芳基有机膨润土对水中酚类化合物的吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酚类化合物是水环境中主要的有机污染物,具有毒性大、难降解等特点,研究如何有效地控制和治理含酚废水具有十分重要的意义。有机膨润土对含酚废水的吸附研究已取得一定进展,但目前使用的有机改性剂主要为长、短碳链的烷基季铵盐表面活性剂,而对含苯环的季铵盐表面活性剂的改性研究鲜见报道。由于苯环之间π-π键的相互作用,能够增强对芳香类有机化合物的吸附,本文重点研究了使用含苯环的季铵盐阳离子表面活性剂改性的芳基有机膨润土对酚类化合物的吸附性能。
     实验选择短碳链的四甲基氯化铵(TMA)、苄基三甲基氯化铵(BTMA)、苄基三乙基氯化铵(BTEA)和长碳链的十六烷基三甲基溴化铵(CTMAB)、十六烷基二甲基苄基氯化铵(HDBAC)等5种结构不同的季铵盐阳离子表面活性剂分别对膨润土原土进行改性,系统研究了改性后有机膨润土的结构特征、对水中酚类化合物的吸附性能、机理以及影响因素,重点探讨了苯环结构对芳基有机膨润土吸附芳香类有机化合物性能的影响。研究结果表明:
     (1)长、短碳链的季铵盐阳离子通过离子交换作用进入到膨润土层间,改变了膨润土原土的层间距和层间域结构,其表面性质发生明显变化,吸附性能显著增强。
     (2)振荡时间、温度、用土量和pH等因素对有机膨润土吸附苯酚的性能有较大影响,且改性使用的季铵盐阳离子表面活性剂的结构不同(碳链长短、有无苯环),所得有机膨润土对苯酚的吸附量随单因素变化的规律也不相同。
     (3)比较芳基有机膨润土和烷基有机膨润土的吸附性能发现,在较低的有机物初始浓度(<400 mg/L)条件下,含苯环的BTMA和HDBAC 2种芳基有机膨润土对芳香化合物的吸附性能分别优于不含苯环的TMA和CTMAB烷基有机膨润土,而短碳链的40BTMA有机膨润土的吸附优势比长碳链的100HDBAC有机膨润土更明显。这主要是因为苯环之间的π-π键具有相互增强作用,能够促进含苯环结构的芳基有机膨润土吸附含有苯环结构的芳香化合物。
     (4)三参数的Redlich-Peterson模型能够克服传统的Langmuir模型、Freundlich模型和线性模型的缺陷和局限性,对不同结构的长、短碳链有机膨润土的等温吸附曲线都能很好地拟合,是一种比较理想的等温吸附模型。模型拟合结果表明,短碳链有机膨润土对酚类化合物的吸附以表面吸附为主,但膨润土表面孔隙分布不均匀,且对化合物的吸附并不是均匀的单层吸附;长碳链有机膨润土对酚类化合物的吸附以层间有机相的分配作用为主,但同时还存在膨润土的表面吸附作用,其等温吸附曲线也具有非线性特征。
     (5)膨润土的结构、吸附机理、有机物水溶性和辛醇-水分配系数(Kow)等因素都会影响有机膨润土对有机物的吸附性能,因此,长、短碳链芳基有机膨润土对各种酚类化合物吸附去除能力的大小顺序不同。短碳链的40BTMA适用于吸附辛醇-水分配系数较小、水溶性较大、亲水性较强的酚类化合物,而长碳链的100HDBAC更适合用于吸附处理辛醇-水分配系数较大、疏水性较强的酚类化合物。利用这个特点可以将芳基有机膨润土应用于新型、高效、环保的吸附材料的研发。
Phenolic compounds are primary organic pollutants in waters, and they are greatly poisonous and hard to be degraded. So the study on how to effectively control and treat phenolic wastewater is extremely significant. It has been made some progresses in researches on adsorption of phenolic wastewater by organobentonites, but the organic modifiers currently used are mainly long and short carbon chain alkyl quaternary ammonium surfactants, while quaternary ammonium surfactants containing benzene rings are rarely applied. Because the mutual effects ofπ-πbonds between benzene rings can enhance the adsorption of aromatic compounds, in this experiment, the adsorption capability of phenolic compounds by organobentonites which were modified by aryl quaternary ammonium surfactants was specially studied.
