基于金表面生物功能性膜的电化学构建及其在电分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物活性物种在电极表面的固定和性质表达是生物电化学研究中两个主要的研究内容。在具有独特物理、化学性质的生物膜的界面上构建具有生物活性的分子识别体系被认为是一条行之有效的研究路线。通常构建生物功能性膜主要采用聚合和自组装两种方法,其中,聚合以物理方法为主,而自组装则在开路条件下完成。由于物理方法常使用极端的聚合条件,因而生物物种的活性在成膜时很难充分维系,开路条件下的自组装则不易达到人工调控表面的目的。电化学方法作为一种简单可控的手段,可在保持生物物种活性的温和条件下在电极表面成膜,因此,通过电化学方法构建生物功能性膜并应用于生物物种的检测是生物电化学研究中重要的研究领域。
     本论文系统探索了在金电极表面通过电化学手段调控自组装以及聚合生成生物膜的方法。采用电化学控电位方法自组装修饰生成巯基硼酸衍生物膜;采用电化学氧化聚合方法聚合成聚3-噻吩硼酸膜;采用电化学还原诱导聚合方法聚合得到了甲基丙烯酸凝胶膜。
     论文首先调查了多晶金电极表面经不同预处理步骤后表面的性质变化。实验发现金电极仅依次经过机械抛光、电化学极化两处理步骤后可得到较为清洁的表面;但依次经机械抛光、化学氧化抛光、电化学极化、化学还原四个处理步骤后可获到最佳的适宜修饰的表面。
     随后调查了采用电化学控电位方法在金电极表面自组装巯基硼酸衍生物单层膜,相应内容描叙在第四章中。实验以Fe(CN)_6~(3-/4-)氧化还原电对为分子探针,表征了硼酸衍生物单层膜在不同pH溶液中与糖类物质(含邻羟基物质)选择性发生脂化可逆反应的性质,结果表明在最佳电位0.4~0.5 V范围内的控电位自组装可使巯基硼酸衍生物键合在金表面,与开路条件下的自组装相比,有一定的优越性。巯基硼酸衍生物单层膜可应用于手性酒石酸的分析,实验发现在中性和弱碱性溶液中,单层膜对L型酒石酸脂化反应的选择性高于D型酒石酸。另外,单层膜可与多巴胺(DA)发生选择性较高的可逆的脂化反应,采用预富集方法可高选择性地检测DA,并不受抗坏血酸(AA)的干扰;巯基硼酸衍生物膜的链长对DA的检测下线和线性范围有一定的影响。线性检测范围为10~300μmol/L,检测下限为1μmol/L。
     在论文的第五章中,探索了在三氟化硼乙醚溶液中通过电化学氧化聚合生成3-噻吩硼酸聚合膜的成膜方法,而在水溶液中3-噻吩硼酸通常不易发生聚合。实验表明获得的聚合膜中的硼酸基团在中性条件下,仍可与多巴胺(DA)发生选择性极高的可逆的酯化反应。修饰电极可用于预富集方法定量分析多巴胺(DA),当检测溶液中同时含有1 mmol/L抗坏血酸(AA)、1 mmol/L尿酸(UA)和2mmol/L葡萄糖(GO)对多巴胺(DA)的定量检测无显著的干扰。
     在论文的第六章中,发展了一种在可保持生物物种活性的条件下可发生的、新的电化学聚合成膜方法,即在室温、中性pH水溶液中,通过电化学还原过硫酸根产生稳定的自由基方法,诱导甲基丙烯酸在金电极表面聚合生成膜。AFM等表征实验结果表明诱导聚合的膜是一种三维多孔膜,与金表面有良好的附着力;当室温、中性pH的聚合水溶液中含有生物活性物种葡萄糖氧化酶时,三维多孔膜在形成时可将葡萄糖氧化酶有效地、高通量地包裹固定在膜内;制得的葡萄糖氧化酶电极具有较高的生物活性,对葡萄糖(β-D glucose)的检测具有响应快、灵敏度高、稳定性好等优点;实验进一步探索了获得固定葡萄糖氧化酶的最佳条件;在最佳的条件下对β-D glucose的检测下限可达为0.05 mmol/L。
     论文最后对以上三种生物功能性膜构建方法进行了对比总结。电化学还原诱导聚合成膜作为一种室温条件下、中性pH值水溶液中温和的成膜方式,可实现生物活性酶的有效固定,是需进一步探索研究的新方法。
The immobility and qualitative expression of active biological species at electrode surface are important research area in biological electrochemistry.The molecular recognition system constructed on the base of the biological film possessing particular physical and chemical properties is considered as an effective research road.The traditional biological functional film usually is constructed by either self-assembling(SA) or polymerization method.The self-assembling mothd is offen mainly oprated at the condition of open circuit potential,which might lead to an uncontrolable surface.The physical polymerization usually preforms under an extramine physical condition,which can damage the activation of biological species. Electrochemical method is a simple,smoth and effective means to keep the activtion of biological species during the prepare procedure of the biological funtional film.How to develope valuable electorchemistry construction method for the biological funtional film is an research area needed to be deeply expolred in biological electrochemistry.
     In this thesis,the optimum procedure for preparing the biological funtional film at the surface of polycrystalline Au electrode was been expolred,systemly.The self-assebling monolayer film of mercapto boric acid ramification(MBAR) was devepled at the Au surface under the controlled-potential condition.3-Thiopheneboronic acid(3-THB) polymerzation was obtained by electrochemical oxidation.The new method of electrochemically induced free-radical polymerization(EIRP) was firstly investigated and the poly(Methacrylic acid) film was successfully constructed at the Au electrode surface.
     Firstly,the polycrystalline Au electrode surfaces prepared by different pretreatment procedures were investigated in sulfuric acid by cyclic voltammetry.The experiment results showed the clear surface for polymerization can be obtained by mechanical mechanical polishing and chemical oxidation prodedures,but the best active surface for modification could be obtained after mechanical polishing,chemical oxidation,electrochemical polaration and chemical reduction procedures.
     Secodly,the self-assembling monolyaer of MBARs prepared by the controlled-potential method was analyzed by the cyclic voltammetry in ferricyanide potassium solution.It was found that the optimum controlled-potential for self-assembling was within the range of 0.4~0.5 V.The controlled-potential method made the charactersof the self-assembled monolayer better than that without one.The monolayer of monosaccharides could recognize the enantiomeric tartaric acids since L-tartaric acid more easily reacted with the monolayer than D-tartaric acid in neutral and weak acid solution.On the other hand,the monolayer of monosaccharides also could be applied in the selective detection of dopamine(DA) after preconcentration.Moreover,the longer chain MBAR detection response was more sensitive than the short one's.The former's liner response range was within 10~300μmol/L and the detection limit was down to 1μmol/L,while the latter's were 30~100μmol/L and 9μmol/L.
