多移动机器人系统运动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机器人技术的发展使机器人的能力不断提高,机器人应用的领域和范围不断扩大。深海作业、核工业故障处理、太空中操作等都迫切需要机器人进入角色。一方面,机器人作业任务的复杂性,迫切需要多机器人的协调与合作来完成。另一方面,通过多机器人间的协调与合作,可以提高机器人系统的工作效率,并使系统具有更强的适应能力和容错能力。在多机器人系统的研究中,多机器人系统运动的协调控制是一个热点研究主题,是该领域中的一个基础性研究方向。本文对多移动机器人系统的体系结构、路径规划、典型协作任务(编队控制与追捕)等议题开展研究,论文主要内容和取得研究结果如下:
     论文在综述多机器人系统国内外研究现状的基础上,讨论了多机器人系统体系结构问题,定义了整个系统内的多机器人的相互关系和功能分配,确定了系统和各机器人之间的信息流通关系及其逻辑上的拓扑结构,给出了控制多机器人并使其可以协调合作的机制和计算结构。根据Pioneer 2-DXe型移动智能机器人的特点,本文提出一种基于开放式多智能体结构(open agent architecture,OAA)的多移动机器人协调控制系统,并且依照这一架构,采用多台Pioneer 2DX型机器人和OAA2.3.1软件平台,搭建了一个多机器人实物实验系统。该控制系统具有开放性、即插即用、分布式计算、多模式输入等优良特性,能满足多机器人系统适应未知复杂环境的需要。
     本文提出一种基于粒子群优化算法(particle swarm optimization, PSO)的移动机器人全局路径规划方法:首先使用自由空间法构建机器人工作空间自由运动链接图,用图论方法获得链接图网络最短路径;后用PSO优化算法对已得路径进行二次寻优。针对PSO的局部极小问题,提出一种带变异算子的PSO算法,以提高算法搜索成功率。
     多机器人路径规划不但要解决避障问题,还要解决避碰问题。本文根据多智能体系统理论,提出一种基于门限偶极子模型(gated dipole model)的分布式多机器人路径规划算法:每个机器人作为一个智能体,独立使用门限偶极子模型进行路径规划。机器人通过传感器以及与其他智能体的通信来获取环境的信息,采用设置动态优先级的方法实现各机器人之间的避碰。
     编队控制是一个典型的多机器人协作问题。本文提出一种基于行为的多机器人任意队形控制算法。针对基于行为法只存在局部队形反馈,不能保证队形稳定性的缺陷,结合OAA结构特点,提出带整体队形反馈的编队控制策略,并用李雅普诺夫稳定性定理证明该控制策略是渐近稳定的。
     强化学习是一种新的机器学习方法,在机器人领域中有广泛的应用。本文提出一种基于多智能体独立强化学习算法,实现多机器人围捕多入侵者的协作任务。建立了一个能包含大量机器人的多机器人系统仿真实验平台,分析了各种实验条件对机器人群体行为性能的影响;采用PSO算法寻找不同优化指标下的最佳实验配置。
With the development of robotics, the capabilities of robot have been improved ceaselessly and its application areas have been extended greatly. Robots are being expected to do more complicated tasks, such as exploration under deep ocean and even the treatment of nuclear industry fault, operation in outer space etc. On the one hand, when the tasks are too complex to be set up with a single robot, they can be accomplished through the coordination and collaboration of multiple robots. On the other hand, the coordination and collaboration among multiple robots can improve the efficiency of robots system and make the system be more adaptive and fault tolerant. The coordinate control of multiple mobile robots is always a hot and essential topic in multi-robot system domain. In this dissertation, the architecture, path planning and some typical coordinate tasks of multi-robot system, such as formation control and pursuit-evasion game, have been discussed thoroughly. The main contents and contributions of this dissertation are as the followings:
     Based on the survey of the research status at home and abroad, one contribution is to establish the architecture for multi-robot system, which defines the relationship and function allocation among multiple robots in the system, specifies the information flow and the logical topological structure between the system and the robots, and presents the mechanism and algorithm structure which can control multiple robots and make them act cooperatively. According to the characteristics of Pioneer 2-Dxe intelligent mobile robot, a multi-robot coordination control system based on the open agent architecture (OAA) is presented, and a physical multi-robot experiment platform is constructed, using several Pioneer 2-Dxe mobile robots as hardware platform and OAA2.3.1 as software platform. This system has some advantages, such as openness, plug and play, distributed computation and multimodal, which can satisfy the requirement for multi-robot system working in unknown complex environment.
     A novel global path planning method for mobile robot based on particle swarm optimization is proposed in the dissertation. First the free motion link graph is built for the working space of the mobile robot by using free space method, and the shortest path from the start point to the goal point in the graph is obtained by Dijkstra algorithm. Then PSO is adapted to optimal the path that already got. Aiming at the shortcoming of the PSO, which is, easily plunging into the local minimum, the dissertation puts forward an advanced PSO algorithm with the mutation operator.
