水库污染沉积物生物修复
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来人们对于解决水体富营养化问题已开展了多项研究。随着研究的深入,人们越来越关注沉积物中污染物的释放,探讨控制污染物向水体释放的技术。生物修复方法作为国外的研究热点已经引起了普遍的关注,虽已经有很多成功的例子,但目前在我国的应用还不普遍,研究工作也不够深入。国内已有的研究和应用中,针对水源水体沉积物的生物修复研究尚处于起步阶段。已有的许多研究表明生物修复技术具有很广阔的市场和应用潜力,它具有传统物理化学方法不可比拟的优势。因此研究污染沉积物的生物修复方法是十分有意义的。
     本研究从西安石砭峪和汤峪水库的沉积物中分离出3株高效硝化细菌和4株高效反硝化细菌,分别记为X4、X5、JX28、FX2、FX3、FX4、YFX3、YFX4、YFX6。在15℃时,JX28对氨氮的降解率可以达到46%,YFX3、YFX4对硝酸盐氮的降解率可以达到70%左右。通过对FX3、FX4、YFX3、YFX4 4株反硝化细菌的生理生化特性进行研究,将细菌鉴定到属,它们属于假单胞菌属。
     好氧条件下,研究了环境因子(包括不同C/N比,初始pH,培养温度)对菌株FX3、FX4、YFX3、YFX4脱氮效果的影响。研究结果表明,菌株的最适好氧反硝化温度为25-35℃之间。在PH为8.5左右,FX3、YFX3、YFX4对硝酸盐氮的降解率均达到65%以上。碳源是细菌好氧反硝化作用的重要影响因素,碳源过低,菌株的好氧反硝率会受到影响,当细菌的C/N比在6-9时,好氧反硝化率在50%左右。
     通过研究陶粒、页岩陶粒、火山石、麦饭石、石榴石等几种无机填料的性质,对无机材料进行了初选。氨氮等温吸附试验表明,几种填料对氨氮的吸附量不同,其中陶粒的吸附量最大,达到1.8mg/L。而通过亚甲基蓝吸试验则表明了无机填料的中孔体积,一定程度上说明了填料的孔隙发达程度。我们最终选取陶粒和页岩陶粒为备用载体。
     通过对菌株及无机填料的研究,最终选定了FX3+YFX4+X4的细菌复配组合,通过在陶粒和页岩陶粒上挂膜并覆盖在污染沉积物之上的模拟实验研究其生物修复效果,实验表明通过生物修复,一定程度上阻止了污染沉积物向上覆水体释放污染物,有效改善上覆水体的水质。
In recent decades,people have done a lot of research for solving the problem of water eutrophication,with further research,people pay more and more attention to sediments in pollutant release and find the technology of control the release pollutants into the water.As the research focus abroad,bioremediation method has been universal concern,although there are already many successful examples, at present the application of bioremediation technology in China is not common,research is not penetrating. The domestic research and applications,for water sediment bioremediation research is still in its infancy.Many studies have showed that bioremediation technology has vast potential markets perspective and potential,it has incomparable advantages in comparison with the physical and chemical methods.Therefore, bioremediation of contaminated sediments is very meaningful.
     In the research,three high efficiency nitrifying bacteria and four high efficiency denitrifying bacteria were screened from the landscape water sediment of Tang Yu reservoir and Shi Bian Yu reservoir,we named them X4、X5、JX28、FX3、FX4、YFX3、YFX4.Ammonia nitrogen removal rate of JX28 has been up to 46% in 15℃,nitrate nitrogen removal rate of YFX3 and YFX4 has been up to 70%.According to the physiological-biochemical tests for FX3、FX4、YFX3、YFX4,they identified as Pseudomonas stutzeri.
     Under aerobic conditions,environmental factors which have a effect of the nitrogen removal for FX3、FX4、YFX3、YFX4 were been disccused, including C/N、pH、temperature.The result of research shows the best temperature for aerobic denitrifycation is about 25-35℃.When the PH increased to 8.5,nitrate nitrogen removal rate of FX3、YFX3、YFX4 exceed 65%.The C/N has a great influence for aerobic denitrifycation.When the C/N is about 6-9, nitrate nitrogen removal rate has been up to 50%.
