全内反射荧光法研究蛋白质与壳聚糖的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖作为重要的天然聚合物,以良好的生物相容性、生物可降解性,对细胞组织不产生毒性影响,在生物医学等方面得到了广泛的研究应用。壳聚糖对蛋白质有良好的亲和能力,研究蛋白质与壳聚糖在界面上的相互作用、理解蛋白质与壳聚糖分子在界面接触时的吸附过程变化对蛋白药物的开发和生物化学研究具有非常重要的意义。全内反射荧光法是研究界面蛋白质吸附的一种有效的手段。它利用指数衰减的倏逝波选择性激发介质表面的荧光团分子,产生全内反射荧光,具有高度的界面(表面)特异性,从而可有效排除本体干扰,获取界面信息,而且又具有非破坏性,能够实时、原位检测蛋白质吸附过程。本文致力于改进实验室已有的固/液界面全内反射荧光分析的部件,考察壳聚糖超薄膜的固定方案,继而研究三种模型蛋白在壳聚糖超薄膜上的吸附情况。此外,还对罗丹明6G(R6G)在石英/水界面上的吸附进行研究,进一步认识咕吨染料在界面的情况。
     论文分为四章:
     第一章综述了全内反射荧光法在生物体系中的研究应用,以及壳聚糖与蛋白质相互作用的研究概况。简要介绍全内反射荧光法的原理和应用,对目前全内反射荧光法在生物体系,特别是固/液界面蛋白质吸附的研究作了详尽的概述,同时还介绍了壳聚糖的性质、应用以及它与蛋白质相互作用研究的状况,最后提出整篇论文的设想。
     第二章在现有可行的实验条件下,以石英片为载体,改进实验室已有全内反射荧光部件,使其易于进行表面修饰,并且使样品的检测体积减少至200μL。考察了旋涂法与化学键合法固定壳聚糖薄膜的情况,同时应用全内反射恒波长同步荧光分析方法,监测壳聚糖表面固定情况。最后确定了以硅烷化试剂自组装在石英载体上引入活性基团进行表面接枝壳聚糖的化学键合法,并对接枝方法进行了优化,获得了表面均一的壳聚糖超薄膜。
     第三章用荧光素异硫氰酸酯(FITC)标记常见的模型球型蛋白(牛血清白蛋白、溶菌酶、牛血纤维蛋白原),应用全内反射荧光法分析它们分别与壳聚糖超薄膜相互作用的情况,以及对牛血纤维蛋白原和牛血清白蛋白的二元竞争吸附体系进行研究。
     首先成功用FITC标记各种模型蛋白质,标记率在0.6-3.8之间,观测其吸收、荧光波长均有所红移,荧光各向异性值有6-10倍的增长。
     牛血清白蛋白(BSA)在壳聚糖上随着本体浓度增加,出现两个吸附增长区。随浓度增加,吸附在壳聚糖表面上的BSA可能从平躺取向排布向竖直取向变化;在平衡浓度大于400μg/mL以上可能出现多层吸附。pH对BSA在壳聚糖上的吸附作用也有显著的影响,随着pH增加,BSA在pH 6.5附近出现了极值,说明主要以静电相互作用驱动了BSA吸附。离子强度的增加,屏蔽了蛋白质与壳聚糖表面、蛋白质-蛋白质分子之间的静电斥力,使得BSA的吸附量增加;而当盐浓度大于0.1 mol/L之后,由于壳聚糖分子链的刚性变小,容易成团,与蛋白质接触面积减小,导致吸附量下降。
     此外,还考察了另外两种模型蛋白吸附随本体溶液浓度变化的影响,以及对模型蛋白的吸附过程进行动力学方程拟合。牛血纤维蛋白原的界面荧光随着蛋白质本体浓度的增加而增加;在低浓度下,双常数速率方程能够得到较好拟合性,而在高浓度下,准二级动力学模型能够得到较好的拟合性。而溶菌酶在考察浓度范围内,界面信号随浓度增长变化曲线与Langmuir吸附等温线形状近似。溶菌酶对壳聚糖的表面亲和能力比BSA更好,这可能由于壳聚糖与溶菌酶的底物结构相似,溶菌酶易吸附于壳聚糖膜上。溶菌酶的吸附动力学过程可用准二级吸附动力学模型描述,随着吸附初始浓度的增加,吸附速率常数k也总体有一个数量级的增长。
     比较壳聚糖膜上BSA与牛血纤维蛋白原在生理条件下竞争吸附的情况,在壳聚糖界面上,牛血纤维蛋白原的相对竞争吸附能力要大于BSA。这表明壳聚糖也能够正常驱动牛血纤维蛋白原的吸附,激发血小板和凝血因子而发生凝血。
     第四章利用全内反射恒波长同步荧光法直接测量在石英/水界面上的罗丹明6G(R6G)。通过对其本体、界面荧光光谱的分析,观察到R6G分子在亲水石英/水界面上出现5 nm红移,红移的原因主要是染料分子旋转运动受到限制,石英表面的刚性限制了分子的自由度,同时,石英/水界面更低的极性也对红移产生影响。同时还考察了R6G在石英/水界面上的吸附情况与本体溶液的浓度、pH以及离子强度的关系。
As an important natural polymer, chitosan has been applied extensively in biomedicine for its biocompatibility, biodegradation, as well as non-toxicity to cellular tissues. There is good affinity between chitosan and protein. For the development of protein drugs and the research of biochemistry, it is significant to probe the interaction between chitosan and protein, and to observe changes of adsorption when both of them contact at interface. Total internal reflection fluorescence spectroscopy (TIRF) is an effective technique to investigate protein adsorption at interface. The total internal reflection fluorescence generates from interfacial fluorophore, which is selectively excited by evanescent wave. Therefore, there are several characteristics for evanescent wave inducing fluorescence, such as surface specificity, elimination of bulk interference and non-destruction. It has been successful to investigate protein adsorption in situ, real-time by this technique. This dissertation is concerned on the improvement of instrumental device of TIRF for probing solid/liquid interface, the option of suitable method for immobilizing chitosan, and the analysis of interaction between model proteins and ultrathin chitosan film which was immobilized on silica substrate. In addition, the adsorption behavior of rhodamine 6G (R6G) at silica/water interface was also concerned. The dissertation is composed of following parts:
     In the first chapter, the application of total internal reflection fluorescence technique in the research of biological systems and the advance on the study of interaction between chitosan and protein were reviewed. The principle and application of TIRF were introduced briefly. The research on biological systems, especially on the study of protein adsorption at solid/water interface, was described in detail. Then the property and application of chitosan were introduced, as well as the hot topics on the study of chitosan-protein interaction. The plan of dissertation was put forward at the last part of this chapter.
     In the second chapter, a new TIRF cell was developed based on the present experimental conditions. Microfluid cell made up of silica slices, of which detection volume was minimized to 200μL, was more easily for modification and cleaning. The immobility of chitosan films was monitored by total internal reflection synchronous fluorescence (TIRSF). Two methods (spin coating and chemical bonding) were employed to immobilize chitosan onto the silica substrate. We finally applied chemical bonding method to fabricate chitosan film, which utilized self-assembly membrane to introduce active group for surface grafting. The protocols of grafting were optimized as well. As a result, the uniform ultrathin chitosan film was obtained.
     In the third chapter, the interactions between model FITC labeled proteins (BSA, Fibrinogen, Lysozyme) and ultrathin chitosan film were investigated by TIRF, respectively. The competitive adsorption between BSA and fibrinogen was studied as well.
     Firstly, it was successful to label model proteins with FITC, whose labeling ratios were between 0.6 to 3.8. Red shifts were observed both in absorption and fluorescence spectra. There was 6-10 times increase in the value of fluorescent anisotropy of labeled proteins.