     The original bentonite was modified respectively by five kinds of quaternary ammonium surfactants, such as TMA, BTMA, BTEA, CTMAB and HDBAC, which were in different structures. Structure characteristics of organobentonites, adsorption capability, adsorption mechanism and adsorption influencing factors of phenolic compounds by organobentonites were systematically studied. Meanwhile, the effects of benzene ring structure on adsorption capability of aromatic compounds by aryl organobentonites were specially discussed. The main results were as follows:
     (1)Both long and short carbon chain quaternary ammonium cations were able to insert into interlayer of original bentonite through ion exchanges, and change the layer spacing and structure, so surface properties of original bentonite were obviously changed and the adsorption capability was significantly enhanced.
     (2)Shaking time, temperature, sample dosage and pH all could greatly influence the adsorption of phenol by organobentonites. And if the structures of quaternary ammonium cations were different, for example, the lengths of organic cations carbon chain were different or the benzene ring structure existed or not, changing laws of adsorption capacity with the changing of single factors were also different.
     (3)Comparing the adsorption capability of aryl organobentonites with alkyl organobentonites, we could find that at a lower initial concentration (< 400 mg/L), BTMA and HDBAC aryl organobentonites with benzene rings respectively had higher adsorption capability than TMA and CTMAB alkyl organobentonites without benzene rings, and the adsorption superiority of 40BTMA-organobentonite was more obvious than 100HDBAC-organobentonite. This was mainly because theπ-πbonds between benzene rings had mutually reinforcing effects, which could accelerate the adsorption of aromatic compounds by aryl organobentonites.
     (4)Redlich-Peterson model with three parameters could overcome the limitations of traditional models, such as Langmuir model, Freundlich model and Linear model, and could fit adsorption isotherm curves of both long and short carbon chain organobentonites well. So Redlich-Peterson model was an ideal adsorption model. Results of model fitting showed that, the adsorption of phenolic compounds by short carbon chain organobentonites of different structures was mainly surface adsorption, but the pores of bentonite surface distributed unevenly and the adsorption of organic compounds was not the uniform monolayer adsorption; moreover, the adsorption of phenolic compounds by long carbon chain organobentonites of different structures was mainly based on the distribution of interlayer organic phases, but there was still surface adsorption, so the adsorption isotherm curves also showed non-linear characteristic.
     (5)The structure of bentonites, adsorption mechanism, water solubility and octanol-water partition coefficient (Kow) of organic compounds all had effects on adsorption of organic compounds by organobentonites. Therefore, the orders of adsorption capability of different phenolic compounds by long and short carbon chain aryl organicorganobentonites were different. In a word,40BTMA-organicorganobentonite of short carbon chain was suitable to adsorb the phenolic compounds which had smaller octanol-water partition coefficient, higher solubility and stronger hydrophilicity; while 100HDBAC-organicorganobentonite of long carbon chain was suitable to adsorb the phenolic compounds which had larger octanol-water partition coefficient and stronger hydrophobicity. According to this feature, we can apply aryl organobentonites to research and develop new, efficient and environmental adsorption materials.
引文
[1]何小荣.高浓度含酚废水处理方法研究[J].石油化工应用,2009,28(2):28-29.
    [2]赵天亮,陈芳媛,宁平.工业含酚废水治理进展及前景[J].环境科学与技术,2008,31(6):64-66.
    [3]崔晓静.改性膨润土吸附处理含酚工业废水的研究[D].成都:四川大学,2006.
    [4]李玉标.含酚废水的处理方法[J].净水技术,2005,24(2):51-54.
    [5]王韬,李鑫钢,杜启云.含酚废水治理技术研究进展[J].化工进展,2008,27(2):231-234.
    [6]宋正光.含酚废水的生物处理方法及其进展[J].山西建筑,2007,33(8):188-189.
    [7]吴勇民,李甫,黄咸雨等.含酚废水处理新技术及其发展前景[J].环境科学与管理,2007,32(3):150-153.
    [8]张威,张文卿.国内外含酚废水处理技术的研究与进展[J].环境保护与循环经济,2009:29-31.
    [9]GOGATE P R. Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation:A review of the current status and the way forward [J]. Ultrasonics Sonochemistry,2008,15(1):1-15.
    [10]AHMARUZZAMAN M, SHARMA D K. Adsorption of phenols from wastewater [J]. Journal of Colloid and Interface Science,2005,287(1):14-24.
    [11]周春晖,童东绅.膨润土基化工和环境新材料的开发与应用研究[J].中国非金属矿工业导刊,2009(1):9-15.
    [12]莫伟,马少健,农魏魏等.膨润土资源开发利用现状及应用研究进展[J].中国非金属矿工业导刊,2007(4):14-17.