     In the experiment, the nature of the ceramics、shale granules、vesuvianite、maifanitum and garnet were been disccused,and we choose the inorganic filler the first time.The research shows several filler on the adsorption amount of ammonia is different,the ceramics has the maximum adsorption capacity which exceed 1.8mg/L.By methylene blue test shows medium-pore volume of inorganic filler,explained to some extent that how developed the pore of the filler is. At last, we choose ceramics、shale granules to do the next experiment.
     Explained to some extent that how developed the pore of the filler is.By study the strains and filler,we finally decided to use the rate of FX3、YFX3、YFX4.By the practice experiment of hanging film and cover on the contaminated sediments,to restoration of biological effects.Results show that through bioremediation can prevent the pollution of sediments overlying the release of pollutants in water.Improve the water quality of overlying water.
引文
[1]Forstner,U.Metal Concentrations in Recent Lacustrune Sediments[J].Arch, Hydrobiol.1977,80 (2):173-191.
    [2]李任伟.沉积物污染和环境沉积学[J].地球科学进展,1998,13(4):398-402.
    [3]Calmanl W,Ahlf W, Forster U. Sediment quality assessment:chemical and biological approaches.In:Calmano W, Forstner U. (Eds) [M]. Sediments and toxic Substances. Berlin, Springer,1-36.
    [4]Mudroch A,Ascue D J M.Manual of aqutice sediment sampling[J].Boca Ralon:Lewis Publications,1995.
    [5]陈华林,陈英旭.污染底泥修复技术进展[J].农业环境保护,2002,21(2):179-182.
    [6]曲久辉.我国水体复合污染与控制[J].科学对社会的影响,2000,(1):36-40.
    [7]麦赐球.环保形势依然严峻[J].光明日报,1997-3-25(6).
    [8]马梅,童中华,等.乐安江水和沉积物样品的生物毒性评估[J].环境化学,1997,16(2):167-171.
    [9]金相灿,刘鸿亮,等.中国湖泊富营养化[M].北京:化工出版社,1995.
    [10]袁旭音,许乃政,陶于样,等.太湖沉积物的空间分布和富营养化特征[J].资源调查与环境,2003,24(1):20-28.
    [11]李勇,王超,朱亮等.长荡湖底泥污染特征及水体富营养化状况[J].环境科学与技术2005,28(2):38-40.
    [12]USEPA(1993)Selecting remediation techniques for contaminated sediment.EPA823-B-93-001.
    [13]钱嫦萍,陈振楼,胡玲珍,等.崇明东滩沉积物再悬浮对沉积物一水界面氮、磷交换行为的影响[J].环境科学,2003,24(5):114-119.
    [14]王东红,黄清辉,王春霞,等.长江中下游浅水湖泊中总氮及其形态的时空分布[J].环境科学,2004,25:27-30.
    [15]丁建华,王翠红,周新春,等.晋阳湖底泥中氮磷特征的初步研究[J].安全与环境学报,2008,8(3):14-17.
    [16]金相灿,姜霞,徐玉慧,等太湖东北部沉积物可溶性氮、磷的季节性变化[J],中国环境科学,2006,26(4):409-413.
    [17]贾晓珊,徐昕荣,李适宇,等珠江流域河网底泥的氮磷污染特征及释放机理[J].中山大学学报:自然科学版,2005,44(2):107-110.
    [18]Pomeroy LR,mith EE,Grant CM.The exchange of pHospHorus between estuarine water and sediments[J].Limonol.Oceanogar.,1965,10(1):167-172.
    [19]张衍国,奉华,等.城市污水污泥焚烧过程中的重金属迁移特性[J].环境保护,2000,(12):35-36.
    [20]孟祥华,刘恩峰,杨丽原等.南四湖及主要入湖河流沉积物金属空间分布特征与污染评价[J].环境科学研究,2010.23(1):1-6.