     Secondly, with increase of concentration of FITC-BSA in bulk solution, two growth regions of interfacial intensity of FITC-BSA were present on chitosan film. It is suggested that FITC-BSA will adsorb on chitosan film with the orientations changing from horizontal to vertical, and as multilayer structure at high concentration (more than 400μg/mL).The adsorption of FITC-BSA depended with pH variations. With pH increasing, there was an extreme value of interfacial intensity approximately at pH 6.5. It is illustrated that the electrostatic attraction was the main driving force to adsorb BSA. Increasing of ionic strength screened the repulsive forces between protein-chitosan, protein-protein at pH 7.4. As a result, the amount of adsorbates was increased. However, higher concentration of supporting electrolyte induced the decrease in BSA adsorption for chitosan chains tended to curling to be conglobation, which resulted in fewer sites to contact with protein.
     Thirdly, we investigated the concentration effects and adsorption kinetics of other two model proteins. For fibrinogen, interfacial intensity was increased with the initial concentration. At low concentration, Double Constant Equation was fitted greatly to the adsorption kinetics curves. At high concentration, Pseudo-second order model appeared as the best fitter to adsorption kinetics curves. For lysozyme, interfacial intensity changing with concentration of FITC-Lyz was in the same shape as Langmuir adsorption isotherm. The affinity of lysozyme to chitosan was much better than that of BSA for the structure of chitosan was similar to substrate of enzyme. Pseudo-second order model could describe adsorption processes of lysozyme on chitosan film exactly. With increase of initial concentration of lysozyme, there was one-order magnitude increase in adsorption rate constant (k).
     And then, the study of competitive adsorption of BSA and fibrinogen on chitosan film at physiological condition was carried out. It was revealed that the relative competitive adsorption capacity of fibrinogen was much larger than that of BSA. The result confirmed that chitosan, as other common haemostatic, would adsorb blood protein and activate platelet and coagulation factor for clotting.
     In the fourth chapter, total internal reflection synchronous fluorescence (TIRSF) was developed as a direct and successful tool to investigate a xanthene dye (R6G) at the silica/water interface. From analysis of fluorescence spectra both in bulk and interface, 5 nm red shift of fluorescence spectra at hydrophilic silica/water interface were observed. The bathochromic shift was mainly due to the limitation of rotational movements of the dye. The rigidity of the silica surface restricted the freedom of the molecules. The lower polarity of microenvironment at the silica/water interface than that in aqueous environment should also make a contribution to the phenomenon. Meanwhile, the effects of bulk concentration, pH, and ionic strength on the adsorption of R6G were studied as well.
引文
[1]N.J.Harrick,G.I.Loeb,Total internal reflection absorption spectroscopy[J].Anal.Chem.,1975,45(3):687-693.
    [2]T.Hirschfield,Total internal reflection spectroscopy[J].Canad.Spectrosc,1965,10(1):128-135.
    [3]T.Hirschfield,Optimum diameter of FTIR microsampling Cell[J].Appl Opt,1976,15(12):2965-2966.
    [4]M.N.Kronick,Sensing of structure-specific binding onto functionalized quartz surfaces using total internal reflection fluorescence[D].Stanford University,Stanford,C.A.1974,p105.
    [5]R.W.Watkins,Channing R.Robertson,A total internal-reflection technique for the examination of protein adsorption[J].J.Biomed.Mater.Res.,1977,11(6):915-938
    [6]钟成,分子动力学模拟蛋白质在固液界面的吸附[D],天津大学,2004.
    [7]X.Zhai,J.M.Kleijn,Order in phospholipid Langmuir-Blodgett monolayers determined by total internal reflection fluorescence[J].Biophys.J,1997,72(6):2651-2659.
    [8]T.E.Starr,N.L.Thompson,Formation and Characterization of Planar Phospholipid Bilayers Supported on TiO_2 and SrTiO_3 Single Crystals[J].Langmuir,2000,16(26):10301-10308.
    [9]T.Ide,T.Yanagida,An artificial lipid bilayer formed on an agarose-coated glass for simultaneous electrical and optical measurement of single ion channels[J].Biochem.Biophys.Res.Commun.,1999,265(2):595-599.
    [10]E.M.Erb,J.Engel,Reconstitution of functional integrin intophospholipid vesicles and planar lipid bilayers[J].Methods Mol.Biol.(Totowa,N.J.),2000,139(Extracellular Matrix Protocols):71-82.
    [11]Z.Fu,M.Santore,Effect of layer age and interfacial relaxations on the self-exchange kinetics of poly(ethylene oxide) adsorbed on silica[J].Macromolecules,1999,32:1939-1948.
    [12]J.Buijs,D.W.Britt,V.Hlady,Human growth hormone adsorption kinetics and conformation on self-assembled monolayers[J].Langmuir,1998,14(2):335-341.
    [13]D.Horsley,J.Herron,V.Hlady,J.D.Andrade,Human and hen lysozyme adsorption:a comparative study using total internal reflection fluorescence spectroscopy and molecular graphics[J].ACS Symp.Ser.1987,343(Proteins Interfaces):290-305.
    [14]C.Czeslik,C.C.Royer,T.Hazlett,W.Mantulin,Reorientational dynamics of enzymes adsorbed on quartz:A temperature-dependent time-resolved TIRF anisotropy study[J].Biophys.J.,2003,84(4):2533-2541.
    [15]C.Czeslik,G.Jackler,C.Royer,Driving forces for the adsorption of enzymes at the water/silica interface studied by total internal reflection fluorescence spectroscopy and optical reflectometry [J].Spectroscopy-An International Journal,2002,16(3-4):139-145.
    [16]C.Czeslik,G.Jackler,C.Royer,Adsorption and reorientation kinetics of lysozyme on hydrophobic surfaces[J].Langmuir,2002,18:1190-1199.
    [17]S.M.Daly,T.M.Przybycien,R.D.Tilton,Coverage-dependent orientation of lysozyme adsorbed on silica [J].Langmiur,2003,19 (9): 3848-3857.
    [18] M. M. Santore, Z. Fu, V. A. Rebar, Fundamental competitive adsorption kinetics for PEO adsorption on silica from aqueous solution [C], Book of Abstracts, 212th ACS National Meeting, Orlando, FL, August 25-29,1996, COLL-154:63.
    [19] M. Malmsten, Competitive protein adsorption at plasma polymer surfaces [J]. J. Colloid Interface Sci., 1997,186:9-16.
    [20] M. Malmste, D. Muller, B. Lassen, Sequential adsorption of Human Serum Albumin (HSA), Immunoglobulin G (IgG), and Fibrinogen (Fgn) at HMDSO plasma polymer surfaces [J]. J.Colloid Interface Sci., 1997,193:88-95.
    [21] D. Muller, M. Malmsten, B. Bergensthl, J. Hessing, J. Olijve, F. Mori, Competitive adsorption of gelatin and sodium dodecylbenzenesulfonate at hydrophobic surfaces [J]. Langmuir, 1998, 14(11):3107-3114.
    [22] M. Malmsten, T. Arnebrant, C. Hahn, Changes in protein adsorption on self-assembled monolayers with monolayer order: comparison of Human Serum Albumin and Human Gamma Globulin [J]. Langmuir, 2001, 17:7645-7655.
    [23] M. Malmsten, Ellipsometry and TIRF studies of adsorption processes in parenteral drug delivery [J]. Interface Sci., 1997, 5 (2-3): 159-167.
    [24] Y. S. Tremsina, V. I. Sevastianov, S. Petrash, W. Dando, M. D. Foster, Competitive adsorption of human serum albumin and gamma-globulin from a binary protein mixture onto hexadecyltrichlorosilane coated glass [C]. J. Biomater. Sci., Polym. Ed. 1998, 9(2):151-161.
    [25] Z. L. Fu, M. M. Santore, Kinetics of competitive adsorption of PEO chains with different molecular weights [J]. Macromolecules, 1998,31 (20): 7014-7022.
    [26] Z. Fu, M. M. Santore, Competitive adsorption of poly (ethylene oxide) chains with and without charged end groups [J]. Langmuir, 1998, 14 (15): 4300-4307.