    [13]杨秀红,袁江,杨秀敏等.改性膨润土研究进展[J].金属矿山,2009,(4):150-153.
    [14]朱利中,陈宝梁.有机膨润土及其在污染控制中的应用[M].北京:科学出版社,2006:3-21,40-67.
    [15]庞秀.膨润土柱撑膨润土对水中重金属及其有机物的吸附研究[D].河北:河北工业大学,2006.
    [16]晏得珍,何玉凤,王艳等.膨润土的改性及在废水处理中的应用研究进展[J].水处理技术,2009,35(5):25-29.
    [17]张永民,吴利华,任建敏.膨润土改性及其在有机废水处理中的应用[J].重庆工商大学学报:自然科学版,2007,24(5):506-508.
    [18]BABAKI H, SALEM A, JAFARIZAD A. Kinetic model for the isothermal activation of bentonite by sulfuric acid [J]. Materials Chemistry and Physics,2008,108(2-3):263-268.
    [19]黎泫海.膨润土酸化工艺实验研究[J].化工矿物与加工,2000,10:39-42.
    [20]王联军,黄中华,王晓东等.膨润土的改性研究[J].工业水处理,1999,19(1):26-29.
    [21]李织宏,王滟,陈集等.膨润土加碳焙烧改性条件研究[J].天津化工,2006,20(1):24-26.
    [22]赵丽颖,蒋引珊,张培萍等.机械力化学表面改性对蒙脱石结构和性能的影响[J].非金属矿,2001,24(4):11-12.
    [23]孟园园,王琦,金志杰.膨润土的改性及其在污水治理中的应用[J].污染防治技术,2008,21(3):53-56.
    [24]陈天虎,汪家权.蒙脱石改性吸附剂处理印染废水实验研究[J].中国环境科学,1996,16(1):60-63.
    [25]朱利中,陈宝梁.有机膨润土在废水中的应用及其进展[J].环境科学进展,1998,6(3):53-61.
    [26]BANAT F A, BASHIR A B, ASHEH A S, et al. Adsorption of phenol by bentonite [J]. Environmental Pollution,2000,107(3):391-398.
    [27]张佥,鲁安怀,郑红等.富含Na+、Ca2+、Cu2+、Al3+和Cr3+的蒙脱石对苯酚的吸附性能研究[J].非金属矿,2001,24(3):45-47.
    [28]王扬,郑红,李海云等.Cr3+改性膨润土除酚效果及再生研究[J].非金属矿,2005,28(4):42-47.
    [29]聂锦旭,肖贤明,刘立凡.改性膨润土絮凝剂处理含酚废水的试验研究[J].工业水处理,2006,26(1):30-32.
    [30]聂锦旭,肖贤明.改性膨润土处理含酚废水的研究[J].矿业研究与开发,2006,26(3):49-51.
    [31]RAWAJFIH Z, NSOUR N. Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified bentonite [J]. Journal of Colloid and Interface Science,2006,298(1):39-49.
    [32]SHAKIR K, GHONEIMY H F, ELKAFRAWY A F, et al. Removal of catechol from aqueous solutions by adsorption onto organophilic bentonite [J]. Journal of Hazardous Materials,2008, 150(3):765-773.
    [33]朱利中,张纯,周利风等.有机膨润土吸附苯酚的性能及其在水处理中的应用初探[J].中国环境科学,1994,14(5):347-349.
    [34]朱利中,陈宝梁,罗瑜.有机膨润土吸附水中多环芳烃的性能及机理研究[J].环境科学学报,2000,20(1):21-26.
    [35]陈宝梁,朱利中.阴-阳离子有机膨润土吸附水中对硝基苯酚的性能及机理研究[J].浙江大学学报:理学版,2002,29(3):317-322.
    [36]朱利中,陈宝梁,沈韩艳等.双阳离子有机膨润土吸附处理水中有机物的性能[J].中国环境科学,1999,19(4):325-329.
    [37]ZHU L Z, SHEN X Y, CHEN B L. Sorption of phenol, p-Nitrophenol, and aniline to dual-cation organobentonites from water [J]. Environmental Science and Technology,2000,34(3): 468-475.
    [38]XU L H, ZHU L Z. Structures of hexamethonium exchanged bentonite and the sorption characteristics for phenol [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007,307(1-3):1-6.
    [39]杨明平,刘跃进,罗娟等.有机膨润土吸附处理焦化含酚废水的研究[J].煤化工,2006,(1):42-45.