    [21]Harrison E Z,Oakes S R,Hysell M.Organic chemicals in sewage sludges[J].Science of The Total Environment,2006,367:481-497.
    [22]Mclntyre A E,Lester J N.Occurrence and distribution of persistent organochlorine compounds in U.Ksewage sludges[J].Water,Air and Soil Pollution,1984,23:397-415.
    [23]Webber M D,Lessage S.Organic contaminants in Canadian municipal sludges[J].Waste Management and Research,1989,7:63-82.
    [24]陈玉成.污染环境生物修复工程[M].北京:化学工业出版社,2003.
    [25]陈华林,陈英旭.污染底泥修复技术进展[J].农业环境保护,2002,21(2):179-182.
    [26]Plaermo M R.Design considerations for in-situ capping of contaminated sediments[J].Wat Sci Tech,1998,37.
    [27]刘伟,徐南妮,刘振宇.巢湖清淤合肥项目区域污染底泥调查研究[J].环境导报,2000(2):30-31.
    [28]Oits M J.New Bedford Harbor,Massachusetts Dredging disposal of PCB Contaminated Sediments Dredigng 94-Proceeding of the Second Intenrational Conference on Dredging and Dredged Material Placement [J]. American Society of Civil Engineers,1994.
    [29]Holdren C W,Jones J.Managing Lakes and Reservoirs(3rd edition) [M].by N Am. Lake Manage Soc.And Terrene Inst,in coop with U.S.EPA,2001.
    [30]柳惠青.湖泊污染内源治理中的环保疏浚[J].水运工程,2000,11.
    [31]Varjo E,Liikanen A.A new gypsum-based technique reduce methane and pHospHorus release from sediments of eutropHied lakes:Gypsum treatment to reduce intenal loading[J].Wat Res,2003,37(l).
    [32]MurpHy T P,Hall K G,Northcote T O.Lime treatment of a hard water lake to reduce eutropHicaiton [J]. Lake and Reservoir Management,1998,4(2).
    [33]施国涵等.污水库底泥微生物对六六六降解的研究[J].生态学报,1984,4(4).
    [34]周岳溪等.假单胞菌磷代谢特性的研究[J].环境科学,1991,13(5).
    [35]陈玉成.污染环境生物修复工程[M].北京:化学工出版社,2003.
    [36]周启星.污染土地就地修复技术研究进展及展望[J].污染防治技术,1998,11(4):207-211.
    [37]朱利中.土壤及地下水有机污染的化学与生物修复[J].环境科学进展,1999,7(2):65-71.
    [38]林力,杨惠芳.生物整治技术进展[J].环境科学,1997,18(3):67-71.
    [39]吴伟,余晓丽,李咏梅.不同种属的微生物对养殖水体中有机物质的生物降解[J].湛江海洋大学学报(自然科学版),2001,21(3):67-70.
    [40]冯有胜,王敏斌,傅仕俊.生物技术与环境保护及进展[J].重庆工商大学学报(自然科学版)2003,20(2):81-85.
    [41]夏会龙,吴良欢,陶勤南.有机污染环境的植物修复研究进展[J].应用生态学报,2003,14(3):457-460.
    [42]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001,348-376.
    [43]Garbaciak SJ,etal.1995.Field demonstrations of sediment treatment technologies by the USEPA's Assessment and Remediation of Contaminated Sediments (ARCS) program AS TM,1293:145-154.
    [44]王雨春,万国江,尹澄清等.红枫湖、百花湖沉积物全氮、可交换态氮和固定铵的赋存特征[J].湖泊科学,2002,14(4):301-309.
    [45]Kemp ALW,Mudrochova A.Distribution and forms of nitrogen in a Lake Ontario sediment core[J].Limnol Oceanogr,1972,17(6):855-867.
    [46]陈国元,李建秋等.武汉月湖沉积物不同形态氮含量与转换途径的垂直变化[J].湖泊科学,2008,20(4):463-469.
    [47]曲春先,张晓宁.新型生物脱氮工艺的研究现状及发展[J].黑龙江科技技术.
