载双组分药物磷酸钙骨水泥控释的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷酸钙骨水泥(calcium phosphate cements, CPC)的制备避免了高温烧结的过程,适合作为多种药物的载体材料。目前已有大量载药CPC的研究报道,但主要研究的是载单组分药物的CPC的理化性质和释药行为以及释药机理等,然而临床治疗骨科疾病常需要联合用药,通过多组分药物的协同作用,增强疗效,降低毒副作用。因此仅载单组分药物的CPC难以满足临床的应用。但是载入多种药物是否会影响CPC的凝固性能、组成结构以及多组分药物体外释放的行为以及释放机理尚不清楚。
     其次,骨科疾病的治疗是一个长期的过程。药物载入CPC之后,特别是具有较高溶解性的药物会很快的释放出来,不能够达到长期治疗疾病以及在骨修复的不同阶段需要不同药物的目的。另一方面,由于人体的骨骼和牙齿可看作是由胶原等天然高分子材料所构成的连续相和弥散于其中的羟基磷灰石(HA)晶粒复合而成的复合材料,因此向HA中加入明胶(Gel)等高分子材料的研究受到关注,其中包括将这种复合材料作为药物释放的载体。因此,本论文的目的之一是将两种药物PC与CAP与CPC的固相成分直接共混的方式载入CPC,研究两种药物对CPC理化性质的影响、释药行为以及释药机理;目的之二是合成载药的羟基磷灰石明胶复合材料,并通过PLGA对此复合材料进行包裹,减缓药物的释放速率,使一种药物较快释放,另一种药物缓慢释放,实现双组分药物的不同步释放。
     本论文以Biocement D磷酸钙骨水泥为载体,以镇痛药对乙酰氨基酚(paracetamol,PC)和抗生素氯霉素(chloramphenicol, CAP)为药物模型,将实验分为三组,第1组和第2组分别为载PC和CAP的CPC,载药量分别为1%、3%和5%;第3组为载PC+CAP的CPC,其中PC、CAP各为1%、3%和5%,以磷酸缓冲液(PBS)为液相,液固比为0.30 ml/g,制备载一种和两种药物的CPC,并通过Gillmore双针法、X-射线衍射(XRD)、红外光谱分析(FTIR)、紫外可见光谱(UV-vis)以及力学性能实验机等对载药CPC的凝固时间、水化机理、基团变化、释药行为以及抗压强度进行检测。Gillmore双针法的结果表明PC以及CAP的载入将延迟CPC的凝固时间,并且CPC的初凝和终凝时间均随着PC和CAP载药量的增加而增加;抗压强度实验的结果显示PC能够提高CPC的抗压强度,而CAP则使CPC的抗压强度降低,对于同时载有PC和CAP的CPC而言,抗压强度随着药物含量的增加而降低,CAP对抗压强度起着主要作用;XRD和FTIR的结果说明了药物的载入没有影响CPC的相成分,并且在药物释放过程中,CPC的固相成分逐渐向HA转化,但磷酸钙盐和药物的基团没有发生变化;药物释放结果表明,将药物直接与CPC粉末共混载入CPC中,两种药物的释放是同时进行的,载单组分和双组分药物的CPC中药物在释放前期(约24 h)都存在着突释效应,并且在药物释放后期,载单组分药物的释药速率要和释药总量上均存要高于载双组分药物,这与载体材料以及药物的性质等有关,但其释放均满足Higuchi药物扩散释放模型。
     本论文采用湿法合成载有丹酚酸B (Sal B)的羟基磷灰石浆料(mSal B:mHA=0.1:1),然后通过共混的方式加入不同含量的明胶(mGel:mHA=5%,10%,15%),制备载药羟基磷灰石明胶复合材料并对复合材料中的明胶进行交联,通过XRD,扫描电镜(SEM),透射电镜(TEM)等对复合材料的结晶度以及形貌进行分析。XRD结果表明SalB的加入能够降低羟基磷灰石的结晶度以及晶粒尺寸;SEM和TEM结果表明当复合材料中的明胶的含量高于5%后,对其中的明胶进行交联能显著的改变复合材料的微观形貌;药物释放结果表明在药物突释阶段,载有Sal B羟基磷灰石的药物突释量要高于其它组,在药物稳定释放阶段,随着明胶含量的增加以及进行交联,Sal B的释药速率逐渐降低,释药速率顺序为HA/Sal B> 10%Gel> 15%Gel> 10%Gel crosslinked > 15%Gel crosslinked。
