HA/Fe~(3+)在氧化铝纤维上层层自组装涂膜及膜的碳化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维等各种碳材料可广泛应用于各领域,是近年来的研究热点。而腐植酸HA(humic acid)是储量丰富,具较大比表面积的优秀天然碳源,探索HA在碳材料方面的开发应用具有现实的意义和光明前景。我们将HA通过层层自组装的方法将其涂膜于氧化铝纤维,之后将膜及纤维基体一起碳化。探讨了Fe3+浓度、涂膜层数对膜的厚度的影响,采用了FTIR、FESEM、EDX以及ICP-EDX对涂膜产物进行了分析。分析结果表明我们所采用的HA原料很可能是从煤中提取而来,氧化铝纤维可通过表面羟基-OH锚定HA,膜的厚度随Fe3+浓度和涂膜层数的不同而有所不同。高分辨HRTEM下可看到HA丰富的微孔结构,EDX结果表明未参与反应的Na+, Cl-离子在自组装过程中可被清洗去除,应用ICP-EDX测试技术,通过实验和计算可分别求得HA和Fe的负载量。将涂膜产物进行碳化后,应用FESEM、EDX、HRTEM、XRD及Raman光谱等对不同碳化产物进行了分析。研究结果表明:碳化温度不同,碳化产物和产物微观形貌差别很大;与HA络合的Fe3+在碳化后变成为铁的各种氧化物,单质Fe及Fe3C等;所得碳材料的石墨化和有序程度随碳化温度的升高而增加,800℃碳化后所得碳材料为无定型碳,1000℃碳化后所得碳材料的石墨化和有序程度也都还较低,膜可在高温下发生重组,使得样品形貌逐渐变有序平整;各温度下的碳化产物也都具有较丰富的微孔结构,微孔中的极微孔孔径随着碳化温度的升高逐渐长大。此外,我们还得到了碳纳米空心球副产物,该空心球比同条件下纤维上所得碳材料的石墨化和有序程度稍高,其直径在50-500nm之间。
Various kinds of carbon material like carbon fiber are applied on many fields, and they are the study hot spots in current days. Humic acid(HA) is a excellent carbon resource with rich reserve amount and comparatively large specific surface area. Exploring the developing and applying of HA on carbon material has the practical meaning and bright prospect. We coat HA on alumina fiber using layer-by-layer (LBL) method and then carbonize the film with fiber matrix. Study the effects of solution concentration of Fe3+ and layer number on the film thickness. We analyze the coating products by using FTIR, FESEM, EDX and ICP-EDX. The results demonstrate that the HA we use is quite possibly purified from coal, alumina micro fibers can successfully immobilize HA through surface hydroxyl–OH groups, and the thickness of film differentiate with the solution concentration of Fe3+ and the number of film. In addition, affluent micro pores of HA can be observed from HRTEM, the EDX result shows that Na+, Cl- which don't participate in reaction can be washed away during the cleaning process of LBL, and the loadings of HA and Fe can be obtained by using ICP-EDX testing technology with experiment and calculation. After the coating products are carbonized, the carbonization products are characterized by FESEM, EDX, XRD and Raman techniques. The analysis results indicate that the carbonization products and micro- morphology of products differ greatly with different carbonization temperature; the Fe3+ complexed with HA transform into various iron oxides, simple substance Fe and Fe3C; the degree of graphitization and order of carbon materials become high with the carbonization temperature, but the product obtained at 800℃carbonization temperature is amorphous carbon, and the graphitization and order degree of the carbon material are still low at 1000℃carbonization temperature, in addition, the film get reformed at high temperature, which makes the morphology of the film become neater and more order. All products under different carbonization temperature have rich micro pores, and the diameters of super-micro pores increase with the rise in carbonization temperature. Besides, we obtain by-product of carbon nano hollow sphere. These hollow sphere's graphitization and order degree are higher than those of carbon material with the same carbonization condition, and their diameters are between decades and hundreds nanometers.
引文
[1]郑平.煤炭腐植酸的生产和应用[M].北京:化工出版社. 1991.
    [2]王红斌等.沼泽土腐植酸对亚甲基蓝的吸附脱色研究[J].环境工程. 2002, 20(3) : 72-74.
    [3]丁南瑚.保护和合理开发利用水资源的对策.净水技术. 2002(03).
