米根霉高密度半连续发酵L-乳酸初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物的高密度半连续发酵,可以有效提高菌体的发酵密度和发酵液的体积产率,从而缩短生产周期、降低生产成本。本文通过对米根霉菌株的高密度培养与半连续发酵产L-乳酸效果的研究,探索适于高密度半连续发酵的培养基组成和培养条件,确定补料分批法高密度培养米根霉的最佳方式与参数,同时对米根霉高密度半连续发酵的产酸强度及其动力学特性进行研究,建立发酵过程动力学模型。具体结论如下:
     (1)通过单因素实验结合正交试验的方法,确定发酵培养基组成主要参数为:葡萄糖160g/L,(NH_4)_2SO_4 6g/L,NaH_2PO_4 0.150g/L,KH_2PO_40.150g/L,MgSO_4·7H_2O 0.25g/L,ZnSO_4·7H_2O 0.22g/L;操作条件为:接种量5%,装液量75ml/250ml,接种时间为24h,发酵温度32℃,摇床转速200r/min时,首批发酵的米根霉生物量可达到12.503g/L。
     (2)研究了恒速流加、变速流加和葡萄糖浓度反馈流加等方式对发酵过程中米根霉菌体生物量累积的影响情况,结果表明以葡萄糖浓度反馈流加方式最佳;通过对补料参数进行优化,确定出碳源为葡萄糖160g/L,补料葡萄糖与硫酸铵质量比为20:1,补料时间24h-60h;采用基于葡萄糖浓度的反馈流加方式,在15L发酵罐中初始装液7L,控制温度32℃,转速200r/min,每升发酵液通气量为2L/min时,乳酸产量为117g/L,生物量可达到18.54g/L,比分批培养提高了91.9%。
     (3)通过对米根霉高密度半连续产酸效率的考察获得了发酵最佳方式和不同阶段的培养基组成。采用葡萄糖浓度反馈流加进行第一批次发酵,提高菌体生物量;从第2至第5批次补入Ⅱ号培养基以继续累积生物量,培养基组成为:葡萄糖100g/L,(NH_4)_2SO_4 4g/L, KH_2PO_4 0.150g/L,MgSO_4·7H_2O 0.22g/L,ZnSO_4·7H_2O 0.33g/L;从第6批次开始,补加Ⅰ号培养基以提高产酸,培养基组成为葡萄糖100g/L,(NH_4)_2SO_4 2g/L,KH_2PO_40.10g/L,MgSO_4·7H_2O 0.22g/L,ZnSO_4·7H_2O 0.33g/L。发酵15批次,平均产酸强度为3.045g/(L·h),高于分批发酵的1.23g/(L·h)。
     (4)建立的米根霉高密度发酵产L-乳酸的发酵过程动力学模型为:
     微生物生长模型:(?)
     乳酸生成模型:(?)
     验证结果表明,该动力学模型能够较好的描述实验过程。
High cell density and semi-continuous fermentation of microorganism can achieve such a result of shortening the fermentation time and reducing the cost by increasing the cell density and volumetric yields efficiency. By the study of high cell density culturing of Rhizopus oryzae and production of L-lactic acid by semi-continuous fermentation, the culture medium ingredient and fermentation condition were optimized, the optimum method and parameter of fed-batch culture were determinated, the fermentation strength and the kinetics were researched as well. The main results were as following:
     (1) The culture medium ingredient and fermentation condition were optimized by the combination of single factor experiments and orthogonal experiments. The results were as following: When the key parameters being glucose 160g/L, (NH_4)_2SO_4 6g/L, NaH_2PO_4 0.150g/L, KH_2PO_4 0.150g/L, MgSO_4·7H_2O 0.25g/L , ZnSO_4·7H_2O 0.22g/L; Inoculum size was 5%, inoculums age was 24h, and work volume was 40%;the biomass of Rhizopus oryzae in the first batch of fermentation could achieve 12.503 g/L。
     (2) The biomass of Rhizopus oryzae were studied when culture medium were feeding in constant speed, in different speed and feedback by the concentration of glucose which was proved to be the best strategy. The parameters of feeding culture were optimized as follows: the glucose/ammonium sulfate ratio was 20:1(w/w), culture medium feeding speed was feedback by the concentration of glucose from 24h to 60h, the initial work volume was 7L in 15L bioreactor, temperature was 32℃, Rotation rate was 200 r/min, aeration velocity was 2 L/min per liter. The yield of L-lactic acid is 117 g/L; the biomass is 18.54 g/L, which increased by 91.9% over that of batch culture.