     虽然明胶和通过对复合材料中的明胶进行交联可以延长药物释放的时间,但是始终存在着药物突释和明胶量过大容易发生溶胀等问题。若降低明胶的含量则达不到较好的缓释效果。因此,采用聚乳酸-羟基乙酸共聚物(PLGA)对载Sal B的羟基磷灰石明胶复合材料进行包裹(mPLGA:mHA/Gel=0.08:1),选用HA/α-TCP磷酸钙骨水泥作为药物释放的载体[所选用的HA分别为前面实验所制的HA/Gel、PLGA (HA/Gel)、HA/Gel+10%Sal B和PLGA (HA/Gel+10%Sal B)],将实验分为四组,第1组是以HA和PLGA (HA/Gel)固相成分之一的空白组[CPC, PLGA/(CPC)];第2组是以HA和PLGA (HA/Gel)固相成分之一的载PC磷酸钙骨水泥[PC/CPC, PLGA/(CPC/PC)];第3组为载有Sal B包裹PLGA和未包裹PLGA的磷酸钙骨水泥[CPC/Sal B, PLGA/(CPC/Sal B)];第4组为载PC+Sal B包裹PLGA和未包裹PLGA的磷酸钙骨水泥CPC/PC,SalB, PLGA/(CPC/PC,Sal B)],其中PC的含量为5%,Sal B的含量为10%,以PBS为液相,液固比为0.3 ml/g,制备载一种和两种药物的CPC。同样采用Gillmore双针法等表征手段对载药CPC的各种性能进行检测,此外还通过细胞培养的方法检测材料以及药物对成骨细胞的增殖情况。Gillmore双针法表明药物以及PLGA的加入能够延长CPC的凝固时间;抗压强度实验说明了PC以及Sal B的加入能够增加CPC的抗压强度,并且加入PLGA,明胶后,CPC的断裂表现为一定的塑性变形;XRD以及FTIR结果显示药物以及PLGA的载入没有影响CPC的相成分,并且在药物释放过程中,CPC的固相成分逐渐向HA转化;药物释放结果表明,通过将PC直接与CPC固相粉末共混,而采用包裹有PLGA的载有SalB的羟基磷灰石明胶复合材料作为CPC的固相成分之一,制备载有两种药物的CPC,其中PC能够较快的释放,而Sal B的释放较缓慢。载单组分和双组分药物的CPC中药物的释放可以分成突释和药物稳定释放阶段。对比载单组分和双组分CPC药物的释放,都存在着突释效应,并且载单组分和双组分药物CPC中药物的释放在释药速率以及释药总量上均存在差异,双组分药物的释药速率低于单组分的,并且在趋于平衡的时候,双组分药物释药总量低于单组分的释药总量,细胞实验表明Sal B的加入能够显著的促进细胞的增殖,而PC的加入则在一定程度上抑制了细胞的增殖,同时加入PC和Sal B仍然能够促进细胞的增殖。
     本研究通过两种不同制备工艺,制备了载双组分的CPC。将PC和CAP通过共混的方式直接载入CPC中,两种药物同时释放,药物的释放符合Higuchi药物扩散释放模型;采用PLGA将载有Sal B的羟基磷灰石明胶复合材料进行包裹,作为CPC的固相成分之一,合成载有两种药物的CPC,可实现一种药物(PC)较快的释放,另一种药物(Sal B)能够缓慢的释放,以满足临床骨修复不同阶段对不同药物的需要。
Calcium phosphate cements (CPC) has been widely used as drug carrier for the preparation of CPC due to avoiding high temperature sintering process. Although there were many research reports about CPC as drug carrier, it was focused on the physicochemical properties, release behavior and drug release mechanism of CPC loaded with only one drug. However, drug combination was always needed in the treatment of orthopedic disease in Clinical Practice, which can enhance the effect and alleviate the toxicity adverse effect. Therefore CPC loaded with one drug dissatisfy with demands of clinical requirements. But the setting time, composition structure, release behavior and drug release mechanism were still unclear when CPC loaded with one more drugs.