     Thirdly,the poly(3-THB) film obtained by electrochemcial oxidation had many boric acid functional groups possessing negative charge in neutral solution condition,which could enhance the response of DA in the formation of rigonal and tetrahedral esters and electrostatic repulsion. Meanwhile,The poly(3-THB) film could selective detect DA in the presence of 1 mmol/L Vitamine C(AA),1 mmol/L Uric acid(UA) or 1~2 mmol/L Glucose(GO).
     A new electrochemical polymerization method was explored in the last charper of this thesis. Under the conditions of neutral pH adquene and room temperature,the electrochemical reduction of potassium persulfate would offer steady free-radical,which could induce the polymerzation of methacrylic acid at Au electrode.AFM and other experimental results identified that polymerization film was a three-dimensional porous stucture excellectly adhesing on Au surface. When the polymerzation solution contained glucose oxidase(GOD),the film could effectively immobilize glucose oxidase(GOD) with highly active.Corresponding GOD enmyzer electrode could quickly,sensitivity and stabilitly response forβ-D glucose in solution.Under the optimal conditions,the detection limit was down to 0.5μmol/L
     Finally,after constrated the three films above,the EIRP method should be the newest construction way under the conditions of neutral pH adquene and room temperature to keep the activation of biological speies.Meanwhile,lots of affects still needs to be made along this way.
引文
[1] E. Bakker. Electrochemical sensors [J]. Anal. Chem., 2004, 76: 3285-3298.
    [2] G. Deniau, L. Azoulay, L. Bougerolles, S. Palacin. Surface electro-initiated emulsion polymerization: grafted organic coatings from aqueous solutions [J]. Chem. Mater., 2006, 18:5421-5428.
    [3] X.H. Lou, P. He, G.O. Okelo, L. He. Radical polymerization in biosensing [J]. Anal. Bioanal. Chem., 2006, 386: 525-531.
    [4] J.H. Hartley, T.D. James, C.J. Ward. Synthetic receptors [J]. J. Chem. Soc. Perkin Trans 1., 2000,3155-3184.
    [5] C. Alexander, L. Davidson, W. Hayes. Imprinted polymers: artificial molecular recognition materials with applications in synthesis and catalysis [J]. Tetrahedron., 2003, 59: 2025-2057.
    [6] T. Konry, A. Novoa, S. Cosnier, R.S. Marks. Development of an "electroptode" immunosensor: indium Tin oxide-coated optical fiber tips conjugated with an electropolymerized thin film with conjugated cholera toxin B subunit [J]. Anal. Chem., 2003, 75: 2633-2639.
    [7] L. Yang, W.Z. Wei, J.J. Xia, H. Tao. Artificial receptor layer for herbicide detection based on electrosynthesized molecular imprinting technique and capacitive transduction [J]. Anal. Lett., 2004, 37: 2303-2319.
    [8] N.A. Peppas, J.Z. Hilt, A. Khademhosseini, R. Langer. Hydrogels in biology and medicine: from molecular principles to bionanotechnology [J]. Adv. Mater., 2006, 18: 1345-1360.
    [9] Y. Ge, R.R. Lilienthal, D.K. Smith. Electrochemically controlled hydrogen bonding. selective recognition of urea and amide derivatives by simple redox dependent receptors [J]. J. Am. Chem. Soc, 1996, 118: 3976-3977.
    [10] Y. Liao, W. Wang, B. Wang. Enantioselective polymeric transporters for tryptophan, phenylalanine, and histidine prepared using molecular imprinting techniques [J]. Biorg. Chem., 1998,26:309-322.
    [11] R. Oleksandr, L. Kamil, V. Kral. 1,1 '-Binaphthyl substitued macrocycles as receptors for saccharide recognition[J].Chem.Eur.J.,2002,8:655-663.
    [12]T.D.James,K.R.A.Samankumara,S.Shinkai.Saccharide sensing with molecular receptors based on boronic acid[J].Chem.Int.Ed.Engl.,1996,36:1910-1922.
    [13]W.Guo.Selective binding to polymers via covalent bonds:the construction of chiral cavities as specific receptor sites[J].Pure.Appl.Chem.,1982,51:2093-2102.
    [14]Y.Lu,C.X.Li,H.S.Zhang,X.Liu.Study on the mechanism of chiral recognition with molecularly imprinted polymers[J].Anal.Chim.Acta.,2003,489:33-43.
    [15]M.Zayats,E.Katz,I.Willner.Electrical contacting of flavoenzymes and NAD(P)+dependent enzymes by reconstitution and affinity interactions on phenylboronic Acid monolayers associated with Au electrodes[J].J.Am.Chem.Sot.,2002,124:14724-14735.
    [16]J.D.Carr,L.Lambert,D.E.Hibbs,B.M.Hursthouse,K.M.A.Malik,J.H.R.Tucker.Novel electrochemical sensors for neutral molecules[J].Chem.Commun.,1997,1649-1650.
    [17]李景虹,程广金,董绍俊.自组装膜技术在电分析化学中的研究与应用[J].分析化学评述与进展.,1996,24:1093-1099.
    [18]J.J.Gooding,F.Mearns,W.R.Yang,J.Q.Liu.Self-assembled monolayers into the 21st century:recent advances and applications[J].Electroanalysis.,2003,15:81-96.
    [19]V.Raluca,F.Karim,A.F.Abdiaziz,F.Bensebaa,B.Raluca,P.Christophe,Y.Tao.Nanotemplating for two-dimensional molecular imprinting[J].Langmuir.,2007,23:5452-5458.
    [20]M.E.Byrne,K.Park,N.A.Peppas.Molecular imprinting within hydrogels[J].Adv.Drug Delivery Rev.,2002,54:149-161.
    [21]T.Thiemann,D.Ohira,K.Arima,T.Sawada,S.Mataka,F.Marken,R.G.Compton,S.D.Bull,S.G.Davies.Photochemical and electrochemical behavior of thiophene-S-oxides[J].J.Phys.Org.Chem.,2000,13:648-653.
    [22]K.Haupt.Imprinted polymers—Tailor made mimics of antibodies and receptors[J].Chem.Commun.,2003,171-178.
    [23]L.I.Andersson.Molecular imprinting:developments and applications in the analytical chemistry field[J].J.Chromatogr B.,2000,745:3-13.
    [24]S.A.Piletsky,S.Alcock,A.P.F.Turner.Molecular imprinting:at the edge of the third millennium [J]. Trends. Biotechnol., 2001, 19: 9-12.
    [25] H.P. Liao, Z.H. Zhang, L.H. Nie, S. Yao. Electrosynthesis of imprinted polyacrylamide membranes for the stereospecific L-histidine sensor and its characterization by AC impedance spectroscopy and piezoelectric quartz crystal technique [J]. J. Biochem. Biophys. Methods., 2004, 59: 75-87.
