改性蒙脱土吸附脱硫性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济的高速发展和多年来对资源的持续开发,低硫化石燃料日益枯竭,使得高硫燃料的开采使用成为必然;然而世界各国对低硫和超低硫燃油的需求却在不断增加。因此进行新型深度脱硫吸附剂的制备、表征,研究燃油体系中界面污染物吸附过程,对于降低燃油中硫含量,解决环境问题具有十分积极的意义。
     本文以蒙脱土(MMT)作为载体,采用溶胶-凝胶法,经过改性剂修饰及有机-无机共混修饰制备了几种改性蒙脱土吸附剂。利用XPS、FTIR等对其进行结构表征,在模拟汽油体系中考察吸附温度、平衡时间、吸附剂用量等因素对吸附效果的影响,并优化工艺条件。在最优反应条件下,验证亚稳态平衡理论在有机体系中的适用性;利用XRD、XPS、TEM、FT-IR等仪器对噻吩的吸附行为进行微观表征。
     苯基三甲基溴化铵改性(PTMAB)、200℃下3h热处理后的蒙脱土在60℃、2h的条件下吸附脱硫效果最佳。经过200℃热处理,降低了蒙脱土层间水的含量,提高了材料的疏水性;苯基三甲基溴化铵成功插层进入蒙脱土的硅酸盐片层间,增大了蒙脱土的层间距,提高了吸附容量。
     宏观试验验证亚稳态平衡理论同样适用于有机体系,存在明显的固体浓度效应和初始溶质浓度效应。FTIR、NMR微观表征显示,噻吩分子大部分进入了蒙脱土的片层之间,通过其上的H与蒙脱土片层的Al-O八面体、或者Si-O四面体等形成电子给体-受体化合物而吸附到苯基三甲基溴化铵改性蒙脱土上。
     对3种Cu~(2+)修饰的苯基三甲基溴化铵改性蒙脱土及其吸附行为进行微观表征,发现Cu~(2+)存在三种结构状态:以水合离子[Cu(H_2O)_4]~(2+)的形式,通过交换吸附方式存在于蒙脱石层间;以[Cu(AlO)_n(H_2O)_n]~X的形式,通过专性吸附存在于蒙脱土的Al-O八面体空位;以[Cu(SiO)_n(H_2O)_n]~X的形式,通过专性吸附存在于Si-O四面体片的六方形孔洞中。
With rapid development of world economy and continuous exploiture of resource for years, exploitation of high sulfur fuel is inevitable due to the fossil fuels with low sulfur are being depleted. It is important to environment problems solution by studying on the process of interface pollutants adsorption in fuel system, as well as preparation and characterization of new desulfurization adsorbent.
     Absorbents of organic modified montmorillonite, characterized by X-ray Photoelectron Spectroscopic (XPS), FTIR, were developed by sol - gel and modification. To optimize the absorption of the desulfurization process, the reaction conditions, such as different modifiers, adsorption temperature, balance time and absorbent amount were test by carrying out experiments in a simulated fuel system. the applicability of MEA theory in thiophene- modified montmorillonite system was tested by macro-experiments; the absorption behavior of thiophene was characterized by X-Ray Diffraction(XRD), XPS, Transmission Electron Microscopy (TEM), Fourier transform infrared spectra (FT-IR), Nuclear Magnetic Resonance (NMR), etc. Finally, 3 kinds of Cu2+ modified PTMAB-MMT were developed to study the mechanism of absorption by performancing in thermodynamic tests and characterized by XRD, FT-IR, Electron Paramagnetic Resonance (EPR), etc.
     The preparation of materials indicated that, the absorbent with best desulfurization performance was modified with phenyltrimethylammonium tribromide (PTMAB), heat-treated by 200℃for 3 hours, absorbing in 60℃, 2 hours. the structure characterization of MMT showed that, 200℃heat treatment reduced the water content of MMT layer and improved the hydrophobicity of MMT; PTMAB was successfully inserted into the silicate layers of montmorillonite, which enlarged the interlayer space and improved the absorption capacity.
     MEA theory is applicable in the adsorption system of thiophene-modified MMT. There was obvious effect of solid concentration and initial concentration of solutes in this system. Micro-characterization indicated that, most thiophene molecular inserted into the internal layers of absorbent. It was absorbed into the PTMAB-MMT by forming a component of electron donor- electron accepter, which was produced by H of thiophene and the Al-O octahedron or Si-O tetrahedron of MMT layer.