     The treatment of orthopedic disease was a long-term course. When loaded with drugs, especially high solubility drugs always release fast and cannot reach the purpose of long-term treatment. It is well known that body skeleton and tooth can be considered as composite which composed with collagen and HA. Therefore adding polymer such as gelatin to HA have been widely researched, this includes use this composite as drug carrier. Our aim was to study the physicochemical properties, release behavior and drug release mechanism of CPC loaded with two drugs and was to regulate the drug release rate by encapsulating one of the drugs, with the hope of one drug release fast and the other release relatively slow.
     Firstly, Biocement D cements was used as drug carrier and paracetamol (PC) and chJoramphenicol (CAP), which were chosen as model drugs to prepare two drug-loaded CPC. The experiment was assigned into 3 groups, the first group loaded with PC and the second group loaded with CAP, the drug loading was 1%、3%and 5%, respectively. The third group loaded with (PC+CAP), the drug loading of PC and CAP was 1%、3%and 5%, respectively. The influence of the drugs on setting time, phase composition of CPC, drug release behavior and compressive strength were characterized by Gilmore Needle, XRD, FTIR, UV-vis and mechanical property tester. Gilmore Needle results showed that drugs could increase the setting time and increase with drug content. Mechanical results showed that PC can increase the compressive strength of CPC. but CAP decreased the compressive strength of CPC, PC and CAP decreased the compressive strength of CPC. XRD and FTIR results showed that during the drug release process, the composition of CPC was conversed to hydroxyapatite (HA) gradually, but had no influence on the group of phosphate radical. The release results showed that the release of PC and CAP blended was carried out simultaneously. The release rate and total amount of releasing of CPC loaded with two-component drugs was different with CPC loaded with one drug, but the release kinetics of the drugs followed the Higuchi diffusion equation independently.
     Secondly, HA/gelatin (HA/Gel) composites was used as drug carrier and Salvianolic acid B (Sal B), whcih was chosen as model drugs to prepare drug-loaded CPC. Results showed that added gelatin into HA and cross linked gelatin can increase release time, and the order of drug release rate was HA/Sal B> 10%Gel> 15%Gel> 10%Gel crosslinked> 15%Gel crosslinked, but there was still exit the burst release and swelle of gelatin in solution if the content of gelatin was large and it cannot achieve slow release effect if decreased the content of gelatin.
     PLGA was used to encapsulate the HA/Gel. which was loaded with Sal B, then used this composites as one of composition of CPC (40%HA+60%α-TCP) and PC as well as Sal B to prepare drug-loaded CPC. The experiment was assigned into 4 groups; these groups were blank control group [CPC. PLGA/(CPC)], loaded with PC [PC/CPC, PLGA/(CPC/PC)], loaded with Sal B[CPC/Sal B, PLGA/(CPC/Sal B)] and loaded with PC+Sal B [CPC/PC,Sal B, PLGA/(CPC/PC,Sal B)], respectively. Gilmore Needle results showed that drugs and PLGA could increase the setting time. Mechanical results showed that PC and Sal B could increase the compressive strength of CPC; moreover, plastic deformation was existed in CPC when PLGA and gelatin was added into CPC. XRD and FTIR results showed that the composition of CPC conversed to HA gradually, but had no influence on the group of phosphate radical. Release results illuminated that the release rate and total amount of releasing of CPC loaded with two-component drugs was different with CPC loaded with one drug, the release of Sal B was slower for the HA/Gel was encapsulated with PLGA, the release of PC was faster:the results of cell culture showed that Sal B could significantly promote the cell proliferation, but PC could inhibit the cell proliferation in some degree.
     The release of PC and CAP were carried out simultaneously, when PC and CAP were blended with CPC, and the release kinetics of the drugs followed the Higuchi diffusion equation independently. However, the release behavior was changed when HA/Gel used as composition of CPC which was encapsulated with PLGA. PC can release faster than CAP.
引文
1. Simon JCG, Guthrie WF, Wang FW. Cell seeding into calcium phosphate cement. J. Biomed. Mater. Res.2004; 68:628-639.
    2. Tadi D, Beckmann F, Schwarz K. Epple M. A novel method to produce hydroxyapatite objects with interconnecting porosity that avoids sintering. Biomaterials.2004; 25: 3335-3340.
    3. Hao H, Amizuka N, Oda K, Fujii N, Ohnishi H, Okada A, Nomura S, Maeda T. A histological evaluation on self-setting a-tricalcium phosphate applied in the rat bone cavity. Biomaterials.2004; 25:431-442.