    
    [26] T.J. Ward. Chiral separations [J]. Anal. Chem., 2002, 74: 2863-2872.
    [27] G. Wulff., S.A. Piletsky. The use of polymers with enzyme analogous structures for the resolution of racemates [J]. Angew. Chem. Int. Ed. Engl., 1972, 11: 341-348.
    [28] T. Yamazaki, S. Ohta, Y. Yanai, K. Sode. Molecular imprinting catalyst based artificial enzyme sensor for fructosylamines [J]. Anal. Lett., 2003, 36: 75-89.
    
    [29] E. Magner. Trends in electrochemical biosensors [J]. Analyst., 1998, 123: 1967-1970.
    [30] M.S. Alaejos, F.J.G. Montelongo. Application of amperometric biosensors to the determination of vitamins and α-amino acids [J]. Chem. Rev., 2004, 104: 3239-3265.
    [31] R. Jelinek, S. Kolusheva. Carbohydrate biosensors [J]. Chem. Rev., 2004, 104: 5987-6015.
    [32] A. Berthod. Chiral recognition mechanisms [J]. Anal. Chem., 2006, 78: 2093-2099.
    [33] E. Fischer. Ber. Deutsch. Chem. Ges[J].1894, 27: 2985. Also, see: J.-P. Behr(ed.), The Lock and Key Principle. The State of the Art - 100 Years On, Wiley, Chichester 1994.
    [34] O. Hofstetter, H. Hofstetter, M. Wilchek, V. Schurig, B.S. Green. Chiral discrimination using an immunosensor [J]. Nature., 1999, 17: 371-374.
    [35] G. Springsteen, B. Wang. A detailed examination of boronic acid-diol complexation [J]. Tetrahedron., 2002, 58: 5291-5300.
    [36] S. Takahashi, J.I. Anzai. Phenylboronic acid monolayer-modified electrodes sensitive to sugars [J]. Langmuir., 2005, 21: 5102-5107.
    [37] Y. Kotani, M. Kamigaito, M. Sawamoto. Living radical polymerization of styrene by half-metallocene iron carbonyl complexes [J]. Macromolecules., 2000, 33: 3543-3549.
    [38] H. Shiigi, D. Kijima, Y. Ikenaga, K. Hori, S. Fukazawa, T. Nagaoka. Molecular recognition for bile acids using a molecularly imprinted overoxidized polypyrrole film[J]. J. Electrochem. Soc, 2005, 152: 129-134.
    
    [39] J.C.W. Gray, T.A. Houston. Boronic acid receptors forreHydroxycarboxylates: high affinity of shinkal's glucose receptor for tartrate[J].J.Org.Chem.,2002,67:5426-5428.
    [40]N.Kanayama,T.Kanbara,H.Kitano.Complexation of porphyrin with a pyridine moiety in self-assembled monolayers on metal surfaces[J].J.Phys.Chem.B.,2000,104:271-278.
    [41]T.D.James,K.R.A.Sandanayake,R.Iguchi,S.Shinkai.Novel saccharide photoinduced electron transfer sensors based on the interaction of boronic acid and amine[J].J.Am.Chem.Soe.,1995,117:8982-8987.
    [42]L.I.Bosch,T.M.Fyles,T.D.James.Binary and ternary phenylboronic acid complexes with saccharides and Lewis bases[J].Tetrahedron.,2004,60:11175-11190.
    [43]J.Z.Zhao,T.M.Fyles,T.D.James.Chiral binol-bisboronic acid as fluorescence sensor for sugar acids[J].Angew.Chem.Int.Ed.,2004,43:3461-3464.
    [44]T.D.James,K.R.A.S.Sandanayake,S.Shinkai.Nature.,1995,374:345-347.
    [45]K.Alexander,M.E.Davis.Investigations into the mechanisms of molecular recognition with imprinted polymers[J].Macromolecules.,1999,39:4113-4121.
    [46]C.C.Hwang,W.C.Lee.Chromatographic characteristics of cholesterol-imprinted polymers prepared by covalent and non-covalent imprinting methods[J].J.Chromatogr A.,2002,962:69-78.
    [47]M.R.Andrew,R.J.Umpleby,G.T.Rushton,J.C.Iseman,R.N.Shah,K.D.Shimizu.Characterization of the imprint effect and the influence of imprinting conditions on affinity,capacity,and heterogeneity in molecularly imprinted polymers using the freundlich isotherm affinity distribution analysis[J].Anal.Chem.,2004,76:1123-1133.
    [48]H.H.Yang,S.Q.Zhang,F.Tan,Z.X.Zhuang,X.R.Wang.Surface molecularly imprinted nanowires for biorecognition[J].J.Am.Chem.Soc.,2005,127:1378-1379.
    [49]K.Haupt.Imprinted polymers:the next generation[J].Anal.Chem.,2003,376-383.
    [50]A.Ulman.Formation and structure of self-assembled monolayers[J].Chem.Rev.,1996,96:1533-1554.
    [51]吴迪,吴健.金—硫键自组装生物分子膜[J].化学通报.,2004,132-137.
    [52]陈海刚,乌学东,虞勤琴,王大璞,杨生荣.分子自组装膜的结构形成机理和表面化学反应[J].化学通报.,2002,65
    [53]F.Schreiber.Structure and growth of self-assembling monolayers[J].Progr.Surf.Sci., 2000,151-256.
    [54]T.Wink,S.J.V.Zuilen,A.Bult,W.RV.Bennekom.Self-assembled monolayers for biosensors[J].Analyst.,1997,120:43-50.
    [55]董献堆,陆君涛,查全性.逐层自组装修饰金电极[J].电化学.,1995,1:25-29.
    [56]M.N.Zhang,K.R Gong,H.W.Zhang,L.Mao.Layer by layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid[J].Biosens.Bioelectron.,2005,20:1270-1276.
    [57]M.Lu,X.H.Li,B.Z.Yu,H.L.Li.Electrochemical behavior of Au colloidal electrode through layer-by-layer self-assembly[J].J.Colloid Inter.Sci.,2002,248:376-382.
    [58]A.Profumo,M.Fagnoni,D.Merli,E.Quartarone,S.Protti,D.Dondi,A.Albini.Multiwalled carbon nanotube chemically modified gold electrode for inorganic as speciation and Bi(Ⅲ) determination[J].Anal.Chem.,2006,78:4194-4199.
    [59]M.Zayats,E.Katz,I.Willner.Electrical contacting of glucose oxidase by surface reconstitution of the apo-Protein on a relay-boronic acid-FAD cofactor monolayer[J].J.Am.Chem.Soc.,2002,124:2120-2121.
    [60]G.Tovar,S.Paul,W.Knoll,O.Prucker,J.Riihe.Patterning molecularly thin films of polymers new methods for photolithographic structuring of surfaces[J].Supramol.Sci.,1995,2:89-98.