    [48]黄廷林,刘燕,苏俊峰等.微生物固定化技术对微污染水源水脱氮的试验研究[J].环境污染与防治创刊30周年纪念特刊,2009,12(31).
    [49]李志刚,易红星.生物脱氮技术研究进展[J].甘肃科技,2008,20(24).
    [50]白莉,杨云龙.生物脱氮新技术[J].科技情报开发与经济,2003,13(7).
    [51]王里奥,崔志强,钱宗琴等.微生物固定化的发展及在废水处理中的应用[J].重庆大学学报,2004,27(3).
    [52]闰志明,普红平,阳立平.生物固定化技术研究及应用评述[J].四川化工,2004,7(1).
    [53]Wang Y F,L in F, PangW Q. Ammonium exchange in aqueous solution using Chinese natural clinop tilolite and modified zeolite[J]. J HazardMater,2007,142 (1-2):160-164.
    [54]Hankins N P, Pliankarom S, Hilal N. Removal of NH+4 ion from NH4C1 solution using clinop tilolite:a dynamic study using a continuous packed2bed column in up flow mode[J]. Sep Sci Technol,2004,39 (6):1347-1364.
    [55]Weatherley L R,Miladinovic N D. Comparison of the ion-exchange up take of ammonium ion onto New Zealand clinop tilolite and mordenite[J]. Water Res,2004,38 (20):4305-4312.
    [56]Beler2Baykal B, Bayram S, Akkaymak E, et al. Removal of ammonium from human urine through ion exchange with clinop tilolite and its recovery for further reuse[J]. Water Sci Technol,2004,50 (6):149-156.
    [57]Miladinovic N,Weatherley L R. Intensification of ammo nia removal in a combined ion2exchange and nitrification column[J]. Chem Eng J,2008,135 (1-2):15-24.
    [58]EnglertA H, Rubio J. Characterization and environmental app lication of a Chilean natural zeolite [J]. Int J Miner Process,2005,75 (1-2):21-29.
    [59]王士钊,谭胜,付洪瑞,陈学军.利用斜发沸石处理氨氮废水的研究[J].河北化工,2003,(04).
    [60]林建伟,朱志良,赵建夫.天然沸石覆盖层控制底泥氮磷释放的影响因素[J].环境科学,2006,27(5):58-62.
    [61]赵雪松,胡小贞,卢少勇,等.不同粒径方解石在不同pH值时对磷的等温吸附特征与吸附效果[J].环境科学学报,2008,28(9):1872-1877.
    [62]Berg, U, Donnert D, Markert U, et al.2003. Influences of in-lakep rocesses on a calcite cover for increased pHospHorus retention [J].Wasser Boden,4:19-24.
    [63]马放,邱珊,冯奇,张辉.生物陶粒在水源水处理中的实验[J].黑龙江科技学院学报,2006,(04).
    [64]冯奇,马放,陶鑫.孔隙结构表征陶粒滤料净水效能的方法[A].黑龙江科技学院学报,2007,17(6).
    [65]林建伟,朱志良,赵建夫,詹艳慧,马红梅.HCl改性沸石和方解石复合覆盖层控制底泥氮磷释放的效果及机理研究[J].环境科学,2007,(03):551-555.
    [66]林芝,陈明千等.白鹤滩电站库区底泥氮磷吸收规律实验研究[J].环境科学与管理,2007,32(12):73 75.
    [67]吴百力.高浓度氨氮废水处理技术及其发展趋势.环境保护科学[J].2006,2(32):22-24.
    [68]Cervantes F,Monroy O,Gomez J.1999.Influence of ammonium on the performance of a denitrifying culture under heterotropHic conditions[J].App 1 B iochem B iotechnol,81:13-21.
    [69]李万德,吴桂时等.反硝化细菌的作用及其在水产上的应用[J].湖北生态工程职业技术学院学报,2007,5(1):13-14.
    [70]赵丹丹.好氧反硝化菌株的快速筛选及其在硝态氮废水处理中的应用研究[D].吉林大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700