两类材料分子性质及设计的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用量子化学计算方法对分子筛和双核金属茂化合物的性质及设计进行了详细的理论研究。通过对最近才清楚其结构的IM-5分子筛的酸性、过渡金属落位及稳定性等性质的研究,有助于人们进一步了解IM-5分子筛的功能性质,扩展其在各个领域中的潜在应用。通过计算离子型客体分子(Na2Al4和CpNa)在MCM-22分子筛中的吸附,研究其对分子筛性质的影响,为提高分子筛酸性或催化活性提供了一个可行的方法。基于第一个双核金属茂化合物Cp*ZnZnCp*的成功合成,人们提出双电子的给体-受体相互作用成键的双核夹心化合物CpM’-MCp。我们利用理论计算方法研究了该化合物的异构化稳定性,并提出一类新型的通过单电子金属-金属键连接的夹心化合物DBe-LiCp。研究结果有助于人们深入了解双核金属茂化学,并有可能扩展该领域。主要研究内容有:1.对IM-5中Al原子分布和质子落位及酸性强度进行研究。IM-5中大约有40个Al, H落位位置,具有较强酸性,其中有9个位置酸性最强。是该分子筛作为固体催化剂在工业生产中的催化活性高,甚至比ZSM-5还要好的原因之一。2.对IM-5中二价铜离子落位、稳定性及NO吸附进行研究。IM-5中78%的(Al, Cu)落位比Cu2+在ZSM-5中最稳定落位还要稳定。两个原因导致Cu-IM5在NO还原反应中比Cu-ZSM5表现出更好催化活性:a)金属离子大部分以Cu2+形式存在,并反应过程中落位或迁移至五元环;b)与Cu-ZSM5相比,IM-5中具有相对较多活性中心。3.对MCM-22吸附全金属芳香性分子Na2Al4进行研究。Na2Al4倾向于落位在MCM-22超笼入口处,吸附后依然保持其芳香性。Na2Al4落位在MCM-22,降低质子局部跳跃能垒,提高分子筛酸性。为获得稳定全金属芳香性分子提供一个参考,也为提高分子筛酸性提供一条可行路径。4.对CpNa改良的HMCM-22酸性及乙烯质子化进行研究。与HMCM-22相比,CpNa改良HMCM-22的酸性降低,乙烯质子化过程中催化活性反而增大。客体分子CpNa的双重作用造成违反分子筛酸性—催化活性规律。催化活性的提高不一定非要提高其酸性。5.对给体-受体相互作用成键的双核夹心化合物CpM’-MCp异构化稳定性进行研究。σ型给体-受体夹心化合物只有硼做为电子给体时,该结构为基态。当M’是重元素,最稳定异构体是π型给体-受体夹心化合物。6.对单电子金属-金属键连接的双核夹心化合物DBe-LiCp稳定性进行研究。通过对该化合物在分解过程中热力学性质的研究和相对于其他异构体该结构为基态,预测这种新型化合物在合适气相实验条件下有可能被探测。
Material is the base to the existence and development of human beings, which is closely related with national economy and people’s lives, and is named as one of three civilized mainstays of the day. In addition to its importance and universality, material is variety. Therefore, in this thesis we mainly focus on two material molecules: zeolites and dinuclear sandwich complex. Zeolites are crystalline aluminosilicates with periodic microporous systems, giving rise to regular three-dimensional networks of channels, cages, and rings. Due mainly to their high activity, shape-selectivity and thermal stability, zeolites are widely used in petroleum and natural gas processing, fine chemical industries, environmental protection and nuclear waste handling, etc., and are becoming important functional materials in modern industry. In this thesis, quantum chemical investigations on the acidity of IM-5 zeolite (its detailed structure was recently determined), location of transition metal and stability have been carried on. The results are helpful to further understand the functioning of IM-5 and to expand the potential applications in various areas. Through the theoretical calculations on the adsorption of guest molecule (Na2Al4 and CpNa) on zeolite, it provides a feasible hint to improve the acidity or catalyst activity of zeolite. Stimulated by the synthesis and isolation of the first bis-metallic sandwich compound Cp*ZnZnCp*, donor-acceptor bonded dinuclear metallocenes CpM’-MCp were reported. In the present thesis the isomerization stability of CpM’-MCp has been studied by using theoretically calculational method, and a new type dinuclear sandwich complexes DBe-LiCp associated by an one electron metal-metal single bond. The calculated results would be useful to further understand the metallocene chemistry, and may be expand this area. The main results are summarized as follows:
     1. A detailed theoretical investigation is performed on the distribution of Al atom, the location of proton H and the strength of acidity of IM-5 zeolite. In IM-5 zeolite there are about 40 preferable Al, H locations with relatively high acidity, including the nine strongest acid sites of Al19H43 > Al14-H18 > Al5H13 > Al4H8 > Al10H26, Al15H26, Al15H37, Al22H45 and Al24H47. This may be one of the reasons why IM-5 as solid catalyst has high activity in industries, and in some case even more active than ZSM-5 zeolite.
     2. A detailed theoretical investigation is performed on the location of Cu2+ cation, stability and the adsorption of NO molecule. Cu2+ cation is most favorably located in the 6-membered ring in the wall of unusual two-dimensional medium-pore channel of IM-5. Compared with the stability of Cu2+ located in the most favorable site of ZSM-5, 78% (Al, Cu) location in IM-5 were more stable. Two reasons can explain the experimental fact that Cu-IM-5 is more active than Cu-ZSM5 in NO reduction: a) the adsorption ability of NO on Cu-IM5 is relatively higher than that on Cu-ZSM5, especially in 5-membered ring; b) the number of active centers in Cu-IM5 was obviously more than that in Cu-ZSM5.