     Multi-robot path planning has to deal with not only the obstacle avoidance problem, but also the collision avoidance problem. According to multi-agent system theroy, a distributed multi-robot path planning algorithm based on gated dipole model is presented. Each robot as an agent uses the modal to plan its optimal path independently and obtain the environment information by sensor and the communication between other robots. The robots use dynamic priority method to avoid the collision with each other.
     Formation control is a typical multi-robot coordinational problem. A behavior based arbitrary formation control algorithm is discussed. The behavior based method exist only local formation feekback, and cannot guarantee the stabilization of the formation. Considering the OAA character, the dissertation proposed a formation control strategy with global formation feedback and it is proved that this control strategy is asymptotical stable by Liapunov stability theory.
     Reinforcement learning is a novel mechine learning method and has been widely used in robot domain. To carry out a coordination task that multiple robots surround multiple invaders, a multi-agent individual reinforcement learning algorithm is used. An experiment simulation platform consisting of many robots and targets is built. Several experimental conditions are designed and their influences on the robots’group behavior performance are discussed. PSO algorithm is used to find out the optimal experiment configuration under different optimal criterions.
引文
[1]谭民,王硕,曹志强.多机器人系统.北京:清华大学出版社, 2005. 1~20
    [2]高志军,颜国正,丁国清, et al.多机器人协调与合作系统的研究现状和发展.光学精密工程. 2001, 9(2): 99~103
    [3] Y. U. Cao, A. S. Fukunaga, A. B. Kahng. Cooperative mobile robotics: antecedents and directions. Autonomous Robots. 1997, 4(1): 7~27
    [4]徐国华.机器人群体协调与控制的研究及其应用: [博士后研究工作报告].北京:中国科学院自动化研究所, 2000.
    [5] J.-H. Lee, K. Morioka, N. Ando, et al. Cooperation of distributed intelligent sensors in intelligent environment. IEEE/ASME Transactions on Mechatronics. 2004, 9(3): 535~543
    [6]张芳,林良明.多移动机器人协调系统体系结构与相关问题.机器人. 2001, 23(6): 554~558
    [7]曹志强.未知环境下多机器人协调与控制的队形问题研究: [博士学位论文].北京:中国科学院自动化研究所, 2002.
    [8] K. Jin, P. Liang, G. Beni. Stability of synchronized distributed control of discrete swarm structures. in Proceedings - IEEE International Conference on Robotics and Automation, San Diego, CA, USA: Publ by IEEE, Piscataway, NJ, USA, 1994. 1033~1038
    [9] H. Asama, K. Ozaki, Y. Ishida, et al. Collaborative team organization using communication in a decentralized robotic system. in IEEE International Conference on Intelligent Robots and Systems, Munich, Ger: IEEE, Piscataway, NJ, USA, 1994. 816~823
    [10] L. E. Parker. ALLIANCE: An architecture for fault tolerant multirobot cooperation. IEEE Transactions on Robotics and Automation. 1998, 14(2): 220~240
    [11] L. E. Parker. L-ALLIANCE: task-oriented multi-robot learning in behavior-based systems. Advanced Robotics. 1997, 11(4): 305~322
    [12] I. A. Wagner, M. Lindenbaum, A. M. Bruckstein. Distributed covering by ant-robots using evaporating traces. IEEE Transactions on Robotics and Automation. 1999, 15(5): 918~933
    [13] K. S. Evans, C. Unsal, J. S. Bay. Reactive coordination scheme for a many-robot system. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 1997, 27(4): 598~610
    [14] W. Jing, S. Premvuti. Resource sharing in distributed robotic systems based on a wireless medium access protocol (CSMA/CD-W). in Distributed Autonomous Robotic Systems, Saitama, Japan: Springer-Verlag, 1994. 211~223
    [15] E. Yoshida, M. Yamamoto, T. Arai, et al. A design method of local communication area in multiplemobile robot system. in Proceedings of 1995 IEEE International Conference on Robotics and Automation (Cat. No.95CH3461-1), Nagoya, Japan: IEEE, 1995. 2567~2572
    [16]刘任平.多机器人通信研究: [博士学位论文].北京:北京航空航天大学, 1999.