    4. Klammert U, Gbureck U, Vorndran E, Rodiger J, Meye MP, Kubler AC.3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects. J.Craniomaxillofac. Surg.2010; 3:1-6.
    5.韩冰,.尹玉姬,李宗燕,陈亦平,姚康德.高性能化磷酸钙骨水泥的研究进展.化工进展,2006;5:495-501.
    6. Amit KJ, Ramesh P. Skeletal drug delivery systems. Int. J. Pharm.2000; 206:1-12.
    7. Khairoun I, Driessens FCM, Boltong MG, Planell JA, Wenz R. Addition of cohesion promotors to calcium phosphate cements. Biomaterials.1999; 20:393-398.
    8. Bohner M, Gbureck U, Barralet JE. Technological issues for the development of more efficient calcium phosphate bone cements:A critical assessment. Biomaterials.2005; 26:6423-6429.
    9. 朱静,潘可风.磷酸钙骨水泥的研究和临床进展.上海生物医学工程,2001;22:37.
    10. Ginebra MP,Traykova T, Planell JA. Calcium phosphate cements as bone drug delivery system:A review, J. Control. Release.2006; 113:102-110.
    11. Xu HH, Quinn JB. Whisker reinforced bioactive composites containing calcium phosphate cement fillers:effects of filler ratio and surface treatments on mechanical properties. J. Biomed. Mater. Res.2001; 57:165-174.
    12. Welch RD, Zhang H, Bronson DG. Experimental tibial plateau fracture augmented with calcium phosphate cement or autologous bone graft. J Bone Jiont Surg Am.2003; 85:222-228.
    13. Chaung HM, Hong CH, Chiang CP, Lin SK, Kuo YS, Lan WH, Hsieh CC. Comparison of calcium phosphate cement mixture and pure calcium hydroxide as direct plup-capping agent. J. Formos Med. Assoc.1996; 95:545.
    14. Bohner M. Calcium orthophosphates in medicine:from ceramics to calcium phosphate cements. Injury, Int. J. Care Injured.2000; 31:37-47
    15. Ginebra MP, Driessens FC, Planell JA. Effect of the particle size on the micro and nanostructureal features of calcium phosphate cement:a kinetic analysis. Biomaterials. 2004; 25:3453-3462.
    16. Bohner M. Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur. Spine.2001; 10:114-121.
    17.沈卫,刘昌胜,顾燕芳,胡黎明.磷酸钙骨水泥的水化反应机理研究.无机材料学报,1996;4:687-690.
    18.刘昌胜,刘子胜,潘颂华.磷酸钙骨水泥的水化放热行为.硅酸盐学报,2000;6:501-506.
    19. Liu CS, Gai W, Pan SH, Liu ZS. The exothermal behavior in the hydration process of calcium phosphate cement. Biomaterials.2003; 24:2995-3003.
    20. Liu CS, Shao HF, Chen FY, Zheng HY. Effects of the granularity of raw materials on the hydration and hardening process of calcium phosphate cement. Biomaterials.2003; 24:4103-4113.
    21. Khairoun I, Boltong MG, Dressens FCM, Planell JA. Effect of calcium carbonate on the compliance of an apatitic calcium phosphate bone cement. Biomaterials.1997:18: 1535-1539.
    22. Ginebra MP, Fernandez E, Boltong MG, Bermudez O, Planell JA, Driessens FCM. Compliance of an apatitic calcium phosphate cement with the short-term clinical requirements in bone surgery, orthopaedics and dentistry. Clinical Materials.1994; 17: 99-104,
    23. Driessens FCM, Botong MG, Bermudez O, Planell JA. Formulation and setting times of some calcium orthophosphate cements:a pilot study. J. Mater. Sci. Mat. Med.1993; 4:503-508.
    24. Liu CS, Shao HF, Chen FY, Zheng HY. Rheological properties of concentrated aqueous injectable calcium phosphate cement slurry. Biomaterials.2006; 27:5003-5013.
    25. Wouter JEMH, Zheng Z, Joop GCW, Joop GCW, Antonios GM, Jan F, John AJ. Introduction of enzymatically degradable poly (trimethylene carbonate) microspheres into an injectable calcium phosphate cement. Biomaterials.2008; 29:2464-2476.