    [4] Weber J H and WilsonS A. Water Research.. 1975 (9): 1079.
    [5] Thurman E M et al. Preparative isolation of aquatic humic substances. Environmental science and technology. 1981, 15(4): 463-466.
    [6] Amy G L. et al. Comparing gel permeation chromatograpHy and ultra filtration for the molecular weight characterization of aquatic organic matter. J AWWA. 1987, 80 (1): 43-49.
    [7]彭安等.水体腐植酸及其络合物I:蓟运河腐植酸的提取和表征[J].环境科学学报. 1981, 1(2): 126-139.
    [8]成绍鑫,武丽萍等.风化煤高纯腐植酸新工艺的开发[J].腐植酸. 1995 (1): 22-31.
    [9]李善祥,窦琇云.我国风化煤利用现状与展望.腐植酸[J]. 1998 (1): 16-20.
    [10] Uyguner C S, Bekbolet M. Evaluation of humic acid photocatalytic degradation by UV -vis and fluorescence spectroscopy[J]. Catalysis Today. 2005, 101(3-4): 267-274.
    [11] Kolokassidou C, Pashalidis I, Costa C N, Efstathiou A M and Buckau G. Thermachim. Acta. 2007 (454): 78.
    [12] Sato O and Kumada K. Soil Sci. Plant Nutr. 1967 (121): 13.
    [13] Schniter M and Skinner S I M. Isotopes and Radiation in Soil Organic Matter Studies. International Atomic Energy Agency, Vienna. 1968: 41.
    [14] W. Ziechmann. Geochim. Cosmochim. Acta. 1964 (1555): 28.
    [15]贺婧,等.不同来源腐植酸的组成和性质的研究[J]. 2003, 34(4): 343-345.
    [16]刘方春,邢尚军等.无机酸处理对褐煤腐植酸的含量及其特性的影响[J].水土保持学报. 2004, 18(5): 31-34.
    [17]张振民.腐植酸类物质的胶体化学性质[J].江西腐植酸. 1981 (1): 2-11.
    [18]郭晓峰.腐植酸的胶体性质[J].腐植酸, 1996 (1): 1-2.
    [19]上海化工学院煤化工教研组.腐植酸的性质、结构及其在工农业生产中的应用.
    [20]郭晓峰.腐植酸的表面活性问题[J].腐植酸. 1999 (3): 15-16.
    [21] Smejkalova D, Piccolo A. Enhanced Molecular Dimension of a Humic Acid Induced byPHotooxidation Catalyzed Biomimetic Metalporp Hyrins[J]. Biomacromolecules. 2005, 6: 2120- 2125.
    [22] Klavins M, Dipane J, Babre K. Humic substances as catalysts in condensation reactions[J]. Chemosp Here. 2001, 44(4): 737-742.
    [23] Klavins M, Babre K. Decarboxylation and alkaline colour fading reactions in presence of humic substances[J]. Chemosp Here. 2002, 49(6): 685-689.
    [24]环境中的腐植物质吴虎奇等译.北京化学工业出版社. 1979: 9.
    [25]李威,邹立壮,朱书全等.腐植酸研究新进展.第五届全国绿色环保肥料新技术、新产品交流会论文集. 2005: 4-22.
    [26]宣理静.聚电解质PDDA/PS自组装机理及渗透气化性能研究[硕士论文].杭州:浙江大学. 2006.
    [27]张宏宇.基于氢键的聚合物多层膜的构筑与结构调控[博士论文].长春:吉林大学. 2005.
    [28] Zisman, W. A. In Contact Angle, Wettability and Adhesion, Relation of the equilibrium contact angle to liquid and solid constitution, Vol. 43 of ACS Advances in Chemistry Series, Fowkes F. M., Ed; American Chemical Society: Washington, DC. 1964: 1-51.
    [29] Netzer L, Sagiv J. A new approach to construction of artificial monolayer assemblies. J. Am. Chem. Soc. 1983, 105 (3): 674-676.
    [30] Cao G, Hong, H-G and Mallouk T E. Layered metal pHospHates and phosphonates: from crystals to monolayers. Acc. Chem. Res. 1992, 25(9): 420-427.
    [31] Ulman A. An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self- Assembly. Boston: Academic Press. 1991: 1-43.