     After characterized the modified MMT with Cu~(2+), 3 structures of Cu~(2+) were found in them: Cu~(2+) [Cu(H_2O)_4]~(2+) , hydrated ions, existed between the layers of MMT, and Cu~(2+) exists in the form of montmorillonite hexagon holes of Si-O tetrahedron or the spare space of Al-O octahedrone [Cu(AlO)_n(H_2O)_n]~X. The former belongs to the exchange adsorption, and the latter belongs to the specific adsorption, with two of which Cu~(2+) is able to insert MMT.
引文
[1] Avidan A, Cullen M. SulphcCo-Desulfurization via Selective Oxidation-Pilot Plant Results and Commercialization Plans. the National Petroleum and Refiners Association Annual Meeting, 2001: 44~46
    [2] Babich I V, Moulijn J A, Science and technology of novel processes for deep desulfurization of oil refinery streams: a review, Fuel, 2003, 82: 607~631
    [3]赵宝林,钛柱撑光催化剂的制备及氧化脱硫研究:[硕士学位论文],天津;天津大学,2006
    [4] Nocca J L,Cosyns J S; The domino interaction of refineryprocesses for gasoline quality attainment, NPRA AnnualMeeting Texas: 2000, 58~67
    [5] Chunshan Song, An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel, Catalysis Today, 2003, 86: 211~263
    [6] Yang R T, Adsorbents: Fundamentals and Applications, Wiley, New York: 2003:10~21
    [7]李成岳,张金昌,汽油和柴油脱硫技术进展石化技术与应用,2000, 20(5): 293~295
    [8] Ralph T. Yang et al. Desulfurization of Transportation Fuels with Zeolites Under Ambient Conditions Science, 2003, 301: 79~83
    [9] KONYUKHOVA T P, VIASOV V V, Adsoption of organic sulfer compounds by acid-activated natural zeolites, Izv Vyssh Uchebn zaved. 1989, 12: 56~59
    [10] FORTE P, Removal of sulfur from a FCC gasoline fraction, US5582714, 1996
    [11] BARTE, K. Removal of sulfur from a hydrocarbon stream by low severity sorption, US5919354, 1999
    [12] Xiaoliang Ma, Subramani Velu, Jae Hyung Kim, et al. Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications, Applied Catalysis, 2005, 56: 137~147.
    [13]陈焕章,李永丹,赵地顺,催化裂化汽油脱硫技术进展,化工科技,2004,12(3):46~51.
    [14]张晓静,秦如意,刘金龙,FCC汽油吸附脱硫工艺技术—LADS工艺,天然气与石油,2003,21(1):39~42
    [15]康善娇,窦涛,李强,鲍晓军,FCC汽油吸附脱硫技术研究进展,化工进展,2005(04):357~361
    [16]王华峰,清洁氧化生产低硫油品技术:[硕士学位论文],黑龙江:大庆石油学院,2006
    [17] I V Babioh, J A Moulijn, Science and technology of novel. processes for deep desulfurization of oil refinery streams, Fuel, 2003, 82 :607~631
    [18]刘剑锋,那平,等,钛柱撑型蒙脱土除砷吸附剂的研制与表征,第九届全国化学工艺学术年会,2005,北京
    [19]那平,张海燕,超声波及压力处理的TiO2柱撑蒙脱土的制备与光催化性能,化工学报,2006,57(5):1242~1246
    [20]那平,张帆,李艳妮,水化Na蒙脱土和Na/Mg蒙脱石的分子动力学模拟,物理化学学报,2006,22(9):1137~1142
    [21]康善娇,窦涛,李强,鲍晓军,FCC汽油吸附脱硫技术研究进展,化工进展,2005(04):357~361
    [22]王永,汽油深度脱硫新技术研究,[硕士学位论文],南京;南京工业大学,2004
    [23] Irvine R L, Benson B A, Varraveto D M, et al. Low Cost Break through for Low Sulfur Gasoline.1999 N PRA Annual Meeting, San Antonic,Texas,1999
    [24] Irvine R L, Process for Desulfurization Gasoline and Hydrocarbon Feedstocks, U S 5730860, 1998
    [25]宗保宁,林海龙,孟祥堃等,一种汽油吸附脱硫方法,中国专利,CN 1407604,2003
    [26]尹原根,多相催化剂的研究方法,北京:化学工业出版社,1988,98~104
    [27]陈诵英,孙予罕,丁云杰,等,吸附与催化,河南:河南科学技术出版社,2001,345~349
    [28]黄仲涛,林维明,庞先桑,等,工业催化剂设计与开发,广州:华南理工大学出版社,1991,734~738
    [29]王永,汽油深度脱硫新技术研究,[硕士学位论文],南京;南京工业大学,2004
    [30] Gregg S, Sing K, Adsorption, Surface Area, and Porosity, New York, 1982,45~49
    [31]罗永刚,李天骥,黄震,FCC汽油吸附脱硫研究,环境科学,2003,24(1):147~151