    [27] E. Sapsford, F. S. L. Kim, Real-time analysis of protein adsorption to a variety of thin films [J]. Biosens. Bioelectron., 2004,19 :1045-1055.
    [28] K. L. Martinez, B. H. Meyer, R. Hovius, K. Lundstrom, H. Vogel, Ligand binding to G protein-coupled receptors in tethered cell membranes[J]. Langmuir, 2003, 19:10925-10929.
    [29] I. C. H. Berg, D. Muller, T. Amebrant, M. Malmsten, Ellipsometry and TIRF studies of enzymatic degradation of interfacial proteinaceous layers [J]. Langmuir, 2001,17(5): 1641-1652.
    [30] Hlady V, CH Ho, Human low density lipoprotein (LDL) and human serum albumin (HSA) co-adsorption onto the C18-silica gradient surface [J]. Materialwissenschaft und Werkstofftechnik, 2001,32(2): 185-192.
    [31] R. Pit, H. Hervet, L. Leger, Direct experimental evidence of slip in hexadecane solid interfaces [J]. Phys. Rev. Lett., 2000, 85 (5):980-983.
    [32] J. H. Watterson, Controlling the density of nucleic acid oligomers on fiber optic sensors for enhancement of selectivity and sensitivity [J].Sensors and Actuators B-Chemical ,2001,74 (1-3): 27-36.
    [33] M. L. Wagner, L. K. Tamm, Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane-polyethyleneglycollipid as a cushion and covalent linker [J].Biophys. J., 2000,79(3):1400-1414.
    [34] T. E. Starr, N. L. Thompson, Formation and Characterization of Planar Phospholipid Bilayers Supported on TiO_2 and SrTiO_3 Single Crystals [J]. Langmuir, 2000,16(26):10301-10308.
    [35] E. Mubarekyan, M. M. Santore, Adsorption and exchange dynamics in aging hydroxyethyl cellulose layers on silica [J]. J. Colloid Interface Sci., 2000,227(2):334-344.
    [36] J. S. Burmeister, V. Z. McKkinney, W. M. Reichert, G. Truskey, Role of endothelial cell-substrate contact area and fibronectin-receptor affinity in cell adhesion to HEMA/EMA copolymers [J]. J. Biomed. Mater. Res., 1999,47(4):577-584.
    [37] S. Gestrelius, C. Andersson, A. C. Johansson, E. Persson, A. Brodin, L. Rydhag, L. Hammarstrom, Formulation of enamel matrix derivative for surface coating: kinetics and cell colonization [J]. J. Clin. Periodontol, 1997,24(9, Pt. 2): 678-684.
    [38] E. N. Pokidysheva, I. A. Maklakova, Z. M. Belomestnaya, N. V. Perova, S. N. Bagrov, V. I. Sevastianov .Comparative analysis of human serum albumin adsorption and complement activation for intraocular lenses [J]. Artificial Organs, 2001, 25 (6): 453-458.
    [39] A. J. Demello, Total Internal Reflection Fluorescence Spectroscopy [M], in: Surface Analytical Technique for Probing Biomaterials Processes (J. Davies Ed.). CRC Press Inc., 1996, Chapter 2
    [40] K. D. Fowers, J. Kopecek, Development of a fibrinolytic surface: specific and non-specific binding of plasminogen [J]. Colloids Surf., B, 1997,9 (6): 315-330.
    [41] S. M. Daly, T. M. Przybycien, R. D. Tilton, Adsorption of poly(ethylene glycol)-modified lysozyme to silica[J]. Langmuir, 2005,21:1328-1337.
    [42] A. Klotz, A. Brecht, C. Barzen, et al, Immunofluorescence sensor for water analysis [J]. Sens. Actuators, B-Chemical, 1998, 51 (1-3): 181-187.
    [43] J. Tschmelak, G. Proll, G. Gauglitz, Verification of performance with the automated direct optical TIRF immunosensor (River Analyser) in single and multi-analyte assays with real water samples [J]. Biosens. Bioelectron., 2004,20 (4): 743-752.
    [44] S. Reder, F. Dieterle, H. Jansen, Multi-analyte assay for triazines using cross-reactive antibodies and neural networks [J]. Biosen.Bioelectro., 2003,19 (5): 447-455.
    [45] R. Kapoor, N. Kaur, E.T. Nishanth, Detection of trophic factor activated signaling molecules in cells by a compact fiber-optic sensor [J]. Biosens. Bioelectron., 2004,20 (2): 345-349.
    [46] A. N. Asanov, W. William Wilson, Philip B. Oldham, Regenerable Biosensor Platform: A Total Internal Reflection Fluorescence Cell with Electrochemical Control [J]. Anal. Chem., 1998, 70(6): 1156-1163.
    [47] L. Tedeschi, C. Domenici, A. Ahluwalia, Antibody immobilisation on fibre optic TIRF sensors [J]. Biosens. Bioelectron., 2003,19 (2): 85-93.
    [48] K. Kroger, A. Jung, S. Reder, G. Gauglitz, Versatile biosensor surface based on peptide nucleic acid with label free and total internal reflection fluorescence detection for quantification of endocrine disruptors [J]. Anal. Chim. Acta., 2002,469 (1): 37-48.
    [49] H. P. Jennissen, T. Zumbrink, A novel nanolayer biosensor principle [J]. Biosens. Bioelectron., 2004, 19 (9): 987-997.
    [50] K. E. Sapsford, Y. S.Shubin, J. B. Delehanty, et al. Fluorescence-based array biosensors for detection of biohazards [J] J. Appl. Microbiol., 2004,96 (1): 47-58.
    [51] J. T. Jones, J. W. Myers, J. E. Ferrell, et al. Probing the precision of the mitotic clock with a live-cell fluorescent biosensor [J]. Nature Biotechnology, 2004, 22 (3): 306-312.
    [52] H. A. Engstrom, P. O. Andersson, S. Ohlson, A label-free continuous total-internal- reflection-fluorescence-based immunosensor[J].Anal.Biochem.,2006,357(2):159-166.
    [53]F.Lanni,A.S.Waggoner,D.L.Taylor,Structural organization of interphase 3T3 fibroblasts studied by total internal reflection fluorescence microscopy.[J].J.Cell Biol.,1985,100(4):1091-102.
    [54]姚敏娜,全内反射同步荧光法的研究及其应用[D].厦门大学,2003.
    [55]T.Funatsu,Y.Harada,M.Tokunaga,K.Saito,T.Yanagida,Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution[J].Nature,1995,374(6):555-559.
    [56]S.H.Kang,M.R.Shortreed,E.S.Yeung,Real-time dynamics of single-DNA molecules undergoing adsorption and desorption at liquid-solid interfaces[J].Anal.Chem.,2001,73:1091-1099.
    [57]J.E.Jureller,L.Ma,A.Kuznetsov,Dynamics in secretory cells:Time-dependent image,correlation spectroscopy and two-photon TIRF microscopy[J].Biophys.J.,2005,88(1):343A-343A Part 2Suppl.S.
    [58]M.Ohara-Imaizumi,C.Nishiwaki,Y.Nakamichi,Correlation of syntaxin-1 and SNAP-25 clusters with docking and fusion of insulin granules analysed by total internal reflection fluorescence microscopy[J].Diabetolgia,2004,47(12):2200-2207.
    [59]H.W.Shuai,I.Parker,Optical single-channel recording by imaging Ca2+ flux through individual ion channels:theoretical considerations and limits to resolution[J].Cell Caclum.,2005,37(4):283-299.
    [60]A.W.Schaefer,V.T.Schoonderwoert,P.Forscher,How growth cone steering evolves from alteration of steady state cytoskeletal protein dynamics:New insights from quantitative TIRF speckle microscopy[J].Molecular Biology of the Cell,2004,15:118A-118A 655 Suppl.S.