    [32] Xia Y N and Whitesides G M. Soft Lithography. Angew. Chem. Int. Ed. 1998, 37 (5): 550-575.
    [33] Decher, Fuzzy G. Nanoassemblies: Toward Layered Polymeric Multicomposites. Science. 1997 (277): 1232-1237.
    [34] Decher G, Hong J-D. Buildup of ultrathin multilayer films by a self-assembly process: II. Consecutive adsorption of anionic and cationic bipolar amphipHiles and polyelectrolytes on charged surfaces, Ber. Bunsen-Ges. Phys. Chem. 1991 (95): 1430-1434.
    [35] Decher G, Hong J D, Schmitt J. Buildup of ultrathin multilayer films by a self- assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films. 1992 (210-211): 831-835.
    [36] Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites[J]. Science. 1997 (227): 1232-1237.
    [37] Lowack K, Helm C A. Molecular mechanisms controlling the self-assembly process ofpolvelectroyte multiayers [J].Macromolecules. 1998, 31(3): 823-833.
    [39] Dobrynin A V, Rubinstein M, Obukhov S P. Cascade of transitions of polyelectrolytes in o poor solvents [J]. Macromolecules. 1996 (29): 2974-2979.
    [40] Serizawa T, Satoko K, Kawanishi N, Akashi M. Layer-by-layer assembly of poly(vinyl alcohol) and hydropHobic polymers based on their pHysical adsorption on surfaces [J]. Langmuir. 2002, (18): 8381-8385.
    [41]何曼君高分子物理.上海:复旦大学出版社. 2005.
    [42] Yajun Wang, Alexandra S. Angelatos, et al. Template Synthesis of Nanostructured Materials via Layer-by-Layer Assembly [J]. Chem. Mater. 2008 (20): 848–858.
    [43] Ochs M, Cosovic B, Stumm W. Geochim. Humic and fulvic acid adsorption by silicon and aluminum oxide surfaces on clay minerals [J]. Cosmochim. Acta. 1994, 58 (6): 39.
    [44] Spark K M, Wells J D, et al. Characteristics of the sorption of humic acid by soil minerals [J]. Aust. J. Soil Res. 1997 (35): 103-12.
    [45] Ren A, Yu S, et al. A comparative study of Pb2+ sorption onto MX-80 bentonite, LA bentonite,γ-Al2O3 and SiO2 [J]. Journal of Radio analytical and Nuclear Chemistry. 2007, 272(1): 3-10.
    [46] Vermohlen K H, Lewandowski, et al. Adsorption of polyelectrolytes onto oxides-the influence of ionic strength, molar mass, and Ca2+ ions [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2000 (163): 45–53.
    [47] Buleva M, Petkanchin I. Influence of Na-humate on electric surface properties and stability ofγ-Al2O3 dispersions [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2002 (209): 289–297.
    [48] Righetto L, Bidoglio G, et al.Competitive actinide interactions in colloidal humic acid-mineral oxide systems [J]. Environ. Sci. Technol. 1991, 25 (11): 1913-1919.
    [49] Saikat G, Hamid M, et.al. Colloidal Behavior of Aluminum Oxide Nanoparticles As Affected by pH and Natural Organic Matter [J]. Langmuir. 2008, 24 (21): 12385-12391.
    [50] Schlautman Mark A., Morgan James J. Adsorption of aquatic humic substances on colloidal-size aluminum oxide particles: Influence of solution chemistry [J]. Geochimica et Cosmochimica Acta. 1994, 58(20): 4293-4303.
    [51] Jadranka T and Vera U. Humic material polydispersity in adsorption at hydrous alumina/ seawater interface [J]. Journal of Colloid and Interface Science.1988, 126(2): 482-492.
    [52] Lambert S D andGraham N J D. Removal of non-specific dissolved organic matter from upland potable water supplies-I.Adsorption [J]. War, Res. 1995, 29(10): 2421-2426.
    [53] Buleva M, Petkanchin I. Influence of Na-humate on electric surface properties and stability ofγ-Al2O3 dispersions [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2002 (209): 289–297.
    [54] Wershaw R L, Llaguno E C, et al. Mechanism of formation of humus coatings on mineral surfaces 2: Attenuated total reflectance spectra of hydropHobic and hydropHilic fractions of organic acids from compost leachate on alumina [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1996 (108): 199-211.