    [17] D. J. Stilwell, J. S. Bay. Toward the development of a material transport system using swarms of ant-like robots. in Proceedings - IEEE International Conference on Robotics and Automation, Atlanta, GA, USA: Publ by IEEE, Piscataway, NJ, USA, 1993. 766~771
    [18] M. Hashimoto, F. Oba, T. Eguchi. Dynamic control approach for motion coordination of multiple wheeled mobile robots transporting a single object. in IROS '93. Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems. Intelligent Robots for Flexibility (Cat. No.93CH3213-6), Yokohama, Japan: IEEE, 1993. 1944~1951
    [19] B. R. Donald, J. Jennings, D. Rus. Analyzing teams of cooperating mobile robots. in Proceedings 1994 IEEE International Conference on Robotics and Automation (Cat. No.94CH3375-3), San Diego, CA, USA: IEEE Comput. Soc. Press, 1994. 1896~1903
    [20] S. Hackwood, J. Wang. The engineering of cellular robotic systems. in Proceedings IEEE International Symposium on Intelligent Control 1988, Arlington, VA, USA: IEEE Comput. Soc. Press, 1989. 70~75
    [21] T. Fukuda, S. Nakagawa, Y. Kawauchi, et al. Structure decision method for self organising robots based on cell structures - CEBOT. Scottsdale, AZ, USA: Publ by IEEE, Piscataway, NJ, USA, 1989. 695~700
    [22] T. Ueyama, T. Fukuda. Self-organization of cellular robots using random walk with simple rules. in Proceedings - IEEE International Conference on Robotics and Automation, Atlanta, GA, USA: Publ by IEEE, Piscataway, NJ, USA, 1993. 595~600
    [23] H. Asama, K. Ozaki, H. Itakura, et al., "Collision avoidance among multiple mobile robots based on rules and communication," Publ by NASA, Washington, DC, USA 0499-9320, 1990.
    [24] P. Caloud, C. Wonyun, J. C. Latombe, et al. Indoor automation with many mobile robots. in Proceedings. IROS '90. IEEE International Workshop on Intelligent Robots and Systems '90. Towards a New Frontier of Applications (Cat. No.90TH0332-7), Ibaraki, Japan: IEEE, 1990. 67~72
    [25] C. Le Pape. A combination of centralized and distributed methods for multi-agent planning and scheduling. Cincinnati, OH, USA: Publ by IEEE, Los Alamitos, CA, USA, 1990. 488~493
    [26] G. Yi, L. E. Parker. A distributed and optimal motion planning approach for multiple mobile robots. in Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), Washington, DC, USA: IEEE, 2002. 2612~2619
    [27]王军,苏剑波,席裕庚.多传感器集成与融合概述.机器人. 2001, 23(2): 183~186
    [28]王越超.多机器人协作系统研究: [博士学位论文].哈尔滨:哈尔滨工业大学, 1999.
    [29] H. Sugie, Y. Inagaki, S. Ono, et al. Placing objects with multiple mobile robots - mutual help using intention inference. in Proceedings - IEEE International Conference on Robotics and Automation, Nagoya, Jpn: IEEE, Piscataway, NJ, USA, 1995. 2181~2186
    [30] K. Kosuge, T. Oosumi, K. Chiba. Load sharing of decentralized-controlled multiple mobile robots handling a single object. in Proceedings - IEEE International Conference on Robotics and Automation, Albuquerque, NM, USA: IEEE, Piscataway, NJ, USA, 1997. 3373~3378
    [31] T. Fujii, Y. Arai, H. Asama, et al. Multilayered reinforcement learning for complicated collision avoidance problems. in Proceedings - IEEE International Conference on Robotics and Automation, Leuven, Belgium: IEEE, Piscataway, NJ, USA, 1998. 2186~2191
    [32] F. Ho, M. Kamel. Learning coordination strategies for multiple robots. in IEEE International Conference on Intelligent Robots and Systems, Victoria, Can: IEEE, Piscataway, NJ, USA, 1998. 279~285
    [33] C.-F. Juang, J.-Y. Lin, C.-T. Lin. Genetic reinforcement learning through symbiotic evolution for fuzzy controller design. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 2000, 30(2): 290~301
    [34] L. Chin-Teng, I. F. Chung. A reinforcement neuro-fuzzy combiner for multiobjective control. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics). 1999, 29(6): 726~744
    [35] K. C. Ng, M. M. Trivedi. Neuro-fuzzy controller for mobile robot navigation and multirobot convoying. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 1998, 28(6): 829~840
    [36]范永.多机器人协作与控制研究: [博士学位论文].北京:中国科学院自动化研究所, 2000.