     3. A detailed theoretical investigation is performed on the adsorption of all-metal aromatic molecule Na2Al4 on MCM-22 zeolite. The molecule Na2Al4 favorably locates in the supercage of MCM-22 within the 12-membered ring. During the adsorption, the all-metal aromaticity can be structurally and electronically retained within the zeolite-supported Na2Al4. And the adsorption of molecule Na2Al4 can effectively increase the local mobility of proton and improve the acidity of zeolite. The calculated results not only provide a new and feasible way to attain the stable Na2Al4 molecule, but also provide a clue to improve the acidity of zeolites and the ability of proton transferring.
     4. A detailed theoretical investigation is performed on the acidity and ethene protonation in CpNa-modified HMCM-22. Compared with the traditional HMCM-22, the CpNa-modified HMCM-22 zeolite possesses higher catalytic activity in ethene protonation, while, with lower acidity. The seeming violation from the traditional“acidity-activity”correlation can be ascribed to the dual factor of the guest molecule CpNa, i.e., Na+ moiety can“activate”the proton, whereas Cp? moiety can“restrict”the leaving of proton from the zeolite. It provides a hint that in some case enhanced“activity”is not necessarily correlated with enhanced“acidity”, especially for modified zeolites.
     5. A detailed theoretical investigation is performed on the stability toward isomerization of a series of donor–acceptor bonded dinuclear metallocenes CpM’-MCp (M’=B, Al, Ga, In, Tl; M=Li, Na, K). The knownσ-type D–A sandwich form CpM’-MCp can be the ground-state isomer only for the donor M’=B. For M’=Al, Ga, In, Tl donors, the most stable isomer is of the previously unconsideredπ-type D–A sandwich form M’Cp-MCp.
     6. A detailed theoretical investigation is performed on the stability and the existence of one electron metal-metal bond of dinuclear sandwich complexes DBe-LiCp (D=Cp or Cp*). Through the calculations about the reaction energies for decomposition processes and the stability relative to other isomers, it is optimistically predicted that this new compounds may be detected in the gaseous phase below 326 K under appropriate experimental conditions.
引文
1. Breck D. W., Zeolite Molecular Sieves, Wiley, New York, 1974.
    2.中国科学院大连化学物理研究所分子筛组,《沸石分子筛》,北京,科学出版社, 1987.
    3. Barrer R. M., Hydrothermal Chemistry of Zeolites, Academic Press, 1982.
    4. Asensi M. A., Corma A., Martinez A., J. Catal., 1996, 158: 561.
    5. Ravishankar R., Sivasanker S., Appl. Catal. A-Gen., 1996, 142: 47.
    6. Corma A., Gonzalezalfaro V., Orchilles A. V., Appl. Catal. A-Gen., 1995, 129: 203.
    7. Corma A., Martínez-Triguero J., J. Catal., 1997, 165: 102.
    8. Maerz B., Chen S. S., Venkat C. R., Mazzone D. N., Hydrocarbon Tech Int’l, 1996, 21.
    9. Mazzone D. N., Venkat C. R., Lewis P. J., Japan Pet. Inst., 1996, 3.
    10. Rubin M. K., Chu P. US Pat. 4954325, 1990.
    11. Holderich W. F., Stud. Surf. Sci. Catal., 1988, 49A: 69 (Elsevier).
    12. Venuto P. B., Microp. Mater., 1994, 2: 297.
    13. Iwamoto M., Stud. Surf. Sci, Catal., 1994, 84B: 1395 (Elsevier).
    14. Inui T., Stud. Surf. Sci. Catal., 1997, 105B: 1441 (Elsevier).
    15.桂茹,《催化剂与催化作用》,大连,大连理工大学出版社,2000, P8.
    16.陈连璋,《沸石分子筛催化》,大连,大连理工大学出版社,1990, P12.
    17. Onida B., Geobaldo F., Testa F., Crea F., Garreone E., Microporous Mater., 1999, 30: 119.
    18. Meloni D., Laforge S., Martin D., Guisnet M., Rombi E., Solinas V., Appl. Catal. A: General, 2001, 215: 55.
    19. Onida B., Geobaldo F., Testa F., Aiello R., Garreone E., J. Phys. Chem. B., 2002, 106: 1684.
    20. Onida B., Geobaldo F., Testa F., Crea F., Garreone E., Stud. Surf. Sci. Catal., 2000,130: 845.
    21. Du W., Olson D. H., J. Phys. Chem. B, 2002, 106: 395.
    22. Okumura K., Hashimoto M., Mimura T., Niwa M., J. Catal., 2002, 206: 23.
    23. Corma A., Corell C., Fornes V., Kolodziejski W., Zeolite, 1995, 15: 576.
    24. Ma D., Deng F., Fu R., Han X., Bao X., J. Phys. Chem. B, 2001, 105: 1770.
    25. (a) Wang Y., Zhou D. H., Yang G., Miao Sh. J., Liu X. Ch., Ma D., Bao X. H., J. Phys. Chem. A, 2004, 108: 6730. (b)王妍,“密度泛函研究MCM-22分子筛”,2004年大连化学物理研究所博士研究生毕业论文.