    [40]甄卫军,庞桂林,祁新萍等.双阳离子改性膨润土处理炼油废水酚类污染物研究[J].非金属矿,2006,29(6):58-60.
    [41]SHEN Y H. Removal of phenol from water by adsorption-flocculation using organobentonite [J]. Water Research,2002,36(5):1107-1114.
    [42]ZHU L Z, RUAN X X, CHEN B L. Efficient removal and mechanisms of water soluble aromatic contaminants by a reduced-charge bentonite modified with benzyltrimethylammonium cation [J]. Chemosphere,2008,70(11):1987-1994.
    [43]SRINIVASAN K R, FOGLER H S. Use of inorgano-organo-clays in the removal of priority pollutants form industrial wastewaters:adsorption of benzo(a)pyrene and chlorophenols from aqueous solutions [J]. Clays and Clay Minerals,1990,38(3):287-293.
    [44]ASHEH A S, BANAT F, AITAH A L. Adsorption of phenol using different types of activated bentonites [J]. Separation and Purification Technology,2003,33(1):1-10.
    [45]孙家寿,余斌.膨润土复合吸附剂处理煤气洗涤废水的研究[J].非金属矿,1994,(1):37-39.
    [46]吴平霄,张惠芬,郭九皋等.无机有机柱撑蒙脱石对苯酚的吸附[J].地球化学,1999,28(1):58-69.
    [47]杨性坤,杨莹琴,周涛等.膨润土在废水处理中的应用研究进展[J].化工矿物与加工,2005,4:4-8.
    [48]阮秀秀,朱利中,陈宝梁.有机膨润土层间硅氧烷表面对亲水性芳香胺的吸附[J].环境科学学报,2009,29(4):797-801.
    [49]孙洪良,朱利中.膨润土纳米复合材料的制备、表征及吸附性能研究[J].无机化学学报,2007,23(7):1148-1152.
    [50]潘兆橹,万朴.应用矿物学[M].武汉:武汉工业大学出版社,1993:217.
    [51]温淑瑶,杨德涌,陈捷.膨润土及其酸化土、碱处理酸化土的X射线衍射特征及扫描电镜下的表面特征分析[J].矿物学报,2001,21(3):453-456.
    [52]HE H P, FROST R L, BOSTROM T, et al. Changes in the morphology of organoclays with HDTMA+surfactant loading [J]. Applied Clay Science,2006,31(3/4):262-271.
    [53]于世林,夏新泉.波谱分析法[M].重庆:重庆大学出版社,1999:135-147.
    [54]聂锦旭.改性膨润土吸附剂的制备及其在废水处理中的应用[D].广州:中国科学院广州地球化学研究所,2005.
    [55]谢晶曦,常俊标,王绪明.红外光谱在有机化学和药物化学中的应用[M].北京:科学出版社,2001:316-366.
    [56]吴谋成.仪器分析[M].北京:科学出版社,2003:79-80.
    [57]方惠群,于俊生,史坚.仪器分析[M].北京:科学出版社,2002:330-359.
    [58]王鸿禧.膨润土[M].北京:地质出版社,1980:43.
    [59]章庆和.膨润土差热曲线与物理化学特性的关系[J].矿物学报,1989,5,9(8):177-180.
    [60]HE H P, DING Z, ZHU J X, et al. Thermal characterization of surfactant-modified montmorillonites [J]. Clays and Clay Minerals,2005,53(3):286-292.
    [61]郑玉婴,张汉辉,蔡伟龙等.有机膨润土制备及性能表征[J].光谱学与光谱分析,2005,25(1):62-64.
    [62]斯琴高娃.TiO2-膨润土催化剂降解有机污染物研究[D].内蒙古:内蒙古大学,2006.
    [63]葛渊数.有机膨润土对水中有机物的吸附作用及处理工艺[D].杭州:浙江大学,2004.
    [64]黄慨.季铵盐型有机膨润土的制备与表征及其催化性能的初步研究[D].广西:广西大学,2003.
    [65]XI Y F, DING Z, HE H P, et al. Structure of organo-clays——an X-ray diffraction and thermogravimetric analysis study [J]. Journal of Colloid and Interface Science,2004,277(1): 116-120.
    [66]赵振国等.吸附作用应用原理[M].北京:化学工业出版社,2005:45-52.
    [67]BOYD S A, JAYNES W F, ROSS B S. Immobilization of organic contaminants by organoclays:Application to soil restoration and migration of hydrophabic organic contaminants [J]. Organic Substances and Sediments in Water,1991,1:181-200.