    [37] P. Freedman. Time, Petri nets, and robotics. IEEE Transactions on Robotics and Automation. 1991, 7(4): 417~433
    [38] K. Jamie, R. K. Pretty, R. G. Gosine. Coordinated execution of tasks in a multiagent environment. IEEE Transactions on Systems, Man & Cybernetics, Part A (Systems & Humans). 2003, 33(5): 615~620
    [39] R. M. Bastos, F. M. De Oliveira, J. P. M. De Oliveira. Decentralised resource allocation planning through negotiation. in Intelligent Systems for Manufacturing: Multi-Agent Systems and Virtual Organizations. Proceedings of the BASYS'98-3rd IEEE/IFIP International Conference on Information Technology for Balanced Automation Systems in Manufacturing, Prague, Czech Republic: Kluwer Academic Publishers, 1998. 67~76
    [40] T. Fukuda, D. Funato, K. Sekiyama, et al. Evaluation on flexibility of Swarm Intelligent System. in Proceedings - IEEE International Conference on Robotics and Automation, Leuven, Belgium: IEEE, Piscataway, NJ, USA, 1998. 3210~3215
    [41] E. H. Durfee, V. R. Lesser, D. D. Corkill. Trends in cooperative distributed problem solving. IEEETransactions on Knowledge and Data Engineering. 1989, 1(1): 63~83
    [42] A. Matsumoto, H. Asama, Y. Ishida, et al. Communication in the autonomous and decentralized robot system ACTRESS. in Proceedings. IROS '90. IEEE International Workshop on Intelligent Robots and Systems '90. Towards a New Frontier of Applications (Cat. No.90TH0332-7), Ibaraki, Japan: IEEE, 1990. 835-875
    [43] J. Rosenschein. Consenting agents. Negotiation mechanisms for multi-agent systems. Chambery, Fr: Publ by Morgan Kaufmann Publ Inc, San Mateo, CA, USA, 1993. 792~799
    [44] D. Guzzoni, A. Cheyer, L. Julia, et al. Many robots make short work report of the SRI international mobile robot team. AI Magazine. 1997, 18(1): 55~64
    [45]陈卫东,席裕庚,顾冬雷等.一个面向复杂任务的多机器人分布式协调控制系统.控制理论与应用. 2002, 19(4): 505~510
    [46] T. C. Lueth, T. Laengle. Task description, decomposition, and allocation in a distributed autonomous multi-agent robot system. in IEEE International Conference on Intelligent Robots and Systems, Munich, Ger: IEEE, Piscataway, NJ, USA, 1994. 1516~1523
    [47] W. Tianbin, Q. C. Meng. Multi-robot adversarial system based on multi-agent theory. in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Yasmine Hammamet, Tunisia: Institute of Electrical and Electronics Engineers Inc., 2002. 545~547
    [48] Y. Gao, J. Zhao, J. Yan, et al. Multi-robot tele-operation system based on multi-Agent Structure. in IEEE International Conference on Mechatronics and Automation, ICMA 2005, Niagara Falls, ON, Canada: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2005. 1726~1730
    [49] L. Cheng, Y. Wang, Q. Zhu. Communication-based multiple mobile robots formation control system. Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition). 2005, 33(11): 67~70
    [50] R. Alami, S. Fleury, M. Herrb, et al. Multi-robot cooperation in the MARTHA project. IEEE Robotics & Automation Magazine. 1998, 5(1): 36~47
    [51] S. Munkeby, J. Spofford. UGV/Demo II program: status through Demo C and Demo II preparations. in Proc. SPIE - Int. Soc. Opt. Eng. (USA), Orlando, FL, USA: SPIE-Int. Soc. Opt. Eng, 1996. 110~121
    [52] C. M. Shoemaker, J. A. Bornstein. The Demo III UGV program: a testbed for autonomous navigation research. in Proceedings of the 1998 IEEE International Symposium on Intelligent Control (ISIC) held jointly with IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA) Intelligent Systems and Semiotics (ISAS) (Cat. No.98CH36262)), Gaithersburg, MD, USA: IEEE, 1998. 644~651
    [53] M. Rosenblum, B. Gothard. Getting more from the scene for autonomous navigation: UGV DemoIII program. Proceedings of SPIE - The International Society for Optical Engineering. 1999, 3838: 176~187
    [54]陈卫东,董胜龙,席裕庚.基于开放式多智能体结构的分布式自主机器人系统.机器人. 2001, 23(1): 45~50
    [55]陈卫东,顾冬雷,席裕庚.基于多模式交互的多移动机器人分布式合作系统.自动化学报. 2004, 30(5): 671~678
    [56]董胜龙,陈卫东,席裕庚.多移动机器人编队的分布式控制系统.机器人. 2000, 22(6): 433~438
    [57]董胜龙,席裕庚,陈卫东.多机器人不确定协作任务的动态优化方法.机器人. 2002, 24(1): 31~35
    [58]顾冬雷,陈卫东,席裕庚.多智能体移动机器人物体收集系统.机器人. 2001, 23(4): 326~333