    26. Kennedy G. J., Afeworki M., Hong S. B., Microporous Mater., 2002, 52: 55.
    27. Ehresmann J. O., Wang W., Herreros B., Luigi D. P., Venkatraman T. N., Song W. G., Nicholas J. B., Haw J. F., J. Am. Chem. Soc., 2002, 124: 10868.
    28. Stave M. S., Nicholas J. B., J. Phys. Chem. B, 1995, 99: 15046.
    29. Chalterjee A., Chandra A. K., J. Mole. Catal., 1997, 119: 51.
    30. Lewis D. W., Sarstre G., Chem. Commun., 1999, 4: 349.
    31. Sastre G., Fornes V., Corma A., Chem. Commun., 1999, 9: 2163.
    32. Sastre G., Fornes V., Corma A., J. Phys. Chem. B, 2002, 106: 701.
    33. Sabater M. J., Sastre G., Chem. Mater., 2001, 13: 4520.
    34. Yuan S. P., Wang J. G., Li Y. M., Peng S. Y., J. Mole. Catal. A: Chemical, 2002, 178: 267.
    35.黄耀曾,钱延龙,《金属有机化学进展》,北京,北京化工出版社.
    36. Sin H., Kaminsky W., Angew. Chem. Int. Ed. Engl. 1980, 19: 390.
    37. Flores J.C., Wood J. S., Chien J. C. W., Organometallics, 1996, 15: 4944.
    38. Person D. S., Fetters L. J., Macromolecules, 1996, 21: 478.
    39. Pasynkiewicz S., Polyhedron, 1990, 9:429.
    40. Cam D., Albizzai E., Chinquina P., Macromol. Chem., 1990, 191: 1641.
    41. Resa, I.; Carmona, E.; Gutierrez-Puebla, E.; Monge, A. Science 2004, 305: 1136.
    42. Timoshkin, A. Y.; Schaefer, H. F. Organometallics 2005, 24: 3343.
    1. Born M., Oppenheimer R., Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 1927, 84: 457.
    2. (a) Hehre W. J., Radom L., Schleyer P. v. R., et al., Ab Initio Molecular Orbital Theory, John Wiley &Sons, Inc., 1986. (b) McQuarrie D.A., Quantum Chemistry University Science Books: Mill Vally. CA. 1983.
    3. (a)唐敖庆,杨忠志,李前树,量子化学,北京,科学出版社, 1982. (b)徐光宪,黎乐民,王德民,量子化学基本原理和从头计算法,北京,科学出版社, 1985.
    4. Lowdin P. O., Adv. Chem. Phys.,1959, 2: 207.
    5. Pople J. A., Seeger R., Krishnan R., Int. J. Quant. Chem. Symp., 1977, 11: 149.
    6. Foresman J. B., Head-Gordon M., Pople J. A., Frisch M. J., J. Phys. Chem., 1992, 96: 135.
    7. Krishnan R., Schlegel H. B., Pople J. A., J. Chem. Phys., 1980, 72: 4654.
    8. Brooks B.R., Laidig W.D., Saxe P., Goddard J. D., Yamaguchi Y., Schaefer H.F., J. Chem. Phys., 1980, 72: 4652.
    9. Salter E. A., Trucks G. W., Bartlett R. J., J. Chem. Phys., 1989, 90: 1752.
    10. Raghavachari K., Pople J. A., Int. J. Quant. Chem., 1981, 20: 167.
    11. Pople J. A., Head-Gordon M., Raghavachari K., J. Chem. Phys., 1987, 87: 5968
    12. Cioslowski J., Chem. Phys. Lett., 1994, 219: 151.
    13. Schlegel H. B., Robb M. A., Chem. Phys. Lett., 1982, 93: 43.
    14. Eade R. H. E., Robb M. A., Chem. Phys. Lett., 1981, 83: 362.
    15. Hegarty D., Robb M. A., Mol. Phys. 1979, 38: 1795.
    16. Pople J. A., Krishnan R., Schlegel H. B., Binkley J. S., Int. J. Quant. Chem. XIV, 1978, 545.
    17. Bartlett R. J., Purvis G. D., Int. J. Quant. Chem., 1978, 14: 516.
    18. Scuseria G. E., SchaeferIII H. F., J. Chem. Phys., 1989, 90: 3700.
    19. Purvis G. D., Bartlett R. J., J. Chem. Phys., 1982, 76: 1910.
    20. Scuseria G. E., Janssen C. L., SchaeferIII H. F. J. Chem. Phys., 1988, 89: 7382.
    21. Hohenberg P., Kohn W., Inhomogeneous Electron Gas, Phys. Rev., 1964, 136:B864.
    22. Kohn W., Sham L. J., Phys. Rev., 1965, 140: A1133.
    23. Slater J.C., Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids McGraw-Hill: New York, 1974.
    24. Salahub D. R., Zerner M. C., eds., The Challenge of d and f Electrons ACS: Washington, D.C. 1989.
    25. Parr R. G., Yang W., Density-functional theory of atoms and molecules Oxford Univ. Press: Oxford, 1989.
    26. Pople J. A., Gill P. M. W., Johnson B. G., Chem. Phys. Lett., 1992, 199: 557.
    27. Johnson B. G., Frisch M. J., J. Chem. Phys., 1994, 100: 7429.
    28. Labanowski J. K., Andzelm J. W., eds., Density Functional Methods in Chemistry, Springer-Verlag: New York, 1991.
    29. Morokuma K., Froese R. D., Dapprich S., Komaromi I., Khoroshun D., Byun S., Musaev D. G., Emerson C. L., Abstr. Pap. Am. Chem. Soc., 1998, 215: U218.