    [61]R.Jordan,A.Ulman,J.F.Kang,M.H.Rafailovich,J.Sokolov.Surface-initiated anionic polymerization of styrene by means of self-assembled monolayers[J].J.Am.Chem.Soc.,1999,121:1016-1022.
    [62]E.C.Cho,Y.D.Kim,K.Cho.Thermally responsive poly(N-isopropylacrylamide)monolayer on gold:synthesis,surface characterization,and protein interaction/adsorption studies[J].Polymer.,2004,45:3195-3204.
    [63]J.Niedziolka,B.Palys,R.Nowakowski,M.Opallo.Characterisation of gold electrodes modified with methyltrimethoxysilane and(3-mercaptopropyl) trimethoxysilane sol-gel processed films[J].J.Electroanal.Chem.,2005,578:239-245.
    [64]F.Beck.Electrodesorption of polymer coatings[J].Electrochim.Acta.,1988,33:938-850.
    [65]廖川平.电化学聚合[J].化学通报.,2000,37-41.
    [66]T.L.Panasyuk,V.M.Mirsky,S.A.Piletsky,O.S.Wolfbeis.Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors[J].Anal.Chem.,1999,71:4609-4613.
    [67]X.G.Li,M.R.Huang,W.Duan,Y.L.Yang.Novel multifunctional polymers from aromatic diamines by oxidative polymerizations[J].Chem.Rev.,2002,102:2925-3030.
    [68]董绍俊,车广礼,谢远武.化学修饰电极[M].1995.
    [69]Y.Kazuyoshi,I.Karube.Molecularly imprinted polymers for biosensor applications[J].Trends.anal.chem..,1999,199-204.
    [70]C.Malitesta,I.Losito,P.G.Zambonin.Molecularly imprinted electrosynthesized polymers:new materials for biomimetic sensors[J].Anal.Chem.,1999,71:1366-1370.
    [71]B.Deore,H.Yakabe,H.Shiigi,T.Nagaoka.Enantioselective uptake of amino acids using anelectromodulated column packed with carbon fibres modified with overoxidised polypyrrole[J].Analyst.,2002,127:935-939.
    [72]A.S.Sarac,O.Z.Yavuz,E.Sezer.Electrochemically induced redox polymerization of acrylamide[J].J.Appl.Polym.Sci.,1999,72:861-869.
    [73]J.Reuber,H.Reinhardt,D.Johannsmann.Formation of surface-attached responsive gel layers via electrochemically induced free-radical polymerization[J].Langmuir.,2006,22:3362-3367.
    [1]D.J.Gives,G.J.Jang.Reference Electrodes[M].New York:Academic Press,1961.
    [2]上海辰华仪器有限公司CHI电化学分析仪/工作站用户手册[Z].
    [3]J.Wang.Analytical Electrochemistry[M].WILEY-VCH:Second Edition.
    [4]查全性.电极过程动力学导论[M],北京:科学出版社,2001.
    [5]田昭武,电化学研究方法[M],北京:科学出版社,1984.
    [6]美国Digital Instruments公司Nanoscope Ⅲa型原子力显微仪说明书[Z].
    [7]殷敬华.现代高分子物理学(下)[M],北京:科学出版社,2004.
    [8]原子力显微镜的结构原理及使用方法(日本精工)[Z].
    [9]本原纳米仪器公司:原子力显微镜技术专题[Z].
    [1]H.O.Finklea,S.Avery,M.Lynch.Blocking oriented monolayers of alkyl mercaptans on gold Electrodes[J].Langmuir.,1987,3:409-413.
    [2]M.Zayats,E.Katz,I.Willner.Electrical contacting of flavoenzymes and NAD(P)+dependent enzymes by reconstitution and affinity interactions on phenylboronic acid monolayers associated with Au electrodes[J].J.Am.Chem.Soc.,2002,124:14724-14735.
    [3]C.A.Widrig,C.Chung,M.D.Porter.The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes[J].J.Electroanal.Chem.,1991,310:335-359.
    [4]L.D.Burke,P.E Nugent.Dichromate reduction on gold and platinum electrodes in aqueous acid solutions[J].Electrochim.Acta.,1997,42:399-411.
    [5]H.Ron,S.Matlis,I.Rubinstein.Self-assembled monolayers on oxidized metals.2.gold surface oxidative pretreatment,monolayer properties,and depression formation[J].Langmuir.,1998,14:1116-1121.
    [6]S.E.Creager,L.A.Hockett,G.K.Rowe.Consequences of microscopic surface roughness for molecular self-assembly[J].Langmuir.,1992,8:854-861.
    [7]Z.P.Yang,A.G.Cortes,G.Jourquin,J.C.Vire,J.M.Kauffmann.Analytical application of self assembled monolayers on gold electrodes:critical importance of surface pretreatment [J].Biosens.Bioelectron.,1995,10:789-795.
    [8]P.Diao,D.Jiang,X.Cui,D.Gu,R.Tong,B.Zhong.Studies of structural disorder of self-assembled thiol monotayers on gold by cyclic voltammetry and AC impedance[J].J.Electroanal.Chem.,1999,464:61-67.
    [9]R.F.Carvalhal,R.S.Freire,L.T.Kubota.Polycrystalline gold electrodes:A comparative study of pretreatment procedures used for cleaning and thiol self-assembly monolayer formation[J].Electroanalysis.,2005,17:1251-1259.
    [10]J.P.Hoare.A cyclic voltammetric study of the gold oxygen system[J].J.Electrochem.Soc.:Electrochem.Sci.Technol.,1984,131:1808-1815.
    [11]冯春梁,李言,佟永纯.金表面的清洗方法与电化学表征[J].辽宁师范大学学报(自然科学版).,2004,10:440-443.
    [12]K.Juodkazis,J.Juodkazyte,T.Juodiene,A.Lukinskas.Determination of Au(Ⅲ) in the surface layers formed anodically on the gold electrode[J].J.Electroanal.Chem.,1998,441:19-24.
    [13]S.Trasatti,O.A.Petrii.Real surface area measurements in electrochemistry[J].Pure.Appl.Chem.,1991,63:711-734.
    [14]苏磊,吴秉亮.金电极析氢反应过程中吸附氢原子的表面扩散及复合反应动力学研究[J].高等学校化学学报.,2004,25:1132-1136.
    [15]J.C.Hoogvliet,M.Dijksma,B.Kamp,W.P.V.Bennekom.Electrochemical pretreatment of polycrystalline gold electrodes to produce a reproducible surface roughness for self-assembly:a study in phosphate buffer pH 7.4[J].Anal.Chem.,2000,72:2016-2021.
    [16]J.F.Rodriguez,T.Mebrahtu,M.P.Soraga.Determination of the surface area of gold electrodes by iodine chemisorption[J].J.Electroanal.chem.,1987,238:283-289.