    [61]M.Ohara-Imaizumi,A.K.Cardozo,T.Kikuta,The cytokine interleukin-1 beta reduces the docking and fusion of insulin granules in pancreatic beta-cells,preferentially decreasing the first pHSAe of exocytosis[J].J.Bio.Chem.,2004,279(40):41271-41274.
    [62]S.E.Sund,D.Axelrod,Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching[J].Biophys.J.,2000,79(3):1655-1669.
    [63]B.C.Lagerholm,T.E.Starr,Z.N.Volovyk,Thompson,N.L.Rebinding of IgE Fabs at haptenated planar membranes:Measurement by total internal reflection with fluorescence photobleaching recovery[J].Biochemistry,2000,39(8):2042-2051.
    [64] R. Swaminathan, S. Bicknese, N. Periasamy, A. S. Verkman, Cytoplasmic viscosity near the cell plasma membrane: translational diffusion of a small fluorescent solute measured by total internal reflection-fluorescence photobleaching recovery [J]. Biophys. J., 1996,71(2): 1140-1151.
    [65] A. J. Demello, Total internal reflection fluorescence spectroscopy [M], in: Surface Analytical Technique for Probing Biomaterials Processes (J. Davies Ed.). CRC Press Inc., 1996, Chapter 1.
    [66] L. K. J. Filippov, Kinetic-diffusive-convective adsorption in TIRF flow Cells [J]. J. Colloid Interface Sci., 1995,174:32-39.
    [67] N. L. J. Filippova, Adsorption kinetics of polyelectrolytes on planar surfaces under flow conditions [J]. J. Colloid Interface Sci., 1999, 211: 336-354.
    [68] N. L. J. Filippova, Dynamic surface tension and adsorption/desorption kinetics for polymer mixtures on planar surfaces II. Under flow conditions [J]. J. Colloid Interface Sci., 1999,216: 86-95.
    [69] R. L. Hansen, J. M. Harris, Measuring reversible adsorption kinetics of small molecules at solid/liquid interfaces by total internal reflection fluorescence correlation spectroscopy [J]. Anal. Chem., 1998, 70: 4247-4256.
    [70] A. Gajraj, R. Y. Ofoli, Quantitative technique for investigating macromolecular adsorption and interactions at the liquid-liquid interface [J]. Langmuir, 2000, 16(9):4279-4285.
    [71] J. J. Fisz, Time-resolved polarized fluorescence spectroscopy of photoreactive systems in uniaxially organized molecular media [J]. Chem. Phys. Lett., 1997,269 (3,4): 244-256.
    [72] H. Yao, F. Kitagawa, N. Kitamura, Photoisomerization of DODCI at solid/liquid interfaces studied by steady-state and time-resolved total-internal-reflection fluorescence spectroscopy [J]. Langmuir, 2000, 16(7): 3454-3461.
    [73] R. A. W. Dryfe, Z. Ding, R. G. Wellington, P. F. Brevet, A. M. Kuznetzov, H. H. Girault, Time-resolved laser-induced fluorescence study of photoinduced electron transfer at the water/1,2-dichloroethane interface [J]. J. Phys. Chem. A, 1997, 101(14): 2519-2524.
    [74] J. C. Conboy, K. D. McReynolds, J. Gervay-Hague, S. S. Saavedra, Quantitative measurements of recombinant HIV surface glycoprotein 120 binding to several glycosphingolipids expressed in planar supported lipid bilayers [J]. J. Am. Chem. Soc, 2002, 124(6): 968-977.
    [75] H. Yao, H. Ikeda, R. Kawabata, N. Kitamura, Self-organized J-aggregates of pseudoisocyanine dye in nanometer dimensions at the vicinity of a glass/solution interface:a time-resolved and total-internal-reflection fluorescence spectroscopic study[J].J.Photochem.Photobiol.A,1999,124(3):147-152.
    [76]K.Bessho,T.Uchida,A.Yamauchi,T.Shioga,N.Teramae,Microenvironments of 8-anilino-1-naphthalenesulfonate at the heptane-water interface:time-resolved total internal reflection fluorescence spectroscopy[J].Chem.Phys.Lett.,1997,264:381-386.
    [77]R.R.Gullapalli,T.Tabouillot,R.Mathura,J.H.Dangaria,P.J.Butler Integrated multimodal microscopy,time-resolved fluorescence,and optical-trap rheometry:toward single molecule mechanobioiogy[J].J.Biomed.Opt.,2007,12(1):Art.No.014012.
    [78]S.Hamai,N.Tamal,Y.Masatoshi,H.Masuhara,Salt effects on a proton transfer reaction of excited 1-naphthol in a solid/liquid interface layer.A picosecond time-resolved total internal reflection fluorescence study[J].Chem.Phys.Lett.,1994,229(4-5):389-393.
    [79]I.A.McLure,Ann-Marie Williamson,Wetting observed by evanescent-wavegenerated fluorescence spectroscopy.I.Differential solubility:2,6-Lutidine+water at the lower critical endpoint[J].Physica A(Amsterdam),1996,234(1-2):206-224.
    [80]H.P.Jennissen,TIRF-rheometer for measuring protein adsorption under high shear rates:Constructional and fluid dynamic aspects rheomete[J].Materialwissenschaft und Werkstofftechnik,1999,30(12):850-861.
    [81]W.Cha,R.L.Beissinger,Augmented mass transport of macromolecules in sheared suspensions to surfaces.B.Bovine serum albumin[J].J.Colloid Interface Sci.,1996,178(1):1-9.
    [82]W.Cha,R.L.Beissinger,Macromolecular mass transport to a surface:Effects of shear rate,pH,and ionic strength[J].J.Colloid interface Sci.,1996,177:666-674.
    [83]T.Snabe,M.T.Neves-Petersen,S.B.Petersen,Enzymatic lipid removal from surfaces-lipid desorption by a pH-induced "electrostatic explosion"[J].Chem.Phys.Lipid.,2005,133(1):37-49.
    [84]H.Watarai,Measurement of circular dichroism spectra of liquid/liquid interface by centrifugal liquid membrane method[J].Anal.Sci.,2004,20(11):1489-1491.
    [85]H.Watarai,Total internal reflection resonance Raman microspectroscopy for the liquid/liquid interface.Ion-association adsorption of cationic Mn(Ⅲ) porphine[J].Langmuir,2003,19(7): 2658-2664.
    [86] P. Sun, Z. Q. Zhang, J. D. Guo , Y. H. Shao, Fabrication of nanometer-sized electrodes and tips for scanning electrochemical microscopy [J]. Anal. Chem., 2001,73 (21): 5346-5351.
    [87] R. R. Dagastine, G. W. Stevens, D. Y. C. Chan, F. Grieser, Forces between two oil drops in aqueous solution measured by AFM [J]. Colloid Interface Sci., 2004, 273 (1): 339-342.
    [88] L. E. Morrison, G. Weber, Biological membrane modeling with a liquid/liquid interface probing mobility and environment with total internal reflection excited fluorescence [J]. Biophys. J., 1987, 52 (3): 367-379.
    [89] H. Watarai, Dielectrophoretic behavior of single DNA in planar and capillary quadrupole microelectrodes [J].Chem. Lett., 2001(3):250-251.
    [90] H. Watarai, Microscopic fluorescence measurement of fast interfacial complexation by two-pHSAe sheath flow method [J].Chem. Lett., 2001 (3): 204-205.
    [91] H. Watarai, Axial hydration and adsorption of chloro(5,10,15,20-tetraphenyl- porphyrinato) manganese(III) at the toluene/water interface studied by external reflection spectrophotometry [J].Bull. Chem. Soc. Jnp., 2001, 74(10): 1885-1890.
    [92] H. Watarai, Resonance Raman spectroscopic detection of pyridylazo complex formed at liquid-liquid interface in centrifugal liquid membrane system [J]. Chem. Lett., 2001 (12): 1238-1239
    [93] H. Watarai, Direct electrospray ionization mass spectroscopic measurement of micro-flow oil/water system [J]. Anal. Sci., 2002, 18(3):367-368.