    30. Monard G., Merz K. M., Accounts Chem. Res., 1999, 32: 904.
    31. Gao J. L., Freindorf M., J. Phys. Chem. A, 1997, 101: 3182.
    32. Kolodziejski W., Zicovich C., Corell C., Pérez-Pariente J., A. Corma, J. Phys. Chem. 1995, 99, 7002.
    1. Benazzi E., Guth J.L., Rouleau L., PCT WO 98/17581, 1998.
    2. Benazzi E., Guth J.L., Rouleau L., US Patent 6, 136, 290, 2000.
    3. Corma A., Martínez-Triguero J., Valencia S., Benazzi E., Lacombe S., J. Catal. 2002, 206, 125.
    4. Lee S.H., Lee D.K., Shin C.H., Park Y.K., Wright P.A., Lee W.M., Hong S.B., J. Catal. 2003, 215, 151.
    5. Casci J.L., Maberly S., Benazzi E., Rouleau L., Henney R.P., US Patent 6, 027, 707, 2000.
    6. Corma A., Chica A., Guil J.M., Llopis F.J., Mabilon G., Perdigon-Melon J.A., Valencia S., J. Catal. 2000, 189, 382.
    7. Lacombe S., Patrigeon A., Benazzi E., Stud. Surf. Sci. Catal. 2001, 135, 4272.
    8. Baerlocher C., Gramm F., Massüger L., McCusker L.B., He Z.B., Hovm?ller S., Zou X.D., Science, 2007, 315, 1113.
    9. Farneth W.E., Gorte R.J., Chem. Rev. 1995, 95, 615.
    10. Kennedy G.J., Lawton S.L., Rubin M.K., J. Am. Chem. Soc. 1994, 116, 11000.
    11. Meloni D., Laforge S., Martin D., Guisnet M., Rombi E., Dolonas V., Appl. Catal. A: Gen. 2001, 215, 55.
    12. Ma D., Deng F., Fu R., Han X., Bao X., J. Phys. Chem. B 2001, 105, 1770.
    13. Sastre G., Fornes V., Corma A., J. Phys. Chem. B 2002, 106, 701.
    14. Peng L.M., Huo H., Liu Y., Grey C. P., J. Am. Chem. Soc. 2007, 129, 335.
    15. Brand H.V., Curtiss L.A., Iton L.E., J. Phys. Chem. 1992, 96, 7725.
    16. Nicholas J.B., Winans R.E., Harrison R.J., Iton L.E., Curtiss L.A., Hopfinger A.J., J. Phys. Chem. 1992, 96, 10247.
    17. Alvarado-Swaisgood A.E., Barr M.K., Hay P.J., Redondo A., J. Phys. Chem. 1991, 95, 10031.
    18. Chatterjee A., Chandra A.K., J. Mol. Catal. 1997, 119, 51.
    19. Chatterjee A., Iwasaki T., Ebina T., Miyamoto A., Microporous Mesoporous Mater. 1998, 21, 421.
    20. Yuan S., Wang J., Li Y., Peng S., J. Mol. Catal. 2001, 175, 131.
    21. van Santen R. A., Catalysis Today 1997, 38, 377.
    22. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.,; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian03 (ReVisionA.1);Gaussian, Inc.: Pittsburgh, PA, 2003.
    23. Sierka M., Eichler U., Datka J., Sauer J., J. Phys. Chem. 1998, 102, 6397.
    24. Onida B., Geobaldo F., Testa F., Aiello R., Garrone E., J. Phys. Chem. B 2002, 106, 1684.
    1. Hagen A., R?ssner F., Catal. Rev. 2000, 42, 403.
    2. Iglesia E., Baungarter E., Catal. Today 1996, 31, 207.
    3. Shelef M., Chem. Rev. 1995, 95, 209.
    4. Xia J., Mao D., Zhang B., Chen Q., Tang Y., Catal. Lett. 2004, 98, 235.
    5. Gómez S.A., Campero A., Martínez-Hernández A., Fuentes G.A., Appl. Catal. A: Gen. 2000, 197, 157.
    6. Iglesias-Juez A., Hungría A. B., Martínez-Arias A., Fuerte A., Fernandez-Garcia M., Anderson J.A., Conesa J.C., Soria J., J. Catal. 2003, 217, 310.
    7. Marban G., Antu?a R., Fuertes A.B., Appl. Catal. B: Environ. 2003, 41, 323.
    8. Saaid I.M., Mohamed A.R., Bhatia S., J. Mol. Catal. A: Chem. 2002, 189, 241.
    9. Subbiah A., Cho B.K., Blint J.R., Gujar A., Price G., Yie J.E., Appl. Catal. B: Environ. 2003, 42, 155.
    10. Palomares A.E., Márquez F., Valencia S., Corma A., J. Mol. Catal. A: Chem. 2000,
    162, 175.
    11. Wilson W.E., Levy A., J Air Pollut Control Assoc, 1970, 20, 385.
    12. Irwin J.G., Williams M.L., Environ Pollut, 1988, 50, 29.
    13. Baerlocher C., Gramm F., Massüger L., McCusker L.B., He Z.B., Hovm?ller S., Zou X.D., Science, 2007, 315, 1113.
    14. Zhang Z., Lerner B., Lie G.-D., Sachtler W.M.H., J. Catal. 1993, 140, 481.
    15. Yan J.Y., Lie G.-D., Sachtler W.M.H., Kung H. H., J. Catal. 1996, 161, 43.
    16. He N., Xie H.B., Ding Y.H., Micropor. Mesopor. Mater. 2008, 111, 551.
    17. L?wenstein W., Am. Mineral. 1954, 39, 92.
    18. Pine L.A., Maher P.J., Wachter W.A., J. Catal. 1984, 85, 466.
    19. Delley B., J. Chem. Phys. 1990, 92, 508.
    20. Delley B., J. Chem. Phys. 2000, 113, 7756.
    21. Kolodziejski W., Zicovich C., Corell C., Pérez-Pariente J., A. Corma, J. Phys. Chem. 1995, 99, 7002.
    22. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.,; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian03 (ReVisionA.1);Gaussian, Inc.: Pittsburgh, PA, 2003.