    [17]M.M.Walczak,D.D.Popenoe,R.S.Deinhammer,B.D.Lamp,C.Chung,M.D.Porter.Reductive desorption of alkanethiolate monolayers at gold a measure of surface coverage [J].Langmuir.,1991,7:2687-2693.
    [18]H.Ron,I.Rubinstein.Alkanethiol monolayers on preoxidized gold encapsulation of gold oxide under an organic monolayer[J].Langmuir.,1994,10:4566-4573.
    [19]U.Oesch,J.Janata.Electrochemical study of gold electrodes with anodic oxide films-Ⅰ.Formation and reduction behavior of anodic oxides on gold[J].Electrochim.Acta.,1983,28:1237-1246.
    [20]S.J.Xia,V.I.Birss.A multi-technique study of compact and hydrous Au oxide growth in 0.1 M sulfuric acid solutions[J].J.Electroanal.Chem.,2001,500:562-573.
    [21]M.Tian,W.G.Pell,B.E.Conway.Nanogravimetry study of the initial stages of anodic surface oxide film growth at Au in aqueous HClO_4 and H_2SO_4 by means of EQCN[J].Electrochim.Acta.,2003,48:2675-2689.
    [22]L.D.Burke,A.P.O'Mullane.Generation of active surface states of gold and the role of such states in Electrocatalysis[J].J Solid State Electrochem.,2000,4:285-297.
    [23]L.D.Burke,J.A.Collins,M.A.Murphy.Redox and electrocatalytic activity of copper in base at unusually low,premonolayer potentials[J].J.Solid State Electrochem.,1999,4:34-41.
    [1] R.F. DeBono, G.D. Loucks, D.D. Manna, U.J. Krull. Self-assembly of short and long-chain n-alkylthiols onto gold surfaces: A real-time study using surface plasmon resonance techniques [J]. Can. J. Chem., 1996, 74: 677-688.
    [2] C.A. Widrig, C. Chung, M.D. Porter. The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes [J]. J. Electroanal. Chem., 1991, 310:335-359.
    [3] M.S. El-Deab, T. Ohsaka. Molecular-level design of binary self-assembled monolayers on polycrystalline gold electrodes [J]. Electrochim. Acta., 2004, 49: 2189-2194.
    [4] Y. Ma, Q. Gao, X. Yang. Immobilization of glycosylated enzymes on carbon electrodes, and its application in biosensors [J]. Microchim. Acta., 2005, 150: 21-26.
    [5] D. Hobara, K. Miyake, S.I. Imabayashi, K. Niki, T. Kakiuchi. In-situ scanning tunneling microscopy imaging of the reductive desorption process of alkanethiols on Au(111) [J]. Langmuir., 1998, 14: 3590-3596.
    [6] M. Lee, T. Kim, K.H. Kim, J.K. Kim, M.S. Choi, H.J. Choi, K. Koh. Formation of a self-assembled phenylboronic acid monolayer and its application toward developing a surface plasmon resonance-based monosaccharide sensor [J]. Anal. Biochem., 2002, 310: 163-170.
    [7] H. Kitano, S. Morokoshi, K. Ohhori, M. Gemmei-Ide, Y. Yokoyama, K. Ohno. Accumulation of phenyl boronic acid-carrying telomers on a gold surface [J]. J. Colloid Inter. Sci., 2004, 273: 106-114.
    [8] X.F. Li, Y. Wan, C. Sun. Covalent modification of a glassy carbon surface byelectrochemical oxidation of α-aminobenzene sulfonic acid in aqueous solution [J]. J. Electroanal. Chem., 2004, 569: 79-87.
    [9] D.E. Weisshaar, B.D. Lamp, M.D. Porter. Thermodynamically controlled electrochemical formation of thiolate monolayers at gold: Characterization and comparison to self-assembled analogs [J]. J. Am. Chem. Soc, 1992, 114: 5860-5862.
    [10] H. Ron, I. Rubinstein. Self-assembled monolayers on oxidized metals. 3. alkylthiol and dialkyl disulfide assembly on gold under electrochemical conditions [J]. J. Am. Chem. Soc.,1998,120:13444-13452.
    [11]C.M.A.Brett,S.Kresak,T.Hianik,A.M.O.Brett.Studies on self-assembled alkanethiol monolayers formed at applied potential on polycrystalline gold electrodes[J].Electroanalysis.,2003,15:557-565.
    [12]刁鹏,王晓宁,侯群超,郭敏,项民,张琦.基底电位对硫醇自组装膜形成的影响[J].电化学.,2006,12:69-73.
    [13]D.Hobara,T.Sasaki,S.I.Imabayashi,T.Kakiuchi.Surface structure of binary self-assembled monolayers formed by electrochemical selective replacement of adsorbed thiols[J].Langmuir.,1999,15:5073-5078.
    [14]刁鹏,侯群超,梅岗,张.琦.建立在硫醇分子电化学替换组装基础上的纳米粒子区域化组装[J].化学学报.,2006,64:213-317.
    [15]S.I.Imabayashi,D.Hobara,T.Kakiuchi.Selective replacement of adsorbed alkanethiols in phase-separated binary self-assembled monolayers by electrochemical partial desorption[J].Langrnuir.,1997,13:4502-4504.
    [16]F.Ma,R.B.Lennox.Potential-assisted deposition of alkanethiols on Au:controlled preparation of single and mixed momponent SAMs[J].Langmuir.,2000,16:6188-6190.
    [17]V.M.Schmidt,R.Ianniello.Electrochemical reactivity of ethanol on porous Pt and PtRu:oxidation/reduction reactions in 1 M HClO_4[J].J.Phys.Chem.,1996,100:17901-17908.
    [18]J.Lukkari,K.Kleemola,M.Meretoja,T.Ollonqvist,J.Kankare.Electrochemical post self-assembly transformation of 4-aminothiophenol monolayers on gold electrodes[J].Langmuir.,1998,14:1705-1715.
    [19]P.Diao,Q.C.Hou,M.Guo,M.Xiang,Q.Zhang.Effect of substrate potentials on the structural disorders of alkanethiol monolayers prepared by electrochemically directed assembly[J].J.Electroanal.Chem.,2006,579:103-110.
    [20]C.C.Hsueh,M.T.Lee,M.S.Freund,G.S.Ferguson.Electrochemically directed self-assembly on gold[J].Angew.Chem.Int.Ed.,2000,39:1227-1230.
    [21]S.Takahashi,Y.Kashiwagi,T.Hoshi,J.Anzai.Voltammetric respones of phenylboronic acid monolayer modified gold electrode to sugars[J].Anal.Sci.,2004,20:757-759.
    [22]N.Kanayama,H.Kitano.Interfacial recognition of sugars by boronic acid-carrying self-assembled monolayer[J].Langmuir.,2000,16:577-583.
