is very large. The absorbable pollutants concentration distribution is other way round. Compared to the single pollutant, combined pollutants happen mutually the adsorption competition. It is concluded that the adsorption competition capability of aniline is strongest and the adsorption competition capability of phenol is weakest.
引文
[1] Zwatt D et al.. Environment Contaminant and Toxicology. 1987, 38: 345
    [2] Diehl H et al.. Ecotoxicology and Environmental Safety. 1985, 9(3): 369
    [3] [日]近藤精一,石川达雄,安部郁夫.吸附科学[M].李国希译.北京:化学工业出版社,2006
    [4]吴焕领,魏赛男,崔淑玲.吸附等温线的介绍及应用[J].染整技术,2006,28(10):12-27
    [5]戴维明.长江口悬浮固体中重金属元素的形态研究[J].上海环境科学,1994,13(11):7-9,35,45
    [6]邵秘华,王正方.长江口水体中重金属形态交换过程的研究[J].环境科学, 1995,16(6):69-72
    [7]王霞,仇启善.水环境中重金属的存在形态和迁移转化规律综述[J].内蒙古环境保护,1998,10(2):22-24
    [8]程晓东,郭明新.河流底泥重金属不同形态的生物有效性[J].农业环境保护, 2001,20(1):19-22
    [9] Duddridqe J. E., Wainswright M. Heavy metals in river sediment-calculation of metal adsorption maxima suing Langmuir and Freundlich isotherms. Environmental Pollution, Series B: Chemical and Physical: 1981, 2(5): 387-397
    [10] Soltan M. E., Rashed M. N., Taha G. M. Heavy metal levels and adsorption capacity of Nile river sediments. International Journal of Environmental Analytical Chemistry, 2001, 80(3): 167-186
    [11]黄岁樑,万兆惠,王兰香.泥沙吸附重金属污染物室内静态试验研究[J].水科学进展,1994(4):271-279
    [12]黄岁樑,万兆惠,王兰香.泥沙浓度和水相初始浓度对泥沙吸附重金属的影响研究[J].环境科学学报,1995(1):66-76
    [13]黄岁樑,万兆惠,张朝阳等.泥沙?抖灾亟鹗粑廴疚镂接跋斓难芯縖J].水利学报,1994(10):53-60
    [14]李崇明,赵文谦,罗麟.泥沙吸附石油的实验研究[J].四川联合大学学报(土程科学版),1997,1(4):34-40
    [15]赵文谦,晃晓波,黄勤生.泥沙吸附石油的数学模型与试验研究[J].水利学报,1997, 12(12):50-57
    [16]叶常明,雷志芳,王宏等.颗粒物与天然水体痕量有机物相互作用的动态模型[J].水科学进展,1995,6(3):171-175
    [17]李铁,叶常明.分类化合物在水体颗粒物上的吸附实验[J].环境化学,1997, 16(3):227-232
    [18]刘季昂,王怡中,汤鸿宵.有机污染物在白洋淀地区水路交错带土壤颗粒物上的吸附[J].环境科学,1996,17(3):20-22
    [19]李嘉,周和一,李克锋.泥沙粒径分布函数的分形特征与吸附特性[J].泥沙研究,2003, 6(3):17-20
    [20]李洪,李嘉,李克锋,周鲁.泥沙分形表面和分形吸附模型[J].水利学报,2003,3(3):14-18
    [21]黄岁樑,万兆惠,王兰香.不同?赌嗌辰馕亟鹗粑廴疚锞蔡匝檠芯縖J].水动力学研究与进展(A辑),1995,10(2):204-213
    [22]叶裕中.沉积底泥中重金属的释放[J].环境化学,1990,9(5): 33-38
    [23]黄廷林,周孝德,沈晋.渭河沉积物中重金属释放的动态实验研究[J].水利学报,1994,11:52-58
    [24] Wang J., Huang C. P., Allen H.E., et al. Effect of dissolved organic matter and pH on heavy metal uptake by sludge particulates exemplified by copper(II) and nickel(II): three-variable model. Water Environment Research, 1999, 71(2): 139-147
    [25]何江,李桂海,关伟,米娜,田慧娟,薛红喜,吕昌伟,高兴东.黄河沉积物对芳烃类有机物的吸附特性研究[J].农业环境科学学报,2005,24(2):312~317
    [26]李改枝,郭博书,焦小宝,李景峰.黄河水中沉积物与铜和铅交换吸附等温线的研究[J].环境科学与技术,2000,13(5):35~37
    [27]黄岁樑,万兆惠,张朝阳.冲积河流重金属污染物迁移转化数学腜脱芯縖J].水利学报,1995,1(1):47~56
    [28]李桂海.黄河包头段水体中芳烃类污染物吸附特性的初步研究[硕士学位论文].内蒙古大学,2004
    [29]刘颖,李改枝,李景峰,郭博书.黄河水体悬浮颗粒物对有机物吸附作用的研究[J].化学世界,2001,20(6):333-335
    [30]关伟.几种酚类化合物在黄河水体沉积物上的吸附行为的初步研究[硕士学位论文].内蒙古大学,2004
    [31]娄保锋,朱利中,杨坤.苯及其取代物与对硝基苯胺在沉积物上的竞争吸附[J].中国环境科学,2004,24(3):327-331
    [32]吕平毓,黄文典,李嘉.河流悬移质对含磷污染物吸附试验研究[J].水利水电技术,2005,36(10):93-96
    [33]李远伟,邓仕槐,武俊英,郑仁宏,龙永波.人工湿地基质磷吸附特性研究[J].农业环境科学学报,2006,25(增):643-648
    [34]申满斌.浑水水质模型研究及其在三峡库区岸边水质模拟中的应用[博士学位论文].清华大学,2005.