    [32] Exxon Research and Engineering Company, Deep Desulfurization of Distillate Fuels, U S 5454933, 1999
    [33] Mikhail S, Zaki T, Khalil L. Appl. Catal. A: General, 2002, 227 (3): 265~278
    [34]徐志达,曾汉民,冯仰桥,活性炭纤维的制备及其负载钴盐后脱除硫醇的性能,石油化工,1999,28 (8):520~523
    [35] Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline,diesel fuel and jet fuel . Catal. Today,2003,86:211~263
    [36] Greenwood G J. Next Generation Sulfur Removal Technology, N PRA Annual Meeting, AM00 12
    [37] Khare, et al. Transport Desulfurization Process Utilizing a Sulfur Sorbent t hat is Both Fluidizable and Circulatable and a Method of Making Such Sulfur Sorbent, U S 5914292, 1999
    [38]张晓静,秦如意,刘金龙等,FCC汽油吸附脱硫技术--LADS工艺,天然气与石油,2003,21(1):39~41
    [39]秦如意,张晓静,刘金龙,催化裂化汽油非临氢吸附脱硫新技术,石油炼制与化工,2003,34(3):24~28
    [40]赵保林,那平,刘剑锋,改性蒙脱土的研究进展,化学工业与工程,2006,23(5):453~457
    [41] Ma X, Sun L, Song C, An Overview of New Approaches to Deep Desulfurization for Ultra-Clean for deep hydrodesulphurization of gas oil, Cat al. Today ,2000, 63: 123~126
    [42] Velu S, Watanable S, Ma X, et al, high temperature and high pressure process, Am. Chem. Soc., Div. Petrol. Chem. Pre p r.,2003,48(2):56~57
    [43] Velu S, Ma X, Song C, Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel, Ind. Eng. Chem. Res., 2003, 42(21): 5293~5304
    [44]张帆,蒙脱石的改性、除砷性能及水化过程的分子模拟:[硕士学位论文],天津,天津大学,2006
    [45]朱建喜,何宏平,郭九皋等,HDTMA+柱撑离子空间几何尺寸与柱撑蒙脱石层间排列方式的研究,矿物岩石,2003,23(4): 1~4
    [46]李庆伟,多孔蒙脱土异构材料的合成及催化性能的研究:[硕士学位论文]浙江工业大学,2002
    [47]梅长松,钟顺和,Cu/MoO3-TiO2复合半导体光催化剂的制备与表征,催化学报,2004,25 (11): 862~868
    [48] Prado A S, Karthikeyan C S, Schulte K, Organic modification of layered silicates: structural and thermal characterizations, Journal of Non-Crystalline Solids, 2005, 351(12~13): 970~975
    [49] Perez-Santano, Belver C, Effect of the intercalation conditions of a montmorillonite with octadecylamine, Journal of Colloid and Interface Science, 2005, 284(1): 239~244
    [50] Pan G, Liss P S. Metastable equilibrium adsorption theoryⅠ, Theoretical, J Colloid Interface Sci, 1998, 201:71—76
    [51]潘纲,亚稳平衡态吸附(MEA)理论——传统吸附热力学理论面临的挑战与发展,环境科学学报,2003(23): 156~173
    [52] Harold F. Walton, Exchange chromatrtigrah :Bring Brief Review, Ind. Eng. Chem. Res., 1995, 34, 2553~2559
    [53] Giles C H, Smith D, Huitson A. A General treatment and classification of the solute adsorption isotherm, I. Theoretical, J Colloid Interface Sci, 1974 ,47 :755~780
    [54] Giles C H, DpDilva A P, Easton I A. A general treatment and classification of the solute adsorption isotherm, PartⅡ, Experimental interpretation , J Colloid Interface Sci , 1974 ,47 : 766~770
    [55] Pan G, Liss P S. Metastable equilibrium adsorption theoryⅡ, Experimental, J Colloid Interface Sci , 1998, 201: 77 ~85
    [56] Pan G, Liss P S, Krom M D. Particle concentration effect and adsorption reversibility, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 151 :127 ~133
    [57] Connor D J, Connolly J P, The effect of concentration of adsorbing solids on the partition coefficient, Water Res , 1980 , 14 :1517~1523
    [58] Honeyman B D, Santschi P H, Metals in aquatic systems, Environ Sci Technol, 1988, 22(8): 862~871
    [59] Pan G, Qin Y, Li X, et al, EXAFS studies on adsorption2desorption mechanism of Zn at a manganite-water interface, J Environ Sci China,2003,(in press)