    [23]J.M.Abad,M.V.lez,C.Santamari,J.M.Guisa,P.R.Matheus,L.V.Zquez,I.Gazaryan,L.Gorton,T.Gibson,V.M.Fernandez.Immobilization of peroxidase glycoprotein on gold electrodes modified with mixed epoxy-boronic acid monolayers[J].J.Am.Chem.Soc.,2002,124:12845-12853.
    [24]G.Springsteen,B.Wang.A detailed examination of boronic acid-diol complexation[J].Tetrahedron.,2002,58:5291-5300.
    [25]L.I.Bosch,T.M.Fyles,T.D.James.Binary and ternary phenylboronic acid complexes with saccharides and Lewis bases[J].Tetrahedron.,2004,60:11175-11190.
    [26]刘斌,孙向英,徐金瑞.含硼酸基的自组装膜对糖的电化学识别[J].分析化学研究报告.,2004,32:601-605.
    [27]Z.Q.Gao,H.Huang.Simultaneous determination of dopamine,uric acid and ascorbic acid at an ultrathin film modified gold electrode[J].Chem.Commun.,1998,2017-2018.
    [28]M.Chen,H.Li.Separation of anodic peaks of ascorbic acid and dopamine at 4-hydroxy-2-mercapto-6-methylpyrimidine modified gold electrode[J].Electroanalysis.,1998,10:477-479.
    [29]P.Zhang,F.H.Wu,G.C.Zhao,X.W.Wei.Selective response of dopamine in the presence of ascorbic acid at multi-walled carbon nanotube modified gold electrode[J].Bioelectrochemistry.,2005,67:109-114.
    [30]S.Takahashi,J.I.Anzai.Phenylboronic acid monolayer-modified electrodes sensitive to sugars[J].Langmuir.,2005,21:5102-5107.
    [31]A.Ciszewski,G.Milczarek.Polyeugenol-modified platinum electrode for selective detection of dopamine in the presence of ascorbic acid[J].Anal.Chem.,1999,71:1055-1061.
    [32]T.D.James,K.R.A.Sandanayake,R.Iguchi,S.Shinkai.Novel saccharide photoinduced electron transfer sensors based on the interaction of boronic acid and amine[J].J.Am.Chem,Soc.,1995,117:8982-8987.
    [33]A.Dalmia,C.C.Liu,R.Savinell.Electrochemical behavior of gold electrodes modified with self-assembled monolayers with an acidic endgroup for selective detection of dopamme[J].J.Electroanal.Chem.,1997,430:205-214.
    [34]H.Y.Chang,D.I.Kim,Y.C.Park.Electrochemically degraded dopamine film for the determination of dopamine[J].Electroanalysis.,2006,18:1578-1583.
    [35]E.Winter,L.Codognoto,S.Rath.Electrochemical behavior of dopamine in the presence of citrate:reaction mechanism[J].Electrochim.Acta.,2006,51:1282-1288.
    [36]R.M.Carvalho,L.T.Kubota,S.Rath.Influence of EDTA on the electrochemical behavior of phenols[J].J.Electroanal.Chem.,2003,548:19-26.
    [37]J.V.Hernfindez,M.Almaraz,C.Raposo,M.Martin,A.Lithgow,M.Crego,C.Caballero,J.R.Morin.Chiral recognition of tartaric acid derivatives with chromenone-benzoxazole receptors and a spirobifluorene spacer[J],Tetrahedron Lett.,1998,39:7401-7404.
    [38]J.Z.Zhao,T.M.Fyles,T.D.James.Chiral binol-bisboronic acid as fluorescence sensor for sugar acids[J].Angew.Chem.Int.Ed.,2004,43:3461-3464.
    [39]J.C.W.Gray,T.A.Houston.Boronic acid receptors forreHydroxycarboxylates:high affinity of shinkai's glucose receptor for tartrate[J].J.Org.Chem.,2002,67:5426-5428.
    [40]S.Goswami,K.Ghosh,R.Mukherjee.Recognition of insoluble tartaric acid in chloroform [J].Tetrahedron.,2001,57:4987-4993.
    [41]N.Kanayama,T.Kanbara,H.Kitano.Complexation of porphyrin with a pyridine moiety in self-assembled monolayers on metal surfaces[J].J.Phys.Chem.B.,2000,104:271-278.
    [42]张俊苓,郑文杰,杨芳,白燕,李毅群.噻吩羧酸在金表面的自组装膜及其电化学性质[J].暨南大学学报(自然科学版).,2004,25:596-599.
    [43]张浩力,张锦,赵江,王永强,佘劲,于化忠,力虎林,刘忠范.含酰胺结构的巯基自组装膜的设计与结构表征[J].物理化学学报.,1997,13:515-524.
    [44]M.M.Walczak,D.D.Popenoe,R.S.Deinhammer,B.D.Lamp,C.Chung,M.D.Porter.Reductive desorption of alkanethiolate monolayers at gold a measure of surface coverage [J].Langmuir.,1991,7:2687-2693.
    [45]W.R.Everett,T.L.Welch,L.Reed,I.F.Fades.Potential-dependent stability of Self-assembled organothiols on Gold Electrodes in Methylene Chloride[J].Anal.Chem.,1995,67:292-298.
    [1] X.Q. Lin, Y. Li. Monolayer covalent modification of 5-hydroxytryptophan on glassy carbon electrodes for simultaneous determination of uric acid and ascorbic acid [J]. Electrochim. Acta., 2006, 51: 5794-5801.
    [2] R.K. Shervedani, M. Bagherzadeh, S.A. Mozaffari. Determination of dopamine in the presence of high concentration of ascorbic acid by using gold cysteamine self-assembled monolayers as ananosensor [J]. Sens. Actuators B., 2006, 115: 614-621.
    [3] T. Selvaraju, R. Ramaraj. Simultaneous determination of dopamine and serotonin in the presence of ascorbic acid and uric acid at poly (o-phenylenediamine) modified electrode [J]. J. Appl. Electrochem., 2003, 76: 759-762.
    [4] S.H. Gao, W. Wang, B. Wang. Building fluorescent sensors for carbohydrates using template-directed polymerizations [J]. Bioorg. Chem., 2001, 29: 308-320.
    [5] R.M. Carvalho, L.T. Kubota, S. Rath. Influence of EDTA on the electrochemical behavior of phenols [J]. J. Electroanal. Chem., 2003, 548: 19-26.
    [6] Z.E. Seckin, M. Volkan. Flow injection fluorescence determination of dopamine using a photo induced electron transfer (PET) boronic acid derivative [J]. Anal. Chim. Acta ., 2005, 547:104-108.
    [7] A. Kikuchi, K. Suzuki, O. Okabayashi, H. Hoshino, K. Kataoka, Y. Sakurai, T. Okano. Glucose-sensing electrode coated with polymer complex gel containing phenylboronic Acid [J]. Anal. Chem., 1996, 68: 823-828.
    [8] B. Deore, M.S. Freund. Saccharide imprinting of poly(aniline boronic acid) in the presence of fluoride [J]. Analyst., 2003, 128: 803-806.