    26. Youji M, Kunio I, Hirokazu F, Masahiro S, Masaru N, Masayuki K, Kenzo A. In tivo setting behaviour of fast-setting calcium phosphate cement. Biomaterials.1995; 16: 855-660.
    27. Constantz BR, Ison IC, Fulmer MT, Poser RD, Smith ST, VanWagoner M, Ross J, Goldstein SA, Jupiter JB, Rosenthal DI. Skeletal Repair by in Situ Formation of the Mineral Phase of Bone. Science.1995:267:1796-1799.
    28. Costantino PD, Frideman CD, Jones K, Chow LC, Pelzer HJ, Sisson GASr. Hydroxyapatite Cement. I. Basic chemistry and histologic properties. Arch. Otolaryngol. Head. Neck. Surg.1991:117:379-389.
    29. Chow 1C. Development of self-estting calcium phosphate cements. J. Ceram. Soci. Jap. 1991; 99:954.
    30. Gbureck U, Spatz K, Thull R. Improvement of mechanical properties of self setting calcium phosphate bone cement mixed with different metal oxides. Mat. Wiss. U. Werkstofftech.2003,34:1036-1040.
    31. Doi Y, Shimizu Y, Mouriwaki Y, Aga M, Iwanaga H, Shibutani T, Yamamoto K, Iwayama Y. Development of a new calcium phosphate cement that contains sodium calcium phosphate. Biomaterials.2001,22:847-854.
    32. Burguera EF, Guitian F, Chow LC. A water setting tetracalcium phosphate-dicalcium phosphate dihydrate cement. J. Biomed. Mater. Res.2004,71:275-282.
    33.余晓鸣,李万万,孙康.磷酸钙骨水泥的新进展.生物骨科材料与临床研究,2007;4:44-48.
    34. Liu CS, Wang MW, Shen W, Chen TY, Hu LM, Chen ZW. Evaluation of the biocompatibility of a nonceramic hydroxyapatite. J. Endon.1997; 23:490-493.
    35. Bohner M, Theiss F, Apelt D, Hirsiger W, Houriet R, Rizzoli G, Gnos E, Frei C, Auer JA, Von RB. Compositional changes of a dicalcium phosphate dihydrate cement after implantation in sheep. Biomaterials.2003; 24:3463-3474.
    36. Ooms EM, Wolke JGC, van der Waerden JP, Jansen JA. Trabecular bone response to injectable calcium phosphate (Ca-P) cement. J Biomed Mater Res A, B.2002; 61: 1-10.
    37. Yuan HP, Li YB, Bruijn JDD, Groot KD. Zhang XD. Tissue responses of calcium phosphate cement:a study in dogs. Biomaterials.2000; 21:1283-1290.
    38.俞耀庭,张兴栋.生物医用材料.天津大学出版社,2002:149.
    39.刘华.骨诱导型可注射磷酸钙基骨修复材料的制备及性能研究.暨南大学博士学位论文,2007:29.
    40. Mermelstein L, Chow LC, Friedman C, Crisco JJ. The reinforcement of cancellous bone screws with calcium phosphate cement. J. Orthop. Trauma.1996; 10:15-20.
    41. Habraken WJEM, Wolke JGC, Jansen JA. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv. Drug. Deliver. Rev.2007,59: 234-248.
    42. Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements:Competitive drug carriers for the musculoskeletal system? Biomaterials.2006; 27:2171-2177.
    43. Obadiaa L, Amadora G, Daculsia G. Calcium-deficient apatite:influence of granule size and consolidation mode on release and in vitro activity of vancomycin. Biomaterials.2003; 24:1265-1270.
    44. Diona A, Bernob B, Hallc G. The effect of processing on the structural characteristics of vancomycin-loaded amorphous calcium phosphate matrices, Biomaterials.2005; 26: 4486-4494.
    45. Joosten U, Joist A, Frebel T. Evaluation of an in situ setting injectable calcium phosphate as a new carrier material for gentamicin in the treatment of chronic osteomyelitis:Studies in vitro and in vivo. Biomaterials.2004; 25:4287-4295.
    46. Otsuk M, Nakahigashi Y, Matsuda Y. Effect of geometrical cement size on in vitro and in vivo indomethacin release from self-setting apatite cement. J. Control. Release. 1998;52:281-289.
    47. Barroug A, Glimcher MJ. Hydroxyapatite crystals as a local delivery system for cisplatin:adsorption and release of cisplatin in vitro. J. Orthop. Res.2002; 20: 274-280.