    23. Rice M.J., Chakraborty A.K., Bell A.T., J. Phys. Chem. B 2000, 104, 9987.
    24. Sierraalta A., Bermudez A., Rosa-Brussin M., J. Mol. Catal. A: Chem. 2005, 228, 203.
    25. Hass K.C., Schneider W.F., Phys. Chem. Chem. Phys. 1999, 1, 639.
    26. Hass K.C., Schneider W.F., J. Phys. Chem. 1996, 100, 9292.
    27. Yokomichi Y., Tamabe T., Ohtsuka H., Kakumoto T., J. Phys. Chem. 1996, 100, 14424.
    28. Yokomichi Y., Ohtsuka H., Tabata T., Okada O., Yokoi Y., Ishihama H., Yamaguchi R., Matsui H., Tachibana A., Yamabe T., Catal. Today 1995, 23, 431.
    29. Trout B.L., Chakraborty A.K., Bell A.T., J. Phys. Chem. 1996, 100, 17582.
    1. Rozanska X., van Santen R. A., Handbook of Zeolite Science and Technology (Eds.: S. M. Auerbach, K. A. P. Carrado, K. Dutta), Marcel Dekker, New York, 2003, pp. 785–832.
    2. Corma A., J. Catal. 2003, 216, 406-416.
    3. Dyer A., In Encyclopedia of Inorganic Chemistry; R. G. King, Ed.; John Wiley and Son: New York, 1994; Vol. 8, p 4363.
    4. Tibbetts G. G., Meisner G. P., Olk C. H., Carbon, 2001, 39, 2291.
    5. Georgiev P. A., Albinati A., Mojet B. L., Ollivier J., Eckert J., J. Am. Chem. Soc. 2007, 129, 8086.
    6. Solans-Monfort X., Branchadell V., Sodupe M., Zicovich-Wilson C. M., Gribov E., Spoto G., Busco C., Ugliengo P., J. Phys. Chem. B, 2004, 108, 8278.
    7. Tsutsumi K., Takahashi H., J. Phys. Chem. 1970, 74, 2710.
    8. Preuss E., Linden G., Peuckert M., J. Phys. Chem. 1985, 89, 2955.
    9. Niwa M., Suzuki K., Isamoto K., Katada N., J. Phys. Chem. B 2006, 110, 264.
    10. Triantafillidis C. S., Vlessidis A. G., Evmiridis N. P., Ind. Eng. Chem. Res. 2000, 39, 307.
    11. Ahn H., Marks T. J., US Patent No. 6235918, 2001.
    12. Hlatky G. G., Chem. Rev. 2000,100, 1347.
    13. Long J. L., Wang X. X., Zhang G. Y., Dong J. G., Yan T. J., Li Z. H., Fu X. Z., Chem. Eur. J. 2007, DOI: 10.1002/chem.200700505
    14. Li X., Kuznetsov A. E., Zhang H. F., Boldyrev A. I., Wang L. S., Science 2001, 291, 859.
    15. Boldyrev A. I., Wang L. S., Chem. ReV. 2005, 105, 3716.
    16. (a) Fowler P. W., Havenith R. W. A., Steiner E., Chem. Phys. Lett. 2001, 342, 85. (b) Fowler P. W., Havenith R. W. A., Steiner E., Chem. Phys. Lett. 2002, 359, 530.
    17. (a) Zhai H. J., Kuznetsov A. E., Boldyrev A. I., Wang L. S., ChemPhysChem 2004, 5, 1885. (b) Zubarev D. Y., Boldyrev A. I., Li X., Wang L. S., J. Phys.Chem. B. 2006, 110, 9743.
    18. Kuznetsov, A. E.; Boldyrev, A. I.; Li, X.; Wang, L. S. J. Am. Chem. Soc. 2001, 123, 8825.
    19. Zhan C. G., Zheng F., Dixon D. A., J. Am. Chem. Soc. 2002, 124, 14795.
    20. Juselius J., Straka M., Sundholm D., J. Phys. Chem. A. 2001, 105, 9939.
    21. Hu X. B., Li H. R., Wang C. M., J. Phys. Chem. B. 2006, 110, 14046.
    22. (a) Hirsch A., Chen Z. F., Jiao H. J., Angew. Chem. Int. Ed. 2004, 40, 2834. (b) Mercero J. M., Ugalde J. M., J. Am. Chem. Soc. 2004, 126, 3380.