    [59] Wang Yuechao, Tan Dalong, Huang Shan. MRCAS: a multi-agent based implementation of multi-robot cooperative assembly system. in Proceedings of 3rd Asian Conference on Robotics and Its Application, 1997. 97~102
    [60]周明,孙茂相,尹朝万, et al.多移动机器人分布式智能避撞规划系统.机器人. 1999, 21(2): 139~143
    [61]朱枫,谈大龙.基于初等运动的多机器人避碰及死锁预防.计算机学报. 2001, 24(12): 1250~1255
    [62]景兴建,王越超,谈大龙.基于仿生行为决策规则的协调运动行为.控制理论与应用. 2003, 20(3): 407~410
    [63]王硕,谭民.基于协商和意愿强度的多自主移动机器人避碰协作.高技术通讯. 2001, (10): 70~73
    [64]王硕,张斌,谭民, et al.多自主移动机器人计算机仿真系统的设计与实现.系统仿真学报. 2002, 14(2): 225~228
    [65]喻俊志,王硕,谭民.多仿生机器鱼控制与协调.机器人技术与应用. 2003, (3): 27~35
    [66]喻俊志,陈尔奎,王硕, et al.仿生机器鱼研究的进展与分析.控制理论与应用. 2003, 20(4): 485~491
    [67]陈尔奎,喻俊志,王硕, et al.多仿生机器鱼群体及单体控制体系结构的研究.中国科学院研究生院学报. 2003, 20(2): 232~237
    [68]李实,陈江,孙增圻.清华机器人足球队的结构设计与实现.清华大学学报(自然科学版). 2001, 47(7): 94~97
    [69]韩学东,洪炳熔,孟伟.多机器人任意队形分布式控制研究.机器人. 2003, 25(1): 66~72
    [70]洪炳熔,韩学东,孟伟.机器人足球比赛研究.机器人. 2003, 25(4): 373~377
    [71] Z. Cai, Z. Peng. Cooperative coevolutionary adaptive genetic algorithm in path planning of cooperative multi-mobile robot systems. Journal of Intelligent and Robotic Systems: Theory and Applications. 2002, 33(1): 61~71
    [72]丁滢颍,何衍,蒋静坪.基于蚁群算法的多机器人协作策略.机器人. 2003, 25(5): 414~418
    [73]程磊.多移动机器人协调控制系统的研究与实现: [博士学位论文].武汉:华中科技大学, 2005.
    [74]蒋新松.机器人学导论.沈阳:辽宁科学技术出版社, 1994. 511~516
    [75]李磊,叶涛,谭民.移动机器人技术研究现状与未来.机器人. 2002, 24(5): 475~480
    [76] J. A. Janet, R. C. Luo, M. G. Kay. The essential visibility graph: an approach to global motion planning for autonomous mobile robots. in Proceedings of 1995 IEEE International Conference on Robotics and Automation (Cat. No.95CH3461-1), Nagoya, Japan: IEEE, 1995. 1958~1963
    [77] K. Azarm, G. Schmidt. A decentralized approach for the conflict-free motion of multiple mobile robots. in Adv. Robot. (Netherlands), Osaka, Japan: VSP, 1997. 323~340
    [78] J. Barraquand, B. Langlois, J.-C. Latombe. Numerical potential field techniques for robot path planning. IEEE Transactions on Systems, Man and Cybernetics. 1992, 22(2): 224~241
    [79] S. M. LaValle, S. A. Hutchinson. Optimal motion planning for multiple robots having independent goals. IEEE Transactions on Robotics and Automation. 1998, 14(6): 912~915
    [80] S. Kato, J. Takeno. Fundamental studies on the application of traffic rules to the mobile robot world: proposal and feasibility study of the traffic rules application system (TRAS). in 91 ICAR. Fifth International Conference on Advanced Robotics. Robots in Unstructured Environments (Cat. No.91TH0376-4), Pisa, Italy: IEEE, 1991. 1063~1068
    [81] M. S. Wilson. Reliability and flexibility - a mutually exclusive problem for robotic assembly? IEEE Transactions on Robotics and Automation. 1996, 12(2): 343~347
    [82] M. Bennewitz, W. Burgard, S. Thrun. Optimizing schedules for prioritized path planning of multi-robot systems. in Proceedings - IEEE International Conference on Robotics and Automation, Seoul: Institute of Electrical and Electronics Engineers Inc., 2001. 271~276
    [83] J. Ota, N. Miyata, T. Arai, et al. Transferring and regrasping a large object by cooperation of multiple mobile robots. in IEEE International Conference on Intelligent Robots and Systems, Pittsburgh, PA, USA: IEEE, Piscataway, NJ, USA, 1995. 543~548
    [84] A. Yamashita, M. Fukuchi, J. Ota, et al. Motion planning for cooperative transportation of a large object by multiple mobile robots in a 3D environment. in Proceedings - IEEE International Conference on Robotics and Automation, San Francisco, CA, USA: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ, USA, 2000. 3144~3151
    [85] T. Balch, R. C. Arkin. Behavior-based formation control for multirobot teams. IEEE Transactions on Robotics and Automation. 1998, 14(6): 926~939
    [86] J. P. Desai, J. Ostrowski, V. Kumar. Controlling formations of multiple mobile robots. in Proceedings - IEEE International Conference on Robotics and Automation, Leuven, Belgium: IEEE, Piscataway, NJ, USA, 1998. 2864~2869
    [87] J. P. Desai, V. Kumar, J. P. Ostrowski. Control of changes in formation for a team of mobile robots. Proceedings - IEEE International Conference on Robotics and Automation. 1999, 2: 1556~1561