    48. Burgos AE, Belchior JC, Sinisterra RD. Controlled release of rhodium (Ⅱ) carboxylates and their association complexes with cyclodextrins from hydroxyapatite matrix. Biomaterials.2002; 23:2519-2526.
    49. Lebuglea A. Rodriguesa A, Bonnevialleb P, Voigtc JJ, Canalc P, Rodriguez F. Study of implantable calcium phosphate systems for the slow release of methotrexate. Biomaterials.2002; 23:3517-3522.
    50. Otsuka M, Matsudaa Y, Baiga AA. Calcium-level responsive controlled drug delivery from implant dosage forms to treat osteoporosis in an animal model. Adv. Drug. Deliver. Rev.2000; 42:249-258.
    51. Jansen JA, Vehof JWM, Ruhe PQ. Growth factor-loaded scaffolds for bone engineering. J. Control. Release.2005; 101:127-136.
    52. Blom EJ, Verheij JGC, Blieck JMA. Cortical bone ingrowth in growth hormone-loaded grooved implants with calcium phosphate coatings in goat femurs. Biomaterials.1998; 19:263-270.
    53. Josse S, Faucheux C. Soueidanb A. Novel biomaterials for bisphosphonate delivery. Biomaterials.2005; 26:2073-2080.
    54. Batlle GE, Roman IJ, Matrin ME. Aceclofenac vs paracetamol in the management of symptomatic osteoarthritis of the knee:a double-blind 6-week randomized controlled trial. Osteoarthr. Cartilage.2007; 15:900-908.
    55.周玲,聂继红.丹酚酸B的研究进展.新药新用,2007;4:217-220.
    56. Otsuka M,. Matsuda Y, Fox JL. Effect of plasma-calcium level-responsive oestradiol release from apatite bone cement on mineral density in ovariectomized. J. Pharm. Pharmacol.1999; 51:475-481.
    57. Liu QL. Effectiveness of a traditional Chinese medicine, Wulingsan, in suppressing the development of nephrocalcinosis induced by a high phosphorus diet in young rats. Med. Electron. Microsc.2001; 34:103-114.
    58. Peng R. Biological evaluation of ChuangYuLing dressing-a multifunctional medicine carrying biomaterial. J. Huanzhong. Univ. Sci. Techolog. Med. Sci.2005; 1:72-77.
    59. Lin FH. Immobilization of Chinese herbal medicine onto the surface-modified calcium hydrogenphosphte. Biomaterials.2003; 24:2413-2422.
    60. Liang MJ, He LC, Yang GD. Screening, analysis and in vitro vasodilatation of effective components from Ligusticum Chuanxiong. Life. Sci.2005; 78:128-133.
    61. Sun JS. The effect of Gu-Sui-Bu(Drynaria fortunei J. Sm) immobilized modified calcium hydrogenphosphate on bone cell activities. Biomaterials.2003; 24:873-882.
    62.姜红江,黄相杰,谭远超,王玉林,刘德忠.磷酸钙骨水泥复方丹参缓释体的制备及性能评价.中国修复重建外科杂志,2007;21:1113—1117.
    63.邹琴,张利,左奕,王华楠,李玉宝,李小玉.载黄芪多糖骨水泥的理化性能及体外细胞相容性研究.功能材料,2008;39:1515—1521.
    64.李茂红,屈树新,姚宁,郭悦华,张涛,翁杰.载不同浓度香丹注射液磷酸钙骨水泥性能研究.无机材料学报,2010,5:1-5.
    65. Hofmann MP, Mohammed AR, Perrie Y, Gbureck U, Barralet JE. High-strength resorbable brushite bone cement with controlled drug-releasing capabilities. Acta. Biomater.2009; 5:43-49.
    66. Otsuka M, Matsuda Y, Fox JL, Higuchi W. A Novel Skeletal Drug Delivery System Using Self-setting Calcium Phosphate Cement.9:Effects of the Mixing Solution Volume on Anticancer Drug Release from Homogeneous Drug-Loaded Cement. J. Pharm. Sci.1995; 84:733-736.
    67. Otsuka M, Nakahigashi Y, Matsuda Y, Fox JL, Higuchi W, Sugiyama Y. Effect of geometrical cement size on in vitro and in vivo indomethacin release from self-setting apatite cement. J. Control. Release.1998; 52:281-289.