    [60] Pan G, Li X, Qin Y, et al, EXAFS studies on adsorption2desorption mechanism of Zn at aδ2MnO2-water interface.J Environ Sci China,2003,(in press)
    [61]吴季怀,材料科学基础,广东,暨南大学出版社,1996,44~46
    [62] Honeyman B D, Santschi P H, Metals in aquatic systems, Environ Sci Technol ,1988, 22(8): 862 ~871
    [63] Gschwend PM, Wu S C, On the constancy of sediment water partition coefficients of hydrophobic organic pollutants, Environ Sci Technol ,1985, 19 (1): 90 ~96
    [64] Nyffeler U P, Li Y H, Santschi P H, A kinetic approach to describe trace2element distribution between particles and solution in natural aquatic systems, Geochim Cosmochim Acta ,1984, 48(7) : 1513~1522
    [65] Cohen Stuart M A, Scheutjens J M, Fleer G J, J Polymer Sci : Polymer Physics Ed. ,1980, 18 :559~564
    [66] Ditoro D M, Mahony J D, Kirchgraber P R, et al. Effects of nonreversibility, particle concentration, and ionicstrength on heavy metal sorption, Environ Sci Technol, 1986, 20 (1): 55~61
    [67] MacKinley J P, Jenne E A, Experimental investigation and review of the solids concentration effect in adsorption studies, Environ Sci Technol, 1991, 25(12): 2082~2087
    [68] Bowman B T, Sans W, Partitiong behavior of insecticides in soil-water systems, Adsorbent Concentration Effects, J Environ Qual ,1985 , 14 (2): 265 ~269
    [69] Turner A, Rawling M C, Sorption of Benzopyrene to sediment contaminated by acid mine drainage: contrasting particle concentration dependencies in river water and seawater , Water Res, 2002, 36 (8): 2011~2019
    [70]戴树桂,环境化学进展,北京:化学工业出版社,2005,429~430
    [71] LESIEU R, System and method for desulfurizing gasoline or diesel fuel to produce a low sulfur-content fuel in an intermal combustion engine, US 6129835, 2000
    [72]李晋,陈灏,潘纲,高美媛,Zn (Ⅱ)在δ2MnO2和γ2MnOOH两种矿物上吸附的初始溶质浓度效应,环境科学学报,2006,10(4),1606~1610
    [73]程昌炳,陈琼,周良忠.由27Al的核磁共振谱看高岭土与针铁矿的胶结质[J].波谱学杂志, 1995,(06):145~151
    [74] Kirkpatrick R J, Smith K A, Schramm S et al, Solid-state nuclear magnetic resonance spectroscopy of minerals, Ann Rev Earth Planet Sci, 1985, 13: 29~47
    [75]周公度,结构化学基础,北京:北京大学出版社,1989,93~97
    [76]洪汉烈,铁丽云,闵新民,等,高岭石矿物表面化学的量子化学研究,武汉理工大学学报,2005,(01):49~53
    [77] Hong H L, Sun Z Y, Fu Z Y, et al. Adsorption of AuCl4-by Kaolinites: Effect of p H, Temperature and Kaolinite Crystallinity,Clays and Clay Minerals, 2003, 51(5): 493~502.
    [78] Abragam A, Bleaney B, Electron paramagnetic resonance of transition2metal ions, Oxford: Clarendon Press, 1970
    [79] Heller-Kelli L, Moser C, Migration Of Cuionsin Cu montmorillonite heated with and without alkalihalides, Clays Clay Mineral, 1995, 43: 738~743
    [80] Mosser C,Miehot L J, Villieras F, etal, Migration Of cationsineopper (11)-exehanged montmorillonite and laponite upon heating, Clays Clay Mineral, 1997, 45:789~802
    [81] Bahranowski K, Dula R, Labanowska M, et al, ESR study of Cu centers supported on Al-, Ti-, and Zr-pillared montmorillonite clays, Appl Speetro, 1996, 50: 1439~1445
    [82] EPR and magnetization studies on single crystals of a heterometallic (CuII and CrIII) complex: Zero-field splitting determination Solid State Sciences, In Press, Corrected Proof, Available online 5 February 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700