    23. Leonowicz M.E., Lawton J.A., Lawton S.L., Rubin M.K., Science 199, 4264, 1910.
    24. Lawton S.L., Leonowicz M.E., Partridge R.D., Chu P., Rubin M.K., Microporous Mesoporous Mater. 1998, 23, 109.
    25. Verhoef M.J., Creyghton E.J., Peters J.A., Van Bekkum H., Chem. Commun. 1997, 20, 1989.
    26. Wu P., Komatsu T., Yashima T., Microporous Mesoporous Mater. 1998, 22, 343.
    27. Corma A., Mart′?nez-Triguero J., J. Catal. 1997, 165, 102.
    28. Huss Jr. A., Kirker G.W., Keville K.M., Thomson R.T., U.S. Patent 4,992,615, 1991.
    29. Corma A., Corell C., Llopis F., Martin′ez A., P`erez-Pariente J., Appl. Catal. A 1994, 115, 121.
    30. Shu Y., Ma D., Xu L., Xu Y., Bao X., Stud. Surf. Sci. Catal. 2001, 137, 27.
    31. Sauer J., Ugliengo P., Garrone E., Saunders V.R., Chem. Rev. 1994, 94, 2095
    32. Leonowitz M. E., Lawton J. A., Lawton S. L., Rubin M. K., Science 1994, 264, 1910.
    33. L?wenstein W., Am. Mineral. 1954, 39, 92.
    34. Pine L. A., Maher P. J., Wachter W. A., J. Catal. 1984, 85, 466.
    35. Delley B., J. Chem. Phys. 1990, 92, 508.
    36. Delley B., J. Chem. Phys. 2000, 113, 7756.
    37. Perdew J. P., Chevary J. A., Vosko S. H., Jackson K. A., Pederson M. R., Singh D. J., Fiolhais C., Phys. Rev. B 1992, 46, 6671.
    38. Perdew J. P., Wang Y., Phys. Rev. B 1992, 45, 13244.
    39. Demuth T., Hafner J., Benco L., Toulhoat H., J. Phys. Chem. B 2000, 104, 4593.
    40. Jeanvoine Y., Angyan J. G., Kresse G., Hafner J., J. Phys. Chem. B 1998, 102, 5573.
    41. Benco L., Demuth T., Hafner J., Hutschka F., J. Chem. Phys. 1999, 111, 7537.
    42. Gajdos M., Eichler A., Hafner J., J. Phys. Condens. Mater. 2004, 16, 1141.
    43. Wang Y., Zhuang J.Q., Yang G., Zhou D.H., Ma D., Han X.W., Bao X.H., J. Phys. Chem. B 2004, 108, 1386, and references therein.
    44. Barthomeuf D., Catal. Rev. Sci. Eng., 1996, 38, 521.
    45. Ku?era J., Nachtigall P., Phys. Chem. Chem. Phys., 2003, 5, 3311.
    46. Zhou D.H., He N., Wang Y.Q., Yang G., Liu X.C., Bao X.H., J. Mol. Struct: THEOCHEM 2005, 756, 39.
    47. Franke M.E., Sierka M., Simon U., Sauer J., Phys. Chem. Chem. Phys., 2002, 4, 5207.
    48. Fermann J.T., Auerbach S.M., J. Phys. Chem. A, 2001, 105, 2879.
    49. Sierka M., Sauer J., J. Phys. Chem. B, 2001, 105, 1603.
    50. Ryder J.A., Chakraborty A.K., Bell A.T., J. Phys. Chem. B 2000, 104, 6998.
    51. Fermann J.T., Blanco C., Auerbach S., J. Chem. Phys., 2000, 112, 6779.
    52. Fermann J.T., Auerbach S., J. Chem. Phys., 2000, 112, 6787.
    1. Pines, H. The Chemistry of Catalytic Hydrocarbon Conversion, Academic Press, New York, 1981.
    2. Jacobs, P.A. Carboniogenic Activity of Zeolites, Elsevier, New York, 1977.
    3. Corma, A. J. Catal. 2003, 216, 298.
    4. Corma, A. Chem. Rev. 1995, 95, 559.
    5. He, N.; Xie, H. B.; Ding, Y. H. Microporous Mesoporous Mater. 2008, 111, 551.
    6. Kassab, E.; Fouquet, J.; Allavena, M.; Evleth, E. M. J. Phys. Chem., 1993, 97, 9034.
    7. Lei, G. D.; Kevan, L. J. Phys. Chem., 1991, 95, 4506.
    8. Earl, W. L.; Fritz, P. O.; Gibson, A. A.V.; Lunsford, J. H. J. Phys. Chem., 1987, 91, 2091.
    9. Onida, B.; Geobaldo, F.; Testa, F.; Crea, F.; Garreone, E. Microporous Mesoporous Mater. 1999, 30, 119.
    10. Tao, Y.; Kanoh, H.; Abrams, L.; Kaneko, K. Chem. ReV. 2006, 106, 896.
    11. Demontis, P.; Suffritti, G. B. Chem. ReV. 1997, 97, 2845.
    12. Ivanova Shor, E. A.; Shor, A. M.; Nasluzov, V. A.; Vayssilov, G. N.; Rosch, N. J. Chem. Theory Comput. 2005, 1, 459.
    13. Corma, A.; Martin-Aranda, R. M.; Sanchez, F. J. Catal. 1990, 126, 192.
    14. van de Water, L. G. A.; van der Waal, J. C.; Jansen, J. C.; Maschmeyer, T. J. Catal. 2004, 223, 170.