     (3) The ferment method and the culture medium ingredient in different phase were optimized. Adopt feedback-feeding culture to increase biomass in the first batch of fermentation. Culture mediumⅡwas added to the reactor from 2~(nd) to 5~(th) batch of fermentation to increase biomass further which was composed of glucose100g/L, (NH_4)_2SO_4 4g/L,KH_2PO_4 0.150g/L,MgSO_4·7H_2O 0.22g/L and ZnSO_4·7H_2O 0.33g/L.
     Culture mediumⅠwas added to the reactor from 6~(th) batch of fermentation to the production of L-lactic acid which was composed of glucose100g/L, (NH_4)_2SO_4 2g/L, KH_2PO_4 0.10g/L, MgSO_4·7H_2O 0.22g/L, ZnSO_4·7H_2O 0.33g/L. The fermentative strength is 3.045g/(L·h) in average.
     (4) Kinetic models of L-lactic acid production by high cell density culture of Rhizopus oryzae were established.
     The model of Rhizopus oryzae growth : (?)
     The model of L-lactic acid yield : (?)
     The results showed that the models could describe the process exactly.
引文
[1] 金其荣,张继民,徐勤.有机酸发酵工艺学[M].北京:中国轻工业出版社,第一版,1989
    [2] 王博彦,金其荣.发酵有机酸生产与应用手册[M].北京:中国轻工业出版社,2000
    [3] 凌关庭.食品添加剂手册[M].北京:化学工业出版社,第三版,2003
    [4] Rathin D. Hydroxycarboxylic acid. Encyclopedia of chemical technology , 1995,13:1042-1062
    [5] 白冬梅,赵学明,李鑫钢等.米根霉发酵生产L-(+)-乳酸研究进展[J].现代化工,2002,22(6):9-12
    [6] Mokhtar M., El-Baseir Ian W., Kellaway. Poly(L-lactic acid) microspheres for pulmonary drug delivery: release kinetics and aerosolization studies[J]. International Journal of Pharmaceutics, 1998, 175: 135-145
    [7] 刘雄伟.乳酸和聚乳酸的最新进展[J].食品与发酵工业,2000,26(3):61-65
    [8] 金其荣,金丰秋.玉米原料生产L-乳酸的几个技术问题[J].化工时刊,1998年第11期:17-19
    [9] 尤新,裴疆森.乳酸、聚乳酸——前途光明、道路曲折[N].中国食品报,2004年2月13日
    [10] 刘伟雄.乳酸和聚乳酸的最新进展[J].食品与发酵工业,2000,27(3):61-65
    [11] Yu R C, hang Y D. Kinetics of direct fermentation of agricultural commodities to L(+)-lactic acid by Rhizopus oryzae[J]. Biotechnol lett, 1989, 11(8):597-600
    [12] Rathin D. The technology and economy potential of poly(lactic acid) and its ramification. FEMS Microbiology Reviews, 1995, 16: 221-231
    [13] 曹本昌,徐建林.L-乳酸研究综述[J].食品与发酵工业,1993,18(3):56-61
    [14] 刘伟,高年发.乳酸生产菌性能的比较[J].发酵科技通讯,2002,31(3):9-11
    [15] 易吉萍,刘序章,余敦寿.麦芽根替代米糠发酵制备乳酸的研究[J].氨基酸和生物资源,1996,18(2):10-12
    [16] 庞钦,章克昌.以酒糟为基质的乳酸生产菌的选育及发酵的研究[J].酿酒,2001,28(6):62-64
    [17] 王宏伟,郭绍华,冯靓.L-乳酸发酵的研究进展[J].辽宁农业科学,2004(4):28-30
    [18] Barbara E.Wright,Angelikalongacre,Jacqueline Reimers,Models of Metabolism in Rhizopus oryzae. University Montana,Division of Biological,Sciences,Missoila,MT59812,USA。
    [19] 李民,陈长庆.重组大肠杆菌高密度发酵研究进展.生物工