    [94] H. Watarai, Measurement of complexation rate of palladium(II) with pyridylazo ligand at the heptane-water interface by centrifugal liquid membrane-resonance Raman microprobe spectroscopy [J].Chem. Lett., 2003, 32(3):218-219.
    [95] H. Watarai, Capillary magnetophoresis of human blood cells and their magnetophoretic trapping in a flow system [J]. J. Chromatogr. A, 2002,961(1):3-8.
    [96] H. Watarai, Surface-enhanced Raman scattering from oleate-stabilized silver colloids at a liquid/liquid interface [J].Anal. Sci., 2004,20(9):1347-1352.
    [97] H. Watarai, Laser photophoretic migration with periodic expansion-contraction motion of photo-absorbing microemulsion droplets in water [J]. Langmuir, 2004,20(25): 10791-10797.
    [98]H.Watarai,Total internal reflection second-harmonic generation spectrometer system optimized for the liquid/liquid interface[J].Rev.Scie.Instru.,2005,76(2):023111.
    [99]S.Tsukahara,Y.Yamada,H.Watarai,Effect of surfaetants on in-plane and out-of-plane rotational dynamics of octadecylrhodamine B at toluene water interface[J].Langmuir,2000,16(17):6787-6794.
    [100]S.Tsukahara,Y.Yamada,T.Hinoue,H.Watarai,Measurement of the rotational relaxation of octadecylrhodamine B adsorbed at a liquid-liquid interface by time-resolved fluorescence anisotropy under the total internal reflection condition[J].Bunseki Kagaku,1998,47(12):945-952.
    [101]M.Fujiwara,S.Tsukahara,H.Watarai,Time-resolved total internal reflection fluorometry of ternary europium(Ⅲ) complexes formed at the liquid/liquid interface[J].Phys.Chem.Chem.Phys.,1999,1(12):2949-2951.
    [102]S.Tsukahara,M.Fujiwara,H.Watarai,Speeiation of europium(Ⅲ) complexes formed at liquid-liquid interface by time-resolved total-internal reflection fluorometry[J].Kidorui,1999,34:18-19.
    [103]Y.Saitoh,H.Watarai,Total internal reflection fluorometrie study of the ion-association adsorption of ionic derivatives of porphyrin at liquid-liquid interface[J].Bull.Chem.Soc.Jnp.,1997,70(2):351-358.
    [104]K.Bessho,T.Uchida,A.Yamauchi,T.Shioga,N.Teramae,Microenvirouments of 8-anilino-1-naphthalenesulfonate at the heptane-water interface:time-resolved total internal reflection fluorescence spectroscopy[J].Chem.Phys.Lett.,1997,264:381-386.
    [105]S.Ishizaka,S.Kinoshita,Y.Nishijima,N.Kitamura,Direct observation of molecular recognition mediated by triple hydrogen bonds at a water/oil interface:time-resolved total internal reflection fluorometry study[J].Anal.Chem.,2003,75:6035-6042.
    [106]M.M.Murad,Fluorescence analysis of acridine orange adsorbate at the water/n-heptane interface,Bulk and interface[J].J.Fluores.,1999,9(3):257-263.
    [107]S.Ishizaka,H.B.Kim,N.Kitamura,Time-resolved total internal reflection fluorometry study on polarity at a liquid/liquid interface[J].Anal.Chem.,2001,73(11):2421-2428.
    [108]S.Ishizaka,S.Habuchi,H.B.Kim,N.Kitamura,Excitation energy transfer from sulforhodamine 101 to acid blue 1 at a liquid/liquid interface: Experimental approach To estimate interfacial roughness [J]. Anal. Chem., 1999, 71(16):3382-3389.
    [109] S. Ishizaka, Y. Ueda, Y. Nishijima, N. Kitamura, Time-resolved total-internal-reflection fluorescence study on molecular interactions at liquid/liquid interfaces [J]. Bunseki Kagaku, 2005, 54 (5): 339-346.
    [110] M. J. Tupy, H. W. Blanch, C. J. Radke, Total internal reflection fluorescence spectrometer to study dynamic adsorption phenomena at liquid/liquid interfaces [J]. Ind. Eng. Chem. Res., 1998, 37 (8): 3159-3168.
    [111] A. N. Asanov, L. J. Delucas, P. B. Oldham, W. W. Wilson, Heteroenergetics of Bovine Serum Albumin adsorption from good solvents related to crystallization conditions [J]. J. Colloid Interface Sci., 1997,191:222-235.
    [112] A. Gajraj, A novel total internal reflection fluorescence (TIRF) technique for investigating macromolecular adsorption and interactions at the liquid-liquid interface [D]. Michigan State University. 1999,159 pp
    [113] A. Gajraj, R. Y. Ofoli, Effect of extrinsic fluorescent labels on diffusion and adsorption kinetics of proteins at the liquid-liquid interface [J]. Langmuir, 2000, 16(21):8085-8094.
    [114] L. H. Larry, Biomaterials: a forecast for the future [J]. Biomaterials 1998,19:1419-1423
    [115] M. Rinaudo, G. Pavlov, J. Desbrieres, Influence of acetic acid concentration on the solubilization of chitosan [J].Polymer, 1999,40: 7029-7032.
    [116] Q. Z. Wang, X. G. Chen, N. Liu, S. X. Wang, C. S. Liu, X. H. Meng, C. G. Liu, Protonation constants of chitosan with different molecular weight and degree of deacetylation [J]. Carbohydr. Polym., 2006,65: 194-201.
    [117] M. Terbojevich, A. Cosani, Chitosan: Chain rigidity and mesopHSAe formation [J]. Carbohydr Res., 1991;209:251-260.
    [118] K. M. Varum, O.Smidsr(?)d, Structure-properties relationship in chitosans. In: Dumitriu S, editor. Polysaccharides.Structural Diversity and Functional Versatility [M]. 2nd ed. New York: Marcel Dekker, 2005: p. 625-642.
    [119] G. Maresch, T. Glausen, G. Lang, Chitin and Chitosan [M]. Skjak-Brak G, Anthonsen T, Sandford P, editors.Barking:Elsevier,1989:p389.
    [120]G.Lang,G.Maresch,Birkel S.Muzzarelli RAA,M.G.Peter,editors.Chitin handbook[M].Grottammare:Atec Edizioni,1997:p61.
    [121]Y.Okamoto,M.Kawashima,M.Moriguchi,Chromatographic resolution.Useful chiral packing materials for high-performance liquid chromatographic resolution of enantiomers:phenylcarbamates of polysaccharides coated on silica gel[J].J.Am.Chem.Soc.,1984,106:5357-5359.
    [122]I.K Park,J.Yang,H.J.Jeong,H.S.Bom,I.Harada,T.Akaike,S.Kim,C.S.Cho,Galactosylated chitosan as a synthetic extracellular matrix for hepatocytes attachment[J].Biomaterials,2003,24:2331-2337.
    [123]S.P.Kamble,S.Jagtap,N.K.Labhsetwar,D.Thakare,S.Godfrey,S.Devotta,S.S.Rayalu,Defluoridation of drinking water using chitin,chitosan and lanthanum-modified chitosan[J].Chem.Eng.J.,2007,129:173-180
    [124]A.A.Atia,Studies on the interaction of mercury(Ⅱ) and uranyl(Ⅱ) with modified Chitosan resins [J].Hydrometallurgy,2005,80,(1-2):13-22
    [125]Y.Nishiyama,T.Yoshikawa,N.Ohara,K.Kurita,K.Hojo,H.Kamada,Y.Tsutsumi,T.Mayumi,K.Kawasaki,.A conjugate from A laminin-related peptide,Try-Ile-Gly-Ser-Arg and chitosan:Efficient and regioselective conjugation and significant inhibitory activity against experimental cancer metastasis[J].J Chem.Soc.Perkin Trans,2000,1:1161-1165.