    15. Jones C. W., Science 2003, 300, 439.
    16. Yamamoto K., Sakata Y., Nohara Y., Takahashi Y., Tatsumi T., Science 2003, 300, 470.
    17. A. Zheng, L. Wang, L. Chen, Y. Yue, C. Ye, X. Lu, F. Deng, ChemPhysChem, 2007, 8, 231.
    18. Boronat, M.; Zicovich-Wilson, C. M.; Viruela, P.; Corma, A. Chem. Eur. J. 2001, 7, 1295.
    19. Boronat, M.; Viruela, P. M.; Corma, A. J. Am. Chem. Soc. 2004, 126, 3300.
    20. Hansen, N.; Bruggemann, T.; Bell, A. T.; Keil, F. J. J. Phys. Chem. C, 2008, 112, 15411.
    21. Wang Y., Zhou D. H., Yang G., Liu X. C., Ma D., Liang D. B., Bao X. H., Chem. Phys. Letters, 2004, 388, 363.
    22. Bao Y., Zhou D. H., Yang M. M., Xin C. B., Wu Y., Chin. J. Inorg. Chem., 2005, 21, 971.
    23. Wang Y. , Yang G. , Zhou D. H. , Liu X. C. , Bao X. H., J. Phys. Chem. B, 2004, 108, 18228.
    24. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.,; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian03 (ReVisionA.1);Gaussian, Inc.: Pittsburgh, PA, 2003.
    25. Franke M.E., Sierka M., Simon U., Sauer J., Phys. Chem. Chem. Phys., 2002, 4, 5207.
    26. Fermann J.T., Auerbach S.M., J. Phys. Chem. A, 2001, 105, 2879.
    27. Sierka M., Sauer J., J. Phys. Chem. B, 2001, 105, 1603.
    28. Ryder J.A., Chakraborty A.K., Bell A.T., J. Phys. Chem. B 2000, 104, 998.
    29. Fermann J.T., Blanco C., Auerbach S., J. Chem. Phys., 2000, 112, 6779.
    30. Fermann J.T., Auerbach S., J. Chem. Phys., 2000, 112, 6787.
    31. Tao, Y.; Kanoh, H.; Abrams, L.; Kaneko, K. Chem. ReV. 2006, 106, 896.
    32. Demontis, P.; Suffritti, G. B. Chem. ReV. 1997, 97, 2845.
    33. Concepcion-Heydorn, P.; Jia, C.; Herein, D.; Pfander, N.; Karge, H. G.; Jentoft, F.C. J. Mol. Catal. A 2000, 162, 227.
    34. Xia Y., Mokaya R., Angew. Chem. 2003, 115, 2743; Angew. Chem. Int. Ed. 2003, 42, 2639.
    35. Yamamoto K., Sakata Y., Nohara Y., Takahashi Y., Tatsumi T., Science 2003, 300, 470
    
    
    1. Timoshkin A. Y.; Frenking G. J. Am. Chem. Soc. 2002, 124, 7240.
    2. Uddin, J.; Boehme, C.; Frenking, G. Organometallics 2000, 19, 571.
    3. Uddin, J.; Frenking, G. J. Am. Chem. Soc. 2001, 123, 1683.
    4. Resa, I.; Carmona, E.; Gutierrez-Puebla, E.; Monge, A. Science 2004, 305, 1136.
    5. Xie, Y. M.; Schaefer, H. F.; Jemmis, E. D. Chem. Phys. Lett. 2005, 402, 414.
    6. Xie, Y. M.; Schaefer, H. F.; King, R. B. J. Am. Chem. Soc. 2005, 127, 2818.
    7. Kang, H. S. J. Phys. Chem. A 2005, 109, 4342.
    8. del R?o, D.; Galindo, A.; Resa, I.; Carmona, E. Angew. Chem. Int. Ed. 2005, 44, 1244
    9. Grirrane, A.; Resa, I.; Rodriguez, A.; Carmona, E.; Alvarez, E.; Gutierrez-Puebla, E.; Monge, A.; Galindo, A.; del Río, D.; Andersen, R. A. J. Am. Chem. Soc. 2007, 129, 693.
    10. Timoshkin, A. Y.; Schaefer, H. F. Organometallics 2005, 24, 3343.
    11. Merino, G.; Beltran, H. I.; Vela, A. Inorg. Chem. 2006, 45, 1091.
    12. Gamer, M. T.; Roesky, P. W.; Konchenko, S. N.; Nava, P.; Ahlrichs, R. Angew. Chem. Int. Ed. 2006, 45, 4447.
    13. Rayón, V. M.; Frenking, G. Chem. Eur. J. 2002, 8, 4693.
    14. Dohmeier, C.; Baum, E.; Ecker, A.; K?ppe,R.; Schn?ckel, H. Organometallics 1996, 15,4702.
    15. Tsuzuki, S.; Honda, K.; Uchimaru, T.; Mikami, M.; Tanabe, K. J. Am. Chem. Soc. 2002, 124, 104.
    16. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko,A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.,; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian03 (ReVisionA.1);Gaussian, Inc.: Pittsburgh, PA, 2003.
    17. Langmuir, I. J. Am. Chem. Soc. 1919, 41, 868.
    1.“Physics and Chemistry of Metal Cluster Compounds”: Physics and Chemistry of Materials with Low-Dimensional Structures, Vol. 18 (Eds.: F. LMvy, E. Mooser, L. J. de Jongh), Springer, Heidelberg, 1994.
    2. Resa, I.; Carmona, E.; Gutierrez-Puebla, E.; Monge, A. Science 2004, 305, 1136.
    3. del Rio, D.; Galindo, A.; Resa, I.; Carmona, E. Angew. Chem. 2005, 117, 1270; Angew. Chem., Int. Ed. 2005, 44, 1244.