    [9] E. Shoji, M.S. Freund. Potentiometric saccharide detection based on the pK_a changes of Poly (aniline boronic acid)[J]. J. Am. Chem. Soc, 2002, 124: 12486-12493.
    [10] B. Fabre, L. Taillebois. Poly(aniline boronic acid) based conductimetric sensor of dopamine [J]. Chem. Commun., 2003, 2982-2983.
    
    [11] Y. Ma, X. Yang. One saccharide sensor based on the complex of the boronic acid and the monosaccharide using electrochemical impedance spectroscopy [J]. J. Electroanal. Chem., 2005, 580: 348-352.
    [12]M.Nicolas,B.Fabre,G.Marchand,J.Simonet.New boronic acid and boronate substituted aromatic compounds as precursors of fluoride responsive conjugated polymer films[J].Eur.J.Org.Chem.,2000,1703-1710.
    [13]J.Mathiyarasu,S.Senthilkumar,K.L.N.Phani,V.Yegnaraman.Selective detection of dopamine using a functionalised polyaniline composite electrode[J].J.Appl.Electrochem.,2005,35:513-519.
    [14]B.A.Deore,S.Hachey,M.S.Freund.Electroactivity of Electrochemically Synthesized Poly(Aniline Boronic Acid) as a Function of pH:Role of Self-Doping[J].Chem.Mater.,2004,16:1427-1432.
    [15]陈衍珍,黄海涛,田昭武.水溶液中噻吩的电化学聚合成膜[J].高等学校化学学报.,1986,7:917-922.
    [16]蔡丽芬,陈衍珍.噻吩光电化学聚合的研究[J].高等学校化学学报.,1991,12:1411-1413.
    [17]杜续生,佘平平,汪正浩,聚乙撑二氧噻吩的导电性及现场ESR响应的研究[J],化学学报.,2003,61:536-540.
    [18]G.Shi,C.Li,Y.Liang.High strength conducting polymers prepared by electrochemical polymerization in boron trifluoride diethyl etherate solution[J].Adv.Mater.,1999,11:1145-1146.
    [19]F.Wang,G.Q.Shi,F.G.Chen,J.K.Xu,J.Zhang.Electrochemical polymerization of thianaphthene[J].J.Electroanal.Chem.,2001,510:29-34.
    [20]S.Alkan,C.A.Cutler,J.R.Reynolds.High quality electrochromic polythiophenes via BF_3.Et_2O electropolymerization[J].Adv.Funct.Mater.,2003,13:331-336.
    [21]杜续生,佘平平,汪正浩.PEDOT膜修饰电极对对苯二酚及邻苯二酚的电催化研究[J].北京师范大学学报(自然科学版).,2005,25:162-165.
    [22]C.Li,G.Q.Shi,Y.Liang.Low potential electrochemical polymerization of benzene in a composite electrolyte of boron trifluoride diethyl etherate and trifluoroacetic acid[J].J.Electroanal.Chem.,1998,455:1-4.
    [23]S.Jin,G.Xue.Interaction between thiophene and solvated lewis acids and the low-potential electrochemical deposition of a highly anisotropic conducting polythiophene Film[J].Macromolecules.,1997,30:5753-5757.
    [24]汪帆,石高全,陈凤恩,徐景坤,张家鑫,洪啸吟.可溶性聚苯并噻吩的电化学合成[J].高分子学报.,2001,807-811.
    [25]聂广明,徐景坤,张书圣.三氟化硼乙醚配合物电化学合成导电高分子研究进展[J],化学通报.,2005,68:1-9.
    [26]亢孟强,刘俊峰,郭志新.导电高分子聚噻吩衍生物的研究进展[J].化工新型材料.,2004.32:9-12.
    [27]M.H.Dishner,J.C.Hemminger,F.J.Feher.Formation of a self-assembled monolayer by adsorption of thiophene on Au(111) and its photooxidation[J].Langmuir.,1996,12:6176-6178.
    [28]E.Mishina,T.Tamura,H.Sakaguchi,S.Nakabayashi.Kinetics of adsorption and self-assembling of thiophene and dodecanethiol studied by optical second harmonic generation[J].Chem.Lett..,2003,32:652-653.
    [29]Z.Q.Peng,X.H.Qu,S.Dong.Immobilization of the nanoparticle monolayer onto self-assembled monolayers by combined sterically enhanced hydrophobic and electrophoretic forces[J].Langmuir.,2004,20:5-10.
    [1] E. C. Chole, Y. D. Kimeu, K. Cholke. Thermally responsive poly (N-isopropylacrylamide) monolayer on gold: synthesis, surface characterization, and protein interaction/adsorption studies [J]. Polymer., 2004, 45: 3195-3204.
    [2] R. Kublickas, C. Werner, G. Jariene, B. Voit, L. Lasas. Polyacrylamide gels containing ionized functional groups for the molecular imprinting of human growth hormone [J]. Polym. Bull., 2007, 58: 611-617.
    [3] P. Parmpi, P. Kofinas. Biomimetic glucose recognition using molecularly imprinted polymer hydrogels [J]. Biomaterials., 2004, 25: 1969-1973.
    [4] W. M. Damien. D. S. G. Arrigan. Electrochemical study of electroactive reagent retention in overoxidised polypyrrole films [J]. Anal. Chim. Acta., 1999, 402:157-167.
    [5] E. Fernandez, D. Lopez, E. Lopez-Cabarcos, C. Mijangos. Viscoelastic and swelling properties of glucose oxidase loaded polyacrylamide hydrogels and the evaluation of their properties as glucose sensors [J]. Polymer., 2005, 46: 2211 -2217.
    [6] R. G. D. Silva, F. Augusto. Sol-gel molecular imprinted ormosil for solid-phase extraction of methylxanthines [J]. J. Chromatogr A., 2006,1114: 216-223.
    [7] R. Blonder, E. Katz, I. Willner, V. Wray, A. F. Buckmann. Application of a nitrospiropyran-FAD-reconstituted glucose oxidase and charged electron mediators as optobioelectronic assemblies for the amperometric transduction of recorded optical signals: Control of the "on"-"off" direction of the photoswitch [J]. J. Am. Chem. Soc, 1997,119:11747-11757.
    [8] X.Y. Liu, Y. Guan, X.B. Ding, Y.X. Peng, X.P. Long, X.C. Wang, K. Chang. Design of temperature sensitive imprinted polymer hydrogels based on multiple-point hydrogen bonding [J]. Macromol. Biosci., 2004, 4: 680-684.
    [9] M. C. B. Lpez, M. J. L. Conffe, A. J. M. Ordieres, P. T. Blanco. Electrochemical sensors based on molecularly imprinted polymers [J]. Trends. Anal. Chem., 2004, 23: 36-48.