    [126]F.Xi,J.Wu,Macroporous chitosan layer coated on non-porous silica gel as a support for metal chelate affinity chromatographic adsorbent[J].J.Chromatogr.,A 2004,1057(1-2):41-47.
    [127]Y.J.Yuk,K.H.Youm,Affinity filtration chromatography of proteins by chitosan and chitin membranes:1.Preparation and characterization of porous affinity membranes[J].Memburein.2006,16(1):39-50.
    [128]T.Y.Guo,Y.Q.Xia,G.J.Hao,B.H.Zhang,G.Q.Fu,Z.Yuan,B.L.He,J.F.Kennedy,Chemically modified chitosan beads as matrices for adsorptive separation of proteins by molecularly imprinted polymer[J].Carbohydrate Polym.,2005,62(3):214-221.
    [129]H.G.Sun,L.Zhang,H.Chai,H.Chen,Removing endotoxin from protein solution by chitosan modified affinity membrane[J].Chin.J.Chem.Eng.,2005,13(4):457-463.
    [130] W. Shi, F. Zhang, G. Zhang, Adsorption of bilirubin with polylysine carrying chitosan-coated nylon affinity membranes.[J]. J. Chromatogr., B, 2005, 819(2):301-306.
    [131] Menemse Gumusderelioglu, Pelin Agi,. Adsorption of concanavalin A on the well-characterized macroporous chitosan and chitin membranes [J]. React. Funct. Polym., 2004,61(2): 211-220.
    [132] S. A. Miscoria, J. Desbrieres, G. D Barrera, P. Labbe, G. A. Rivas, Glucose biosensor based on the layer-by-layer self-assembling of glucose oxidase and chitosan derivatives on a thiolated gold surface [J]. Anal. Chim. Acta., 2006,578(2): 137-144.
    [133] A. Kilinc, M. Teke, S. Oenal, A. Telefoncu, Immobilization of Pancreatic Lipase on Chitin and Chitosan [J]. Prep. Biochem. Biotechnol., 2006,36(2): 153-163.
    [134] J. J. Feng, G. Zhao, J. J. Xu, H. Y. Chen, Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan [J]. Anal. Biochem., 2005, 342(2): 280-286.
    [135] O. Celik, J. Akbuga, Preparation of superoxide dismutase loaded chitosan microspheres: characterization and release studies [J]. Eur. J. Pharm. Biopharm., 2007,66(1): 42-47.
    [136] N. G. Balabushevich, O. V. Lebedeva, O. I. Vinogradova, N. I. Larionova, Polyelectrolyte assembling for protein microencapsulation [J]. J. Drug Delivery Sci. Tech., 2006, 16(4): 315-319.
    [137] A. B. Schnurch, M. Hornof, T. Zoidl, Thiolated polymers-thiomers: modification of chitosanwith 2-iminothiolane [J]. Int. J. Pharm., 2003,260:229-237.
    [138] L. Chen, Z. Tian, Y. Du, Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices [J]. Biomaterials, 2004,25: 3725-3732.
    [139] A. K. Anal, W.F. Stevens, Chitosan-alginate multilayer beads for controlled release of ampicillin [J], Int. J. Pharm., 2005,290 :45-54.
    [140] T. H. Kim, Y. H. Park, K. J. Kim, C.S. Cho, Release of albumin from chitosan-coated pectin beads in vitro [J]. Int. J. Pharm., 2003,250: 371-383.
    [141] C. Tapia, Z. Escobar, E. Costa, J.S. Hagar, F. Valenzuela, C. Basualto, M. N. Gai, M. Y. Pedram, Comparative studies on polyelectrolyte complexes and mixtures of chitosan-alginate and chitosan-carrageenan as prolonged diltiazem clorhydrate release systems[J]. Eur. J. Pharm. Biopharm., 2004, 57: 65-75.
    [142]D.G.Yu,C.H.Jou,W.C.Lin,M.C.Yang,Surface modification of poly(tetramethylene adipate-co-terephthalate) membrane via layer-by-layer assembly of chitosan and dextran sulfate polyelectrolyte multiplayer.[J].Colloids Surf.,B,2007,54(2):222-229.
    [143]S.Sagnella,K.Mai-Ngam.Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials[J].Colloids Surf.,B,2005,42(2):147-155.
    [144]W.Amornchai,V.P.Hoven,V.Tangpasuthadol,Surface modification of chitosan films-grafting ethylene glycol olignmer and its effect on protein adsorption[J].Macromolecular Symposia,2004,216:99-107.
    [145]J.Benesch,P.Tengvall,Blood protein adsorption onto chitosan[J].Biomaterials,2002,23(12):2561-2568.
    [146]J.Piehler,A.Brecht,K.E.Gecheler,G.Gauglitz,Surface modification for direct immunoprobes[J].Biosens.Bioelectron.,1996,11(6/7):579-590.
    [147]J.K.Kim,D.S.Shin,W.J.Chung,K.H.Jang,K.N.Lee,Y.K.Kim,Y.S.Lee,Effects of polymer grafting on a glass surface for protein chip applications[J].Colloids Surf.,B,2004,33:67-75.
    [148]D.Kim,H.G.Lee,H.I Jung,S.H.Kang,Single-protein molecular interactions on polymer-modified glass substrates for nanoarray chip application Using dual-color TIRFM[J].Bull.Korean Chem.Soc.,2007,28(5):783-790.
    [149]Y.Zhou,B.Liedberg,N.Gorochovceva,R.Makuska,A.Dedinaite,P.M.Claesson,Chitosan-N-poly(ethylene oxide) brush polymers for reduced nonspecific protein adsorption[J].J.Colloid Interface Sci.,2007,305:62-71.
    [1]S.Sharon,M.N.Katanchalee,Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials[J].Colloids Surf.B:Biointerfaces,2005,42:147-155.
    [2]A.D.Martinoa,M.Sittingerc,M.V.Risbud,Chitosan:A versatile biopolymer for orthopaedic tissue-engineering[J].Biomaterials,2005,26:5983-5990.
    [3]M.N.V.R.Kumar,A review of chitin and chitosan applications[J].React.Funct.Polym.,2000,46:1-27.
    [4]K.E.Sapsford,F.S.Ligler,Real-time analysis of protein adsorption to a variety of thin films[J].Biosens.Bioelectron.,2004,19:1045-1055.
    [5]W.G.Liu,F.Li,X.D.Zhao,K.D.Yao,Q.G.Liu,Atom force microscopic characterisation of the interaction forces between bovine serum albumin and cross-linked alkylated chitosan membranes in media of different pH[J].Polym Int.,2002,51:1459-1463.
    [6]V.Tangpasuthadol,N.Pongchaisirikul,V.P.Hoven,Surface Modification of Chitosan films.Effects of Hydrophobicity on Protein Adsorption[J].Carbohydr.Res.,2003,338,937-942.
    [7]韩明川,石英晶体微天平研究蛋白质在壳聚糖及衍生物表面的吸附行为[D].天津大学,2004.
    [8]E.R.Welsh,C.L.Schauer,J.P.Santos,R.R.Price,In situ cross-linking of alternating polyelectrolyte multilayer films[J].Langmuir,2004,20(5):1807-1811.
    [9]任东文,刘袖洞,马小军,荧光标记壳聚糖的反应动力学研究[J].功能材料,2004,35,Supp:2463-2465.
    [10]J.Benesch,P.Tengvall,Blood protein adsorption onto chitosan[J].Biomaterial,2002,23:2561-2565.
    [11]N.Fang,A.Zhu,M.B.Chan-Park,V.Chem,Adhesion contact dynamics of fibroblasts on biomacromaolecular surfaces[J].Macromol.Biosci.,2005,5:1022-1031.
    [1]K.E.Sapsford,F.S.Ligler,Real-time analysis of protein adsorption to a variety of thin films[J].Biosens.Bioelectron.2004,19:1045-1055.