    [88] R. Fierro, A. K. Das, V. Kumar, et al. Hybrid control of formations of robots. in Proceedings - IEEE International Conference on Robotics and Automation, Seoul: Institute of Electrical and Electronics Engineers Inc., 2001. 157~162
    [89]曹志强,张斌,谭民.基于行为的多移动机器人实时队形保持.高技术通讯. 2001, (10): 74~77
    [90] M. A. Lewis, K.-H. Tan. High precision formation control of mobile robots using virtual structures. Autonomous Robots. 1997, 4(4): 387~403
    [91]王醒策,张汝波,顾国昌.基于强化学习的多机器人编队方法研究.计算机工程. 2002, 28(6): 15~17
    [92]张汝波,施洋.基于模糊Q学习的多机器人系统研究.哈尔滨工程大学学报. 2005, 26(4): 477~481
    [93] Benda M, Jagannathan V, Dodhiawalla R. On optimal cooperation of knowledge sources. Seattle, USA: Boeing AI Center, 1985. Technical Report BCS-G2010-28
    [94] E. I. Osawa. A metalevel coordination strategy for reactive cooperation planning. in ICMAS-95 Proceedings. First International Conference on Multi-Agent Systems, San Francisco, CA, USA: AAAI Press, 1995. 297~303
    [95] J. Denzinger, M. Fuchs. Experiments in learning prototypical situations for variants of the pursuit game. in ICMAS-96 Proceedings. Second International Conference on Multi-Agent Systems, Kyoto, Japan: AAAI Press, 1996. 48~55
    [96] R. Vidal, S. Rashid, C. Sharp, et al. Pursuit-evasion games with unmanned ground and aerial vehicles. in Proceedings - IEEE International Conference on Robotics and Automation, Seoul: Institute of Electrical and Electronics Engineers Inc., 2001. 2948~2955
    [97] H. Yamaguchi. A cooperative hunting behavior by mobile robot troops. in Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), Leuven, Belgium: IEEE, 1998. 3204~3209
    [98] H. Yamaguchi. A distributed motion coordination strategy for multiple nonholonomic mobile robots in cooperative hunting operations. Robotics and Autonomous Systems. 2003, 43(4): 257~282
    [99] Grinton C. A tested for investigating agent effectiveness in a multi-agent pursuit game: [Doctor Dissertation]. Victoria, Australia: The University of Melboume, 1996.
    [100] Irwig K, Wobeke W. Multi-agent reinforcement learning with vicairous rewards. Computer andInformation Science. 1999, 34(4): 25~32
    [101] J. P. Hespanha, H. J. Kim, S. Sastry. Multiple-agent probabilistic pursuit-evasion games. in Proceedings of the IEEE Conference on Decision and Control, Phoenix, AZ, USA: IEEE, Piscataway, NJ, USA, 1999. 2432~2437
    [102] J. P. Hespanha, M. Prandini, S. Sastry. Probabilistic pursuit-evasion games: A one-step nash approach. in Proceedings of the IEEE Conference on Decision and Control, Sysdney, NSW: Institute of Electrical and Electronics Engineers Inc., 2000. 2272~2277
    [103] R. Vidal, O. Shakernia, H. J. Kim, et al. Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation. IEEE Transactions on Robotics and Automation. 2002, 18(5): 662~669
    [104]曹志强,张斌,王硕, et al.未知环境中多移动机器人协作围捕的研究.自动化学报. 2003, 29(4): 536~543
    [105]苏治宝,陆际联,童亮.一种多移动机器人协作围捕策略.北京理工大学学报. 2004, 24(5): 403~406
    [106]王月海,洪炳熔.机器人部队运动多目标合作追捕算法.西安交通大学学报. 2003, 37(6): 573~576
    [107]周浦城,洪炳镕,王月海.动态环境下多机器人合作追捕研究.机器人. 2005, 27(4): 289~295
    [108]李淑琴,王欢,李伟, et al.基于动态角色的多移动目标围捕问题算法研究.系统仿真学报. 2006, 18(2): 362~365
    [109]黄闪,蔡鹤皋,谈大龙.面向装配作业的多机器人合作协调系统.机器人. 1999, 21(1): 50~56
    [110] D. L. Martin, A. J. Cheyer. The open agent architecture: a framework for building distributed software systems. Applied Artificial Intelligence. 1999, 13(1): 91~128
    [111] Adam Cheyer, David Martin. The open agent architecture. Journal of Autonomous Agents and Multi-agent Systems. 2001, 4(1): 143~148
    [112] A. R. Company. Aria Reference.
    [113] L. ActivMedia Robots. Pioneer 2 Operations Manual.
    [114] S. R. I. International. Open Agent Architecture (OAA) Developer's Guide. http://www.ai.sri.com/~oaa/distribution/v2.3/2.3.1/. 2005:
    [115] K. G. Konolige. Saphira Software Manual. http://www.ai.sri.com/~konolige/saphira. 2001:
    [116] K. G. Konolige. COLBERT:A Language for Reactive Control in Saphira. http://www.ai.sri.com/~konolige/saphira. 2001:
    [117] S. Liang. The Java Native Interface---Programmer's Guide and Specification. Addison Wesley Longman, Inc., 1999.