    [55] Li B, Liya S, Liu X, Zhang S, Wu C, Liu W. Monazite coatings on short alumina fibers using layer-by-layer assembly technique [J]. Materials Science and Engineering A. 2004, 364 (1-2): 324-32.
    [56] Xiaoxia Ou, Shuo Chen, Xie Quan and Huimin Zhao. Photochemical activity and characterization of the complex of humic acids with iron(III) [J]. J. Geochem. Explor. 2009, 102(2): 49-55.
    [57] Galeska I, Hickey T, Moussy F, Kreutzer D, Papadimitrakopoulos F. Characterization and biocompatibility studies of novel humic acids based films as membrane material for an implantable glucose sensor [J]. Biomacromolecules. 2001, 2 (4): 1249-55.
    [58]陈允魁.红外吸收光谱法及其应用. 1993.
    [59] Tatzber M, Stemmer M, Spiegel H, et al. FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures [J]. Journal of Plant Nutrition and Soil Science. 2007, 170 (4): 522-9.
    [60] Miikki V, Senesi N and Hanninen K. Characterization of humic material formed by compostion of domestic and industrial blowastes [J]. Chemosphere. 1997, 34(8): 1639-51, 1997.
    [61]曾凡龙,潘鼎.我国活性碳纤维的研究、工业化及前景(Ⅰ).材料导报. 2003, 17(9): 61-63.
    [62]曾凡龙,潘鼎.我国活性碳纤维的研究、工业化及前景(Ⅱ).材料导报. 2003, 17(10): 55-58.
    [63] Juan Alcaniz-Monge, Agustin Bueno-Lo′pez, M A′ngeles Lillo-Rodenas, M Jose′Illa′n-Go′mez. NO adsorption on activated carbon fibers from iron-containing pitch [J]. Microporous and Mesoporous Materials. 2008 (108): 294-302.
    [64] Yang J H, Cheng S H, Wang X, et al. Quantitative analysis of microstructure of carbon materials by HRTEM. Transactions of Nonferrous Metals Society of China (English Edition). 2006 16 (SUPPL.): s796-s803.
    [65] Huang Z H, Kang F, Huang W L, et al. Pore structure and fractal characteristics of activated carbon fibers characterized by using HRTEM. J. Colloid Interface Sci. 2002, 249 (2): 453-457.
    [66] Lee G J, Pyun S I, Rhee C K. Characterisation of geometric and structural properties of pore surfaces of reactivated microporous carbons based upon image analysis and gas adsorption.Microporous Mesoporous Mat. 2006, 93 (1-3): 217-225.
    [67]冯有利,郑辙,郭延军.碳化树木的微结构特征研究.北京大学学报. 2003, 39(5):727-730.
    [68]贺福.用拉曼光谱研究碳纤维的结构高科技纤维与应用. 2005, 30(6): 20-25.
    [69] Martyniuk H, Wiêkowska J and Lipman J. The study of influence of metel ions on thermal decomposition of humic acids [J]. Journal of Thermal Analysis and Calorimetry. 2001 (65): 711-721.
    [70]丁卫华,胡国新. Ca(OH)2对煤炭腐植酸催化气化影响的实验研究[硕士论文].上海:上海交通大学. 2008.
    [71]尹彩流. CaC 2-CHCl3(CCl4)体系制备微纳米碳球(管)及其结构表征[博士论文].湖南:中南大学. 2008.
    [72] Ni Y B, Shao M W, Tong Y H, et al. Preparation of hollow carbon nanospheres at low temperature via new reaction route [J]. Journal of Solid State Chemistry. 2005 (178): 908-911.
    [73]许宗祥,林敬东,欧廷等.催化裂解C2H2制备空心碳球.物理化学学报. 2003, 19(11): 1035-1038.
    [74]陈锴.新型碳纳米材料的制备及其在催化中的应用[博士论文].合肥.中国科学技术大学. 2008.
    [75] Chun-Hsiung Chien, Pei-Sun Sheng, Chia-Hsin Wang, et al.Synthesis of carbon hollow spheres and particles from CCl4 and Mo [J]. Materials letters. 2008 (62): 1176-1178.
    [76] Pei-jun Cai, Li Feng. Synthesis of hollow carbon spheres by one convenient method [J]. Materials Chemistry and Physics. 2008 (108): 1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700