    [2]T.J.Su,J.R.Lu,R.K.Thomas,Z.F.Cui,Effect of pH on the Adsorption of Bovine Serum Albumin at the Silica/Water Interface Studied by Neutron Reflection[J].J.Phys.Chem.B,1999,103,18:3727-3736.
    [3]B.Lassen,M.Malmsten,Competitive Protein Adsorption at Plasma Polymer Surfaces[J].J.Colloid Interface Sci.,1997,186:9-16.
    [4]J.Kim,G.A.Somorjai,Molecular Packing of Lysozyme,Fibrinogen,and Bovine Serum Albumin on Hydrophilic and Hydrophobic Surfaces Studied by Infrared-Visible Sum Frequency Generation and Fluorescence Microscopy[J].J.Am.Chem.Soc.2003,125:3150-3158.
    [5]C.L.Cooper,P.L.Dubin,A.B.Kayitmazer,S.Turksen,Polyelectrolyte-protein complexes [J].Current Opinion in Colloid & Interface Science,2005,10:52-78.
    [6]G.Hungerford,J.Benesch,J.F.Mano,R.L.Reis,Effect of the labelling ratio on the photophysics of fluorescein isothiocyanate(FITC) conjugated to bovine serum albumin[J].Photochem.Photobiol.Sci.,2007,6:152-158.
    [7]B.Lassen,M.Malmsten,Competitive Protein Adsorption Studied with TIRF and Ellipsometry[J].J.Colloid Interface Sci.,1996,176:470-477.
    [8]K.C.Kwok,K.M.Yeung,N.H.Cheung,Adsorption Kinetics of Bovine Serum Albumin on Fused Silica:Population Heterogeneities Revealed by Single-Molecule Fluorescence Microscopy[J].Langmuir,2007,23:1948-1952.
    [9]T.J.Su and J.R.Lu,R.K.Thomas,Z.F.Cui,Effect of pH on the Adsorption of Bovine Serum Albumin at the Silica/Water Interface Studied by Neutron Reflection[J].J.Phys.Chem.B,1999,103:3727-3736.
    [10]邬建敏,陈正贤,阮东梁,以硅胶为载体的交联壳聚糖作为亲和层析填料基质的研究[J].分析化学,2002,30(9):1063-1066.
    [11]张静,张政朴,宋瑜,贺秉坤,染料壳聚糖微球的制备及其对牛血清白蛋白(BSA)吸附性能的研究 [J].2005,26(12):2363-2368.
    [12]T.J.Su,J.R.Lu,Z.F.Cui,R.K.Thomas,J.Penfold,The Conformational Structure of Bovine Serum Albumin Layers Adsorbed at the Silica-Water Interface[J].J.Phys.Chem.B,1998,102:8100-8108.
    [13]S.Robinson,P.A.Williams,Inhibition of Protein Adsorption onto Silica by Polyvinylpyrrolidone [J].Langmuir,2002,18:8743-8748.
    [14]韩明川,石英晶体微天平研究蛋白质在壳聚糖及衍生物表面的吸附行为[D].天津大学,2004.
    [15]蒋挺大,甲壳素[M].北京:化学工业出版社,2003.
    [16]B.Savage,Z.M.Ruuger Selective recognition of adhesive sites in surface bound fibrinogen by glycoprotein Ⅱb-Ⅲa on nonactivated platelet[J].J.Bio.Chem,1991,266(17):11227.
    [17]Cozette M.Cuppett,Leon J.Doneski,Mary J.Wirth,Irreversible Adsorption of Lysozyme to Polishing Marks on Silica[J].Langmuir,2000,16,7279-7284.
    [18]杨健,田丰,陈世谦,壳聚糖的止血机理和应用[J].国外医学生物医学工程分册,2001,24:77-80.
    [19]王启钊等,壳聚糖的血液相容性[J].生物工程医学杂志,2005,(增):194-198.
    [20]W.G.Malette,G.William,Method of achieving hemostasis,USP 4394373[P].July 19,1983.
    [21]J.Benesch,P.Tengvall,Blood Protein Adsorption onto Chitosan[J].Biomaterials,2002,23(12):2561-2568.
    [1]D.Avnir,D.Levy,R.Reisfeld,The Nature of the Silica Cage as Reflected by Spectral Changes and Enhanced Photostability of Trapped Rhodamine 6G[J].J.Phys.Chem.,1984,88(24):5956-5959.
    [2]K.S.Litwiler,P.M.Kluczynsld,and F.V.Bright,Determination of the Transduction Mechanism for Optical Sensors Based on Rhodamine 6G-Impregnated Perfluorosulfonate Films Using Steady-State and Frequency-Domain Fluorescence[J].Anal.Chem.,1991,63(8):797-802
    [3]C.Domenici,A.Schirone,M.Celebre,A.Ahluwalia,and D.D.Rossi,Development of a TIRF Immunosensor:Modelling the Equilibrium Behaviour of a Competitive System[J].Biosensor&Bioelectronic,1995,10:371-378.
    [4]M.J.T.Estevez,F.L.Arbeloa,T.L.Arbeloa,and I L.Arbeloa,,Absorption and Fluorescence Qroperties of Rhodamine 6G Adsorbed on Aqueous Suspensions of Wyoming Montmorillonite[J].Langmuir,1993,9(12):3629-3634
    [5]X.Fang,and W.Tan,Imaging Single Fluorescent Molecules at the Interface of an Optical Fiber Probe by Evanescent Wave Excitation[J].Anal.Chem.,1999,71(15):3101-3105.
    [6]X.Y.Zheng,M.Wachi,A.Harata,and Y.Hatano,Acidity Effects on the Fluorescence Properties and Adsorptive Behavior of Rhodamine 6G Molecules at the Air-Water Interface Studied with Confocal Fluorescence Microscopy[J].Spetrochim.Acta Part A,2004 60:1085-1090.
    [7]D.Zimadars,J.I.Dadap,K.B.Eisenthal,and T.F.Heinz,Anisotropic Orientational Motion of Molecular Adsorbates at the Air-Water Interface[J].J.Phys.Chem.B.,1999,103(17):3425-3433.
    [8]M.A.Polizzi,R.M.Piocinik;and G.J.Simpson,Ellipsometric Approach for the Real-Time Detection of Label-Free Protein Adsorption by Second Harmonic Generation[J].J.Am.Chem.Soc.,2004,126(15):5001-5007.
    [9]M.B.Raschke,M.Hayashi,S.H.Lin,and Y.R.Shen,Doubly -Resonant Sum-Frequency Generation Spectroscopy for Surface Studies[J].Chem.Phys.Lett.,2002,359:367-372.
    [10]R.L.Hansen,and J.M.Harris,Measuring Reversible Adsorption Kinetics of Small Molecules at Solid/Liquid Interfaces by Total Internal Reflection Fluorescence Correlation Spectroscopy[J].Anal.Chem.,1998,70(20):4247-4256.
    [11]M.N.Yao,and Y.Q.Li,Adsorption Behavior of a Water-Soluble Porphyrin at the Glass-Water Interface as Studied by Synchronous Total Internal Reflection Fluorescence Spectroscopy[J].Chin.Chem.Lett.,2004,15(1):109-111.
    [12]A.Ghanadzadeh,and M.A.Zanjanchi,Self-Association of Rhodamine Dyes in Different Host Materials[J].Spectrochim.Acta Part A,2001,57:1865-1871.
    [13]A.Yamaguchi,N.Kometani,and Y.Yonezawa,Phase and Orientation Control of Mesoporous Silica Thin Film via Phase Transformation[J].Thin Solid Films,2006,513(1-2):125-135.
    [14]Z.Ma,and F.Zaera,Organic Chemistry on Solid Surface[J].Surface Science Reports,2006,61(5):229-281.