    [118] J. Kennedy, R. Eberhart. Particle swarm optimization. in IEEE International Conference on NeuralNetworks - Conference Proceedings, Perth, Aust: IEEE, Piscataway, NJ, USA, 1995. 1942~1948
    [119] J. Kennedy, R. C. Eberhart. Swarm Intelligence. San Francisco: Morgan Kaufmann division of Academic Press, 2001.
    [120] R. C. Eberhart, Y. Shi. Comparison between Genetic Algorithms and Particle Swarm Optimization. Evolutionary Programming VII. 1998: 611~616
    [121] R. C. Eberhart, Y. Shi. Particle swarm optimization: Developments, applications and resources. in Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, Soul, 2001. 81~86
    [122] Y. Shi, R. Eberhart. A modified particle swarm optimizer. in 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage, AK, USA: IEEE, 1998. 69~73
    [123] M. Clerc, J. Kennedy. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation. 2002, 6(1): 58~73
    [124] M. K. Habib, H. Asama. Efficient method to generate collision free paths for an autonomous mobile robot based on new free space structuring approach. in Proceedings IROS '91. IEEE/RSJ International Workshop on Intelligent Robots and Systems '91. Intelligence for Mechanical Systems (Cat. No.91TH0375-6), Osaka, Japan: IEEE, 1991. 563~567
    [125] F. v. d. Bergh. An analysis of particle swarm optimization: [PhD thesis]. South Africa: University of Pretoria, 2002.
    [126] S. Grossberg. A neural theory of punishment and avoidance, ii: quantitative theory. Mathematical Biosciences. 1972, 15(3): 253~285
    [127] S. Grossberg, W. Gutowski. Neural dynamics of decision making under risk: affective balance theory. in IEEE First International Conference on Neural Networks, San Diego, CA, USA: SOS Printing, 1987. 31~38
    [128] H. Ogmen, S. Gagne. Neural network architectures for motion perception and elementary motion detection in the fly visual system. Neural Networks. 1990, 3(5): 487~505
    [129] S. X. Yang, M. Meng. Neural network approaches to dynamic collision-free trajectory generation. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 2001, 31(3): 302~318
    [130] M. A. Cohen, S. Grossberg. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Transactions on Systems, Man & Cybernetics. 1983, SMC-13(5): 815~826
    [131] S. Grossberg. Nonlinear neural networks: principles, mechanisms, and architectures. Neural Networks. 1988, 1(1): 17~61
    [132] R. W. Beard, J. Lawton, F. Y. Hadaegh. A coordination architecture for spacecraft formation control. IEEE Transactions on Control Systems Technology. 2001, 9(6): 777~790
    [133] Jiming Liu,靳小龙,张世武, et al.多智能体模型与实验.北京:清华大学出版社, 2003. 6~16
    [134]高阳,陈世福,陆鑫.强化学习研究综述.自动化学报. 2004, 30(1): 86~100
    [135] L. P. Kaelbling, M. L. Littman, A. W. Moore. Reinforcement learning: a survey. Journal of Artificial Intelligence Research. 1996, 4: 237~285
    [136]仲宇,顾国昌,张汝波.多智能体系统中的分布式强化学习研究现状.控制理论与应用. 2003, 20(3): 317~322
    [137] R. H. Crites, A. G. Barto. Elevator group control using multiple reinforcement learning agents. Machine Learning. 1998, 33(2-3): 235~262
    [138] G. H. Kim, C. S. G. Lee. Genetic reinforcement learning approach to the heterogeneous machine scheduling problem. IEEE Transactions on Robotics and Automation. 1998, 14(6): 879~893
    [139] T. Nakayama, S. Mikami, M. Wada. A realization of socially adaptive robots by competitive reinforcement learning. in Proceedings. 5th IEEE International Workshop on Robot and Human Communication RO-MAN'96 Tsukuba (Cat. No.96TH8179), Tsukuba, Japan: IEEE, 1996. 107~111
    [140] X.-W. Yan, Z.-D. Deng, Z.-Q. Sun. Competitive Takagi-Sugeno fuzzy reinforcement learning. Acta Automatica Sinica. 2002, 28(6): 873~880
    [141] M. Abramson, P. Pachowicz, H. Wechsler. Competitive Reinforcement Learning in Continuous Control Tasks. in Proceedings of the International Joint Conference on Neural Networks, Portland, OR, United States: Institute of Electrical and Electronics Engineers Inc., 2003. 1909~1914