    [35]汪家权,陈众,武君.河流水质模型及其发展趋势[J].安徽师范大学学报(自然科学版),2004,27(3):242-247
    [36]李如忠,王超.基于未确知信息的河流水质模拟预测研究[J].水科学进展,2004,15(1):35-39
    [37]龙腾锐,郭劲松,冯裕钊,霍国友.二维水质模型横向扩散系数的人工神经网络模拟[J].重庆环境科学, 2002,24(2):25-28
    [38]崔宝侠,高鸿雁,左传金,张理平.人工智能在水质模型改进中的应用[J].沈阳工业大学学报,2004, 26(5):543-546
    [39]张行南,耿庆斋,逄勇.水质模型与地理信息系统的集成研究[J].水利学报,2004,1(1):90-94
    [40]崔宝侠,左传金,高鸿雁.基于GIS的河水污染预测及其影响的可视化研究[J].沈阳工业大学学报,26(3):297-299
    [41]汪德灌.计算水力学理论与应用[M].南京:河海大学出版社,1989
    [42]周雪漪.计算水力学[M].北京:清华大学出版社,1995
    [43]张瑞瑾等.河流泥沙动力学[M].北京:水利水电出版社,1990
    [44]谢鉴衡.河流模拟[M].北京:水利水电出版社,1990
    [45]禹雪中,杨志峰,钟德钰,彭期冬.河流泥沙与污染物相互作用数学模型[J].水利学报,2006,37(1):10-15
    [46]庞家珍,姜明星.黄河河口演变(I)——(一)河口水文特征[J].海洋湖沼通报.2003(3):1-13
    [47]樊辉.黄河口泥沙输移及三角洲的近期演变[中国科学院海洋研究所论文].2005:34-41
    [48]曾庆华,张世奇,胡春宏.尹学良等编著.黄河口演变规律及整治[M].郑州:黄河水利出版社,1997:5-7
    [49]姜福欣.河口区域有机污染物的特征分析[硕士学位论文].北京化工大学,2006
    [50]方红卫,王光谦.一维全沙泥沙输移数学模型及其应用[J].应用基础与工程科学学报.2000,8(2):154-164
    [51]刘继祥.多沙河流挟沙力研究[J].泥沙研究,1993(2):67-75
    [52]刘峰.泥沙级配对水流挟沙力计算的影响[J].武汉水利电力大学学报,1997,30(3):11-14
    [53]魏合龙,李广雪,韩业深.黄河口清3至清6河段高槽的成因及治理初探[J].人民黄河.1996(5):31-34
    [54]张明亮.河流水动力及水质模型研究[博士学位论文].大连理工大学,2007
    [55]黄文飞.复合污染体系中重金属和有机物在沉积物上的吸附行为[硕士学位论文].浙江大学,2007
    [56]刘昕宇,冯玉君,刘玲花,闫桂云,樊引琴.黄河重点河段水环境有毒有机物污染现状浅析[J].水资源保护,2004(2):37-40
    [57]周艳丽,吴青,穆伊舟.黄河流域有毒有机物污染分析及其对策[J].水文,2004,24(6):44-46
    [58]娄保锋.有机污染物在沉积物上的竞争吸附效应及影响因素[博士学位论文].浙江大学,2004
    [59]梁国亭,钱意颖.黄河泥沙数学模型的研究与应用[J].人民黄河,2000,22(9):7-9
    [60]李则刚.论黄河河口段河道特征[J].人民黄河,1994,6(6):21-25
    [61]程进豪,王宁,李景芝,刘存功,王维美.黄河山东段水质污染趋势分析[J].人民黄河,1994,10(10):8-10
    [62]苏国良.黄河山东段水污染状况分析[J].山东环境,1999(3):44-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700