    [15]S.K.Parida,S.Dash,S.Patel,and B.K.Mishra,Adsorption of Organic Molecules on Silica Surface[J].Adv.Colloid Interface Sci.,2006,121:77-110.
    [16]V.M.Martinez,F.L.Arbeloa,J.B.Prieto,and I.L.Arbeloa,Orientation of Adsorbed Dyes in the Interlayer Space of Clays.1.Anisotropy of Rhodamine 6G in Laponite Films by Vis-Absorption with Polarized Light[J].Chem.Mater.,2005,17(16):4134-4141.
    [17]D.Tleugabulova,and J.D.Brennan,Quantifying Surface Coverage of Colloidal Silica by a Cationic Peptide Using a Combined Centrifugation/Time-Resolved Fluorescence Anisotropy Approach[J].Langmuir,2006,22(4):1852-1857.
    [18]E.Matveeva,Z.Gryczynski,J.Malicka,I.Gryczynski,and J.R.Lakowicz,Metal- Enhanced Fluorescence Immunoassays Using Total Internal Reflection and Silver Island-Coated Surfaces[J]. Anal. Biochem. 2004, 334: 303-311.
    [19] N. Fujiwara, S. Tsukahara, and H. Watarai, In Situ Fluorescence Imaging and Time-Resolved Total Internal Reflection Fluorometry of Palladium (II)-Tetrapyridylporphine Complex Assembled at the Toluene/Water Interface [J]. Langmuir, 2001,17(17): 5337-5342.
    [20] S. M. Daly, T. M. Przybycien, and R. D. Tilton, Adsorption of Poly (ethylene glycol)-Modified Lysozyme to Silica [J]. Langmuir, 2005,21(4): 1328-1337.
    [21] D. Patra, and A. K. Mishra, Recent Developments in Multi-Component Synchronous Fluorescence Scan Analysis [J]. Trends in Anal. Chem., 2002,21: 787-798.
    [22] W. Sui, C. Wu, and Y. Q. Li, Rapid Simultaneous Determination of Four Anthracene Derivatives Using a Single Non-Linear Variable-Angle Synchronous Fluorescence Spectrum [J]. Fresenius J. Anal. Chem., 2000,368: 669-675.
    [23] D. L. Lin, L. F. He, and Y. Q. Li, Rapid and Simultaneous Determination of Coproporphyrin and Protoporphyrin in Feces by Derivative Matrix Isopotential Synchronous Fluorescence Spectrometry [J]. Clin. Chem., 2004,50: 1797-1803.
    [24] Y. Q. Li, X. Z. Huang, and J. G. Xu, Synchronous Fluorescence Spectrometric Methodology in the Wavelength Domain [J]. J. Fluoresc., 1999,9(3), 173-179.
    [25] Y. Q. Li, J. J. Xu, R. T. Wang, L. J. Yu, and Z. Li, A Spectrometric Setup for Synchronous Total Internal Reflection Fluorescence Measurement at the Solid/Liquid Interface [J]. Chin. Chem, Lett., 2002,13:571.
    [26] L. F. He, D. L. Lin, and Y. Q. Li, Micelle-Sensitized Constant-Energy Synchronous Fluorescence Spectrometry for the Simultaneous Determination of Pyrene, Benzo[a]pyrene and Perylene [J], Anal. Sci., 2005, 21:641-645.
    [27] A. Imhof, M. Megens, J. J. Engelberts, D. T. N. de Lang, R. Sprik, and W. L. Vos, Spectroscopy of Fluorescein (FITC) Dyed Colloidal Silica Spheres [J]. J. Phys .Chem. B, 1999, 103(9), 1408-1415.
    [28] P. Ballt, M. V. der Auweraer, and F. C. D. Schryver, Global Analysis of the Fluorescence Decays of N, N'-Dioctadecyl Rhodamine B in Langmuir -Blodgett Films of Diacylphosphatidic Acids [J]. J. Phys. Chem., 1999,100(32): 13701-13715.
    [29] F. L. Arbeloa, and V. M. Martinez, Orientation of Adsorbed Dyes in the Interlayer Space of Clays. 2 Fluorescence Polarization of Rhodamine 6G in Laponite Films[J].Chem.Mater.2006,18(6):1407-1416.
    [30]E.G.McRae,and M.Kasha,Physical Process in Radiation Biology,[M].1964,New York:Academy Press.
    [31].L.Arbeloa,Fluorescence Quantum Yield Evaluation:Corrections for Re-Absorption and Re-Emission[J]J.Photocbem.,1980,31A:97-105.
    [32]R.V.Pereira,M.H.Gehlen,(2006),Spectroscopy of Auramine Fluorescent Probes Free and Bound to Poly(Methacrylic Acid)[J].J.Phys.Chem.B.,2006,110(13):6537-6542.
    [33]F.D.Monte,and D.Levy,Identification of Oblique and Coplanar Inclined Fluorescent J-Dimers in Rhodamine 110 Doped Sol-Gel-Glasses[J].J.Phys.Chem.B.,1999,103(38):8080-8086.
    [34]K.Ray,and H.Nakahara,Adsorption of Sulforhodamine Dyes in Cationic Langmuir-Blodgett Films:Spectroscopic and Structural Studies[J].J.Phys.Chem.B.,2002,106(1):92-100.
    [35]Z.Zhang,K.Nakashima,A.L.Verma,M.Yoneyama,K.Iriyama,and Y.Ozaki,Molecular Orientation and Aggregation in Mixed Langmuir-Blodgett Films of 5-(4-N-Octadecylpyridyl)-10,15,20-tri-p- tolylporphyrin and Stearic Acid Studied by Ultraviolet-Visible,Fluorescence,and Infrared Spectroscopies[J].Langmuir,1998,14(5):1177-1182.
    [36]T.Kikteva,D.Star,Z.Zhao,T.L.Baisley,and G.W.Leach,Molecular Orientation,Aggregation,and Order in Rhodamine Films at the Fused Silica/Air Interface[J].J.Phys.Chem.B.,1999,103(7):1124-1133
    [37]V Martinez,F.L.Arbeloa,J.B.Prieto,and I.L.Arbeloa,Characterization of Rhodamine 6G Aggregates Intercalated in Solid Thin Films of Laponite Clay.2.Fluorescence Spectroscopy[J].J.Phys.Chem.B.,2005,109(15):7443-7450.
    [38]J.E.Bell,Spectroscopy in Biochemistry[M].J.E.Bell,Ed.,1981,Florida:CRC Press,Chapter 4
    [39]H.Watarai,F.Funaki,Total Internal Reflection Fluorescence Measurements of Protonation Equilibria of Rhodamine B and Octadecylrhodamine B at a Toluene/Water Interface[J].Langmiur,1996,12(26):6717-6720.
    [40]G.A.Perk,The Isoelectric Points of Solid Oxides,Solid Hydroxides,and Aqueous Hydroxo Complex Systems[J].Chem.Rev.1965,65(2):177-198.
    [41]S.W.Waite,J.F.Holzwarth,and J.M.Harris,Laser Temperature Jump Relaxation Measurements of Adsorption/Desorption Kinetics at Liquid/Solid Interfaces[J].Anal.Chem.,1995,67(8):1390-1399.
    [42]T.Govindanunny,Soivation effects on the tunability of a fluorescein dye laser[J].Appl.Phys.,1980,23:253-258.
    [43]J.C.Micheau,G.V.Zakharova,and A.K.Chibisov,Reversible aggregation,precipitation and re-dissolution of rhodamine 6G in aqueous sodium dodecyl sulfate[J].Phys.Chem.Chem.Phys.,2004,6:2420-2425.
    [44]C.Nasr,D.Liu,S.Hotchandani,and P.V.Kamat,Dye-Capped Semiconductor Nanoclusters.Excited State and Photosensitization Aspects of Rhodamine 6G H-Aggregates Bound to SiO2 and SnO2 Colloids[J].J.Phys.Chem.,1996,100(26):11054-11061.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700