    [142] M. L. Littman, T. L. Dean, L. P. Kaelbling. On the complexity of solving Markov decision problems. in Uncertainty in Artificial Intelligence. Proceedings of the Eleventh Conference (1995), Montreal, Que., Canada: Morgan Kaufmann Publishers, 1995. 394~402
    [143] M. L. Littman, C. Szepesvari. A generalized reinforcement-learning model: convergence and applications. in Machine Learning. Proceedings of the Thirteenth International Conference (ICML '96), Bari, Italy: Morgan Kaufmann Publishers, 1996. 310~318
    [144] H. Junling, M. P. Wellman. Multiagent reinforcement learning: theoretical framework and an algorithm. in Machine Learning. Proceedings of the Fifteenth International Conference (ICML'98), Madison, WI, USA: Morgan Kaufmann Publishers, 1998. 242~250
    [145] J. W. Sheppard. Colearning in differential games. Machine Learning. 1998, 33(2-3): 201~233
    [146]顾国昌,仲宇,张汝波.一种新的多智能体强化学习算法及其在多机器人协作任务中的应用.机器人. 2003, 25(4): 343~348
    [147] T. Yamaguchi, M. Miura, M. Yachida. Multi-agent reinforcement learning with adaptive mimetism. in IEEE Symposium on Emerging Technologies & Factory Automation, ETFA, Kauai, HI, USA: IEEE, Piscataway, NJ, USA, 1996. 288~294
    [148] B. Price, C. Boutilier. Implicit imitation in multiagent reinforcement learning. in Machine Learning. Proceedings of the Sixteenth International Conference (ICML'99), Bled, Slovenia: Morgan Kaufmann, 1999. 325~334
    [149] E. Kutschinski, T. Uthmann, D. Polani. Learning competitive pricing strategies by multi-agent reinforcement learning. Journal of Economic Dynamics and Control. 2003, 27(11-12): 2207~2218
    [150] P. Maes, R. A. Brooks. Learning to coordinate behaviors. in AAAI-90 Proceedings. Eighth National Conference on Artificial Intelligence, Boston, MA, USA: MIT Press, 1990. 796~802
    [151] S. Mahadevan, J. Connell. Automatic programming of behavior-based robots using reinforcement learning. Artificial Intelligence. 1992, 55(2-3): 311~365
    [152] A. Ram, J. C. Santamaria. A multistrategy case-based and reinforcement learning approach to self-improving reactive control systems for autonomous robotic navigation. in Proceedings of the Second International Workshop on Multistrategy Learning (MSL-93), Harpers Ferry, WV, USA: George Mason Univ, 1993. 259~275
    [153] T. Balch. Integrating learning with motor schema-based control for a robot soccer team. in RoboCup-97: Robot Soccer. World Cup I, Nagoya, Japan: Springer-Verlag, 1998. 483~491
    [154] T. Balch. Impact of diversity on performance in multi-robot foraging. Proceedings of the Interantional Conference on Autonomous Agents. 1999: 92~99
    [155] M. J. Mataric. Reinforcement learning in the multi-robot domain. Autonomous Robots. 1997, 4(1): 73~83
    [156] F. Michaud, M. J. Mataric. Learning from history for adaptive mobile robot control. in IEEE International Conference on Intelligent Robots and Systems, Victoria, Can: IEEE, Piscataway, NJ, USA, 1998. 1865~1870
    [157]顾冬雷,陈卫东,席裕庚.机器人足球赛基于增强学习的任务分工.机器人. 2000, 22(6): 482~498
    [158] E. Uchibe, K. Doya. Reinforcement learning with multiple heterogeneous modules: A framework for developmental robot learning. in Proceedings of 2005 4th IEEE International Conference on Development and Learning, Osaka, Japan: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2005. 87
    [159] R. Makar, S. Mahadevan, M. Ghavamzadeh. Hierarchical multi-agent reinforcement learning. in Proceedings of the International Conference on Autonomous Agents, Montreal, Que., Canada: Association for Computing Machinery, New York, NY 10036-5701, United States, 2001. 246
    [160]罗青,李智军,吕恬生.复杂环境中的多智能体强化学习.上海交通大学学报. 2002, 36(3): 302~305
    [161]张文志,李智军,吕恬生, et al.自适应模糊RBF神经网络的多智能体机器人强化学习.计算机工程与应用. 2003, (32): 111~115
    [162]李冬梅,陈卫东,席裕庚.基于强化学习的多机器人合作行为获取.上海交通大学学报. 2005, 39(8): 1331~1335
    [163]洪炳镕,朴松昊.基于冲突消解的群体智能机器人协作研究.哈尔滨工业大学学报. 2003, 35(9): 1053~1055
    [164]周浦城,洪炳镕,郭耸.基于强化学习的多机器人协作.计算机工程与应用. 2005, (28): 10~13
    [165]周浦城,洪炳镕,黄庆成.一种新颖的多agent强化学习方法.电子学报. 2006, 34(8): 1488~1491
    [166]宋梅萍,顾国昌,张汝波.移动机器人的自适应式行为融合方法.哈尔滨工程大学学报. 2005, 26(5): 586~590
    [167]王醒策,张汝波,顾国昌.多机器人动态编队的强化学习算法研究.计算机研究与发展. 2003, 40(10): 1444~1450

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700