    [10] F. M. Fazal, D. E. Hansen. Glucose-specific poly(allylamine) hydrogels— a reassessment [J]. Bioorg. Med. Chem. Lett., 2007, 17: 235-238.
    [11] N. A. Peppas, J. Z. Hilt, A. Khademhosseini, R. Langer. Hydrogels in biology and medicine:from molecular principles to bionanotechnology[J].Adv.Mater.,2006,18:1345-1360.
    [12]C.Jimneza,J.Bartrol,N.F.Rooijb,M.Koudelka-Hep.Use of photopolymerizable membranes based on polyacrylamide hydrogels for enzymatic microsensor construction [J].Anal.Chim.Acta.,1997,351:169-176.
    [13]R N.Barlett,J.M.Cooper.A review of the immobilization of enzymes in electropolymerized films[J].J.Electroanal.Chem.,1993,362:1-12.
    [14]T.Hoshi,N.Sagae,K.Daikuhara,K.Takahara,J.Anzai.Multilayer membranes via layer-by-layer deposition of glucose oxidase and Au nanoparticles on a Pt electrode for glucose sensing[J].Mater.Sci.Eng.C.,2007,7:890-894.
    [15]邓家祺,苏占恩.电聚高分子膜固定生物传感器及进展[J].分析科学学报.,1995,10:71-76.
    [16]张占恩.电化学聚合邻氨基苯酚高分子膜固定葡萄糖氧化酶传感器的研究[J].苏州城建环保学院学报.,1996,9:1-5.
    [17]A.J.Guiomar,J.T.Guthrie,S.D.Evans.Use of mixed self-assembled monolayers in a study of the effect of the microenvironment on immobilized glucose oxidase[J].Langmuir.,1999,15:1198-1207.
    [18]K.C.Han,Z.J.Wu,J.Lee,I.S.Ahn,J.W.Park,B.R.Min,K.T.Lee.Activity of glucose oxidase entrapped in mesoporous gels[J].Biochem.Eng.J.,2005,22:161-166.
    [19]F.M.Tian,G.Y.Zhu.Bienzymatic amperometric biosensor for glucose based on polypyrrole/ceramic carbon as electrode material[J].Anal.Chim.Acta.,2002,451:251-258.
    [20]J.C.Vidal,E.Garcia,J.R.Castillo.Electropolymerization of pyrrole and immobilization of glucose oxidase in a flow system:influence of the operating conditions on analytical performance[J].Biosens.Bioelectron.,1998,13:371-382.
    [21]R.Garjonyte,A.Malinauskas.Amperometric glucose biosensors based on prussian blueandpolyaniline -glucose oxidase modified electrodes[J].Biosens.Bioelectron.,2000,15:445-451.
    [22]M.Situmorang,J.Gooding,D.B.Hibbert,D.Barnett.Electrodeposited polytyramine as an immobilisation matrix for enzyme biosensors[J].Biosens.Bioelectron.,1998,13: 953-962.
    [23] S. V. Sasso, R. J. Pierce, I. R. Walla, A. M. Yacynych. Electropolymerized 1,2 diaminobenzene as a means To prevent interferences and fouling and to stabilize immobilized enzyme in electrochemical biosensors [J].Anal.Chem., 1990, 62: 1111-1117.
    [24] K. Narasimhan, J. Lemuel, B. Wingard. Enhanced direct electron transport with glucose oxidase immobilized on (aminophenyl) boronic acid modified glassy carbon electrode [J]. Anal. Chem., 1986,52:2984-2987.
    [25] J.J. Fei, Y.H. Wu, X.B. Ji, J. Wang, S.S. Hu, Z.Q. Gao. An amperometric biosensor for glucose based on electrodeposited redox polymer/glucose oxidase film on a gold electrode [J]. Anal. Sci., 2003,19: 1259-1263.
    [26] P.C. Nien, T.S. Tung, K.C. Ho. Amperometric glucose biosensor based on entrapment of glucose oxidase in a poly(3,4-ethylenedioxythiophene) film [J]. Electroanalysis., 2006, 18: 1408-1415.
    [27] D.W. Pan, J.H. Chen, S.Z. Yao, L.H. Nie, J.J. Xia, W.Y. Tao. Amperometric glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film at copper-modified gold electrode [J]. Sens. Actuators B. Chem., 2005, 104: 68-74.
    [28] D.W. Pan, J.H. Chen, L.L. Nie, W.Y. Tao, S. Yao. Amperometric glucose biosensor based on immobilization of glucoseoxidase in electropolymerized o-aminophenol film at Prussian blue-modified platinum electrode [J]. Electrochim. Acta., 2004,24: 795-801.
    [29] Z.N. Zhang, H. Y. Liu, J. Deng. A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode [J]. Anal. Chem., 1996, 68: 1632-1638.
    [30] J. Li, X. Lin. Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode [J]. Biosens. Bioelectron., 2007, 22: 2898-2905.
    [31] C. Malitesta, F. Palmisano, L. Torsi, P. G. Zambonin. Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly( o=phenylenediamine) film [J]. Anal. Chem., 1990, 62:2735-2740.
    
    [32] R. Garjonyte, A. Malinauskas. Amperometric glucose biosensor based on glucose oxidase immobilized in poly(o-phenylenediamine) layer [J]. Sens. Actuators B. Chem., 1999, 56: 85-92.
    [33] G. Yildiz, H. C. Atalgi, L. Kadirgan. Electrochemically prepared acrylamide N'N methylene bisacrylamide gels [J]. J. Appl. Electrochem., 2000, 30: 71-75.
    [34] P. Ulanski, E. Bothe, K. Hildenbrand, C. Sonntag. Free-radical-induced chain breakage and depolymerization of poly(methacrylic acid): Equilibrium polymerization in aqueous solution at room temperature [J]. Chem. Eur. J., 2000, 6: 3922-3934.
    [35] Free-radical-induced chain breakage and depolymerization of poly(methcrylic acid ): equilibruim polymerization in aqueous solution at room temperature [J]. Chem. Eur. J., 2000, 6: 3922-3934.
    [36] A. Matsumoto, D. Mitomi, H. Aota, J. Ikeda. Proliferous polymerization under specified conditions in the free-radical crosslinking copolymerization of benzyl methacrylate with neopentyl glycol dimethacrylate in the presence of lauryl mercaptan [J]. Macromol. Rapid Commun., 1999, 20: 365-368.
    [37] J. Reuber, H. Reinhardt, D. Johannsmann. Formation of surface-attached responsive gel layers via electrochemically induced free-radical polymerization [J]. Langmuir., 2006, 22: 3362-3367.
    [38] J. Bu¨nsow, D. Johannsmann. Production of Polyacrylic acid homo- and copolymer films by electrochemically induced free-radical polymerization: preparation and swelling behavior [J]. Macromol. Symp., 2007, 370-381.
    [39] 余若箐.厦门大学本科毕业论文. 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700