    [68]王扬.Cr3+改性膨润土处理含酚废水的实验研究[D].北京:中国地质大学,2005.
    [69]王晓蓉,吴顺年,李万山等.有机粘土矿物对污染环境修复的研究进展[J].环境化学,1997,16(1):1-14.
    [70]李万山,高斌,冯建坊等.TMA改性粘土矿物对模拟地下水中苯系物的吸附[J].环境化学,1999,18(5):404-407.
    [71]JAYNES W F, BOYD S A. Hydrophobicity of siloxane surfaces in smectites as revealed by aromatic hydrocarbon adsorption from water [J]. Clays Clay Miner,1991,39(4):428-436.
    [72]朱利中,陈宝梁.膨润土吸附材料在有机污染控制中的应用[J].化学进展,200,21(2/3):420-429.
    [73]NIR S, UNDABEYTIA T, YARON M D, et al. Optimization of adsorption of hydrophobic herbicides on montmorillonite preadsorbed by monovalent organic cations:interaction between phenyl rings [J]. Environmental Science and Technology,2000,34(7):1269-1274.
    [74]郭汉贤.应用化学动力学[M].北京:化学工业出版社,2003:128-146.
    [75]王学松,秦勇.米糠吸附溶液中Cu2+的实验研究与吸附等温线的拟合[J].环境污染与防治:网络版,2004,(2):1-6.
    [76]REDLICH O, PETERSON D L. A useful adsorption isotherm[J]. Journal of Physical Chemistry,1959,63 (6):1024.
    [77]HASANY S M, CHAUDHARY M H. Sorption potential of hare river sand for the removal of antimony from acidic aqueous solution [J]. Applied Radiation and Isotopes,1996,47(4):467-471.
    [78]林俊雄.硅藻土基吸附剂的制备、表征及其染料吸附特性研究[D].杭州:浙江大学,2007.
    [79]张延红,程国斌,马伟.利用Origin软件对吸附等温线拟合进行分析[J].计算机与应用化学,2005,22(10):899-902.
    [80]SMITH J A, JAFFE P R, CHIOU C T. Effect of ten quaternary ammonium cations on tetrachloromethane sorption to clay from water [J]. Environmental Science and Technology,1990, 24(8):1167-1172.
    [81]罗希权,罗毅,王澄华等.表面活性剂产品手册[M].北京:中国轻工业出版社,1997:112-114.
    [82]翁祖华,黄双路,郑玉婴等.季铵盐表面活性剂烷烃链数目对改性蒙脱石结构的影响[J].日用化学工业,2001,(5):8-9.
    [83]LEE E M, THOMAS R K, PENFOLD J, et al. Structure of aqueous decyltrimethylammonium bromide solutions at the air/water interface studied by specular reflection of neutrons [J]. Journal of Physical Chemistry,1989,93(1):381-388.
    [84]陈德芳,王重,李运康.有机膨润土的性能与结构关系的研究[J].西安交通大学学报,2000,34(8):92-95.
    [85]赵斌.有机膨润土对水中有机污染物的吸附特征及其稳定性研究[D].扬州:扬州大学,2007.
    [86]陈志勇.有机膨润土对苯酚的吸附性研究[J].非金属矿,2003,26(4):48-49.
    [87]杨柳燕.HDTMA改性蒙脱土对苯酚的吸附及机理研究[J].上海环境科学,2003,22(7):456-464.
    [88]缪志群.有机、无机改性膨润土的制备及其在废水处理中的应用研究[D].南京:南京理工大学,2007.
    [89]SMITH J A, GALAN A. Sorption of nonionic organic contaminants to single and dual organic cation bentonites from water [J]. Environmental Science and Technology,1995,29(3):685-692.
    [90]朱利中,李益民,陈曙光.CTMAB-膨润土吸附水中有机物的性能及应用[J].环境化学,1997,16(3):233-237.
    [91]刘波平,江海亮,罗香等.气相色谱法测定柴胡注射液中环己醇[J].分析实验室,2002,21(5): 18-19.
    [92]王怀功,陆金荣,兰晓丽.环己酮的气相色谱法分析[J].精细石油化工,2000,11(6):53-54.
    [93]朱利中,任晓刚,俞绍斌等.CTMAB-膨润土去除水中有机物的性能及机理[J].中国环境科学,1998,18(5):450-454.
    [94]乌锡康.有机化合物环境数据简表(2009)[DB].华东理工大学,2008.
    [95]邓友军,马毅杰,温淑瑶.有机粘土化学研究进展与展望[J].地球科学进展,2000,15(2):197-203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700