    4. Xie, Y.; Schaefer, H. F.; King, R. B. J. Am. Chem. Soc. 2005, 127, 2818.
    5. Zhou, J.; Wang, W. N.; Fan, K. N. Chem. Phys. Lett. 2006, 424, 247.
    6. Wang, H. Y.; Xie, Y. M.; King, R. B.; Schaefer, H. F. J. Am. Chem. Soc. 2005, 127, 11646.
    7. Xie, Y.; Schaefer, H. F.; Jemmis, E. D. Chem. Phys. Lett. 2005, 402, 414
    8. Kang, H. S. J. Phys. Chem. A 2005, 109, 4342.
    9. Timoshkin, A. Y.; Schaefer, H. F. Organometallics 2005, 24, 3343.
    10. Merino, G.; Beltran, H. I.; Vela, A. Inorg. Chem. 2006, 45, 1091.
    11. He, N.; Xie, H. B.; Ding, Y. H., Organometallics 2007, 26, 6839.
    12. Van der Maelen, J. F.; Gutierrez-Puebla, E.; Monge, A.; Garcia-Granda, S.; Resa, I.; Carmona, E.; Fernandez-Diaz, M. T.; McLntyre, G. J.; Pattison, P.; Weber, H. P., Acta Crystallographica Section B Structural Science 2007, 63, 862.
    13. Velazquez, A.; Fernandez, I.; Frenking, G.; Merino, G., Organometallics 2007, 26, 4731.
    14. Liu, Z. Z.; Tian, W. Q.; Feng, J. K.; Li, W. Q.; Cui, Y. H., Journal of Molecular Structure-Theochem 2007, 809, 171.
    15. Kan, Y. H., Journal of Molecular Structure-Theochem 2007, 805, 127.
    16. Pandey, K. K., Journal of Organometallic Chemistry 2007, 692, 1058.
    17. Grirrane, A.; Resa, I.; Rodriguez, A.; Carmona, E.; Alvarez, E.; Gutierrez-Puebla, E.; Monge, A.; Galindo, A.; del Rio, D.; Andersen, R. A., J. Am. Chem. Soc. 2007, 129, 693.
    18. Philpott, M. R.; Kawazoe, Y., Journal of Molecular Structure-Theochem 2006,773, 43.
    19. Li, Q. S.; Xu, Y., J. Phys. Chem. A 2006, 110, 11898.
    20. Pauling, L. J. Am. Chem. Soc. 1931, 53, 3225.
    21. Farrar, J. M.; Lee, Y. T. J. Chem. Phys. 1975, 63, 3639.
    22. Hoffmann, S. M. A.; Smith, D. J.; Bradshaw, N.; Grice, R. Mol. Phys. 1986, 57, 219.
    23. Choua, S.; Dutan, C.; Cataldo, L.; Berclaz, T.;Geoffroy, M.; Mézailles, N.; Moores, A.; Ricard, L.; Le Floch, P. Chem. Eur. J. 2004, 10, 4080.
    24. Cataldo, L.; Choua, S.; Berclaz, T.; Geoffroy, M.; Mézailles, N.; Ricard, L.; Mathey, F.; Le Floch, P. J. Am. Chem. Soc. 2001, 123, 6654.
    25. Canac, Y.; Bourissou, D.; Baceiredo, A.; Gornitzka, H.; Schoeller, W. W.; Bertrand, G.; Science 1998, 279, 2080.
    26. Hoefelmeyer, J. D.; Gabba?, F. P. J. Am. Chem. Soc. 2000, 122, 9054
    27. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head–Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.6; Gaussian, Inc.: Pittsburgh, PA, 1998.
    28. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623
    29. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553.
    30. Liu, B.; McLean, A. D. J. Chem. Phys. 1973,59, 4557.
    31. (a) Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980, 102, 7211. (b) Brunck, T.K.; Weinhold, F. J. Am. Chem. Soc. 1979, 101, 1700. (c) Wesenberg, G.; Weinhold, F. Int. J. Quant. Chem. 1982, 21, 487. (d) Reed, A. E.; Weinhold, F. Isr. J. Chem. 1991, 31, 277. (e) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. ReV. 1988, 88, 899.
    32. Schaftenaar, V. MOLDEN; CAOS/CAMM Center: The Netherlands, 1991.
    33. Wiberg, K. B. Tetrahedron 1968, 24, 1083.
    34. Bauschlicher, Jr. C. W.; Langhoff, S. R.; Partridge, H. J. Chem. Phys. 1992, 96, 1240
    35. Dean, J. A. Lange’s handbook of chemistry, (12th Edition), 1979, 3-120.
    36. (a) Lee, T. J.; Rice, J. E.; Scuseria, G. E.; Schaefer, H. F. Theor. Chim. Acta 1989,
    75, 81. (b) Lee, T. J.; Taylor, P. R. Int. J. Quantum Chem. 1989, 23, 199.
    37. Gschneidner, Jr. K. A. Solid State Phys. 1964, 16, 275
    38. Jones, R. O.; Lichtenstein, A. I.; Hutter, J. J. Chem. Phys. 1997, 106, 4566
    39. Curran, D. P.; Tamine, J. J. Org. Chem. 1991, 56, 2746.
    40. Barth, F.; O-Yang, C. Tetrahedron Lett. 1990, 31, 1121.
    41. Yorimitsu, H.; Nakamura, T.; Shinokubo, H.; Oshima, K. J. Org. Chem. 1998, 63, 8604.
    42. Yorimitsu, H.; Nakamura, T.; Shinokubo, H.; Oshima, K.; Omoto, K.; Fujimoto, H. J. Am. Chem. Soc. 2000, 122, 11041.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700