    68. Otsuka M, Nakahigashi Y, Matsuda Y, Kokubo T, Yoshihara S, Nakamura T, Yamamuro T. A novel skeletal drug delivery system using self-setting bioactive glass bone cement. Ⅲ:the in vitro drug release from bone cement containing indomethacin and its physicochemical properties. J. Control. Release.1994; 31:111-119.
    69. Otsuka M, Matsuda Y, Suwa Y, Fox JL, Higuchi W. A novel skeletal drug delivery system using self-setting calcium phosphate cement.2. Physicochemical properties and drug release rate of the cement-containing indomethacin. J. Pharm. Sci.1994; 83: 611.
    70. Otsuka M, Matsuda Y, Suwa Y, Fox JL, Higuchi W. A Novel Skeletal Drug-Delivery System Using Self-setting Calcium Phosphate Cement.4. Effects of the Mixing Solution Volume on the Drug-Release Rate of Heterogeneous Aspirin-Loaded Cement. J. Pharm. Sci.1994; 83:259-263.
    71. Yaylaoglu MB. Korkusuz P, Korkusuz F, Hasirci V. Development of a calcium phosphate—gelatin composite as a bone substitute and its use in drug release. Biomaterials.1999; 20:711—719.
    72.陆裕朴,胥少汀,葛宝丰.实用骨科学.北京:人民军医出版社,1991:1471-1472
    73. Nicolai BK, Reinstorf A, Hofinger I, Fladea K, Wenz, Pompe W. Influence of osteocalcin and collagen I on the mechanical and biological properties of biocement D. Biomol. Eng.2002; 19:227-231.
    74. Dorozhkina El, Dorozhkin SV,.Mechanism of the Solid-State transformation of a Calcium-Deficient Hydroxyapatite (CDHA) into Biphasic Calcium Phosphate (BCP) at Elevated Temperatures. Chem. Mater.2002; 14:4267-4272.
    75. Kanzaki N, Onuma K, Treboux G, Ito A. Dissolution kinetics of dicalciumphosphate dihydrate under pseudophysiological conditions. J. Cryst. Growth.2002; 235: 465-470.
    76. Mavropoulos E, Rossi AM, Da Rocha NCC, Soares GA, Moreira JC, Moure GT. Dissolution of calcium-deficient hydroxyapatite synthesized at different conditions. Mater. Charact.2003; 50:203-207.
    77. Yashima M, Sakai A. High-temperature neutron powder diffraction study of the structural phase transition betweenaand-α'phases in tricalcium phosphate Ca3(PO4)2. Chem. Phys. Lett.2003; 372:779-783.
    78. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials.2006; 27:2907-2915.
    79.李发美.分析化学.人民卫生出版社,2003:211-212.
    80. Girolamo AD, Neill WM, Wainer IW. A validated method for the determination of paracetamol and its glucuronide and sulphate metabolites in the urine of HIV+/AIDS patients using wavelength-switching UV detection. J. Harmaceut. Biomed.1998; 17: 1191-1197.
    81. Wahed MGAE, Refat MS, Megharbel SME. Spectroscopic studies on the complexation of some transition metals with Chloramphenicol drug. J. Mol. Struct. 2008; 892:402-413.
    82.黄粤,刘昌胜,邵慧芳,刘壮峻.妥布霉素对磷酸钙骨水泥性能的影响.中国生物医学工程学报,2002;21:417-421.
    83. Takechi M. Miyamoto Y, Ishikawa K, Nagayama M. Kon M. Asaoka K, Suzuki K. Effects of added antibiotics on the basic properties of anti-washout-type fast-setting calcium phosphate cement. J. Biomed. Mater. Res.1998; 39:308-316.
    84. Otsuka M, Matsuda Y, Suwa Y, Fox JL, Higuchi W. A Novel Skeletal Drug-Delivery System Using Self-Setting Calcium Phosphate Cement.3. Physicochemical Properties and Drug-Release Rate of Bovine Insulin and Bovine Albumin. J. Pharm. Sci.1994; 83:255-258.
    85. Jain AK, Panchagnula R. Skeletal drug delivery system. Int. J. Pharm.2000; 206: 1-12.
    86.郭悦华,屈树新,李茂红,翁杰.载双组分药物磷酸钙骨水泥的性质和体外释放.硅酸盐学报,2010;38:472-477.
    87.国家药典委员会.中华人民共和国药典(第二部).化学工业出版社,2005;206,812.
    88. Santos LAD, Carrodeguas RG, Rogero SO, Higa OZ, Boschi AO, Arruda ACF. α-Tricalcium phosphate cement:"in vitro" cytotoxicity. Biomaterials.2002; 23: 2035-2042.
    89.潘春跃,邝志清,黄可龙,高鸿儒.磷酸钙骨水泥水化机理研究进展.化学研究与应用,2000;12:365-369.
    90. Almeida PF, Almeida AJ. Cross-linked alginate-gelatine beads:a new matrix for controlled release of pindolol. J. Control. Release.2004; 97:431-439.
    91. Sun RX, Chen KZ, Lu YP. Fabrication and dissolution behavior of hollow hydroxyapatite microspheres intended for controlled drug release. Mater. Res. Bull. 2009; 44:1939-1942.
    92. Mizushima Y, Ikoma T, Tanaka J, Hoshi K, Ishihara T, Ogawa Y, Ueno A. Injectable porous hydroxyapatite microparticles as a new carrier for protein and lipophilic drugs. J. Control. Release.2006; 110:260-265.
    93. Xu QG, Tanaka Y, Czernuszka JT. Encapsulation and release of a hydrophobic drug
    from hydroxyapatite coated liposomes. Biomaterials.2007:28:2687-2694.
    94. Young S, Wong M. Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J. Control. Release.2005; 109:256-274.
    95.顾其胜,陶伟栋,蒋丽霞.壳聚糖基复合材料类新型生物医用材料.上海生物医学工程,2007;28:31-38.
    96.谈国强,苗鸿雁,宁青菊,夏傲.生物陶瓷材料.化学工业出版社.2006:123
    97.马礼敦.近代X射线多晶体衍射—实验技术与数据分析.化学工业出版社.2004;498.
    98. Chen MF, Tan JJ, Lian YY, Liu DB. Preparation of Gelatin coated hydroxyapatite nanorods and the stability of its aqueous colloidal. Appl. Surf. Sci.2008; 254: 2730-2735.
    99. Cai S, Yu XZ, Xiao ZY, Xu GH, Lv H, Yao KD. Synthesis and sintering of nanocrystalline hydroxyapatite powders by gelatin-based precipitation method. Ceram. Int.2007; 33:193-196.
    100. Yaylaoglu MB, Korkusuz P, Korkusuz F, Hasirci V. Development of a calcium phosphate—gelatin composite as a bonesubstitute and its use in drug release. Biomaterials.1999; 20:711—719.
    101.Fulzele SV, Satturwar PM, Dorle AK. Study of the biodegradation and in vivo biocompatibility of novel biomaterials. Eur. J. Pharm. Sci.2003; 20:53-61.
    102. Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug. Deliver. Rev.1997; 28:5-24.
    103.郜成莹,叶建东.磷酸钙骨水泥负载庆大霉素的制备与表征.材料导报,2008,22:151-154.
    104. Loo SCJ, Ooi CP, Boey YCF. Radiation effects on poly (lactide-co-glycolide) (PLGA) and poly (1-lactide) (PLLA). Polym. Degrad. Stabil.2004:83:259-265.
    105.汪朝阳,赵耀明,王方,郑绿茵.生物降解材料PLGA50的直接法合成与表征.化学推进剂与高分子材料.2004;2(5):35-38.
    106. Liu YK, Hou DD, Wang GH. A simple wet chemical synthesis and characterization of ydroxyapatite nanorods. Mater. Chem. Phys.2004; 86:69-73.
    107. Fathi MH, Zahrani EM. Fabrication and characterization of fluoridated hydroxyapatite nanopowders via mechanical alloying. J. Alloy. Compd.2009; 475:408-414.
    108.赵荣飞.陆妙燕.氢键对物质性质的影响及应用.安顺学院学报.2007;9:84-86.
    109.马英,李思维,冯祖德.α-磷酸三钙水解法修复牙釉质龋.无机材料学报,2009;24:275-279.
    110. Liu YR, Qu SX, Maitz MF, Tan R, Weng J. The effect of the major components of Salvia Miltiorrhiza Bunge on bone marrow cells. J. Ethnopharmacol.2007; 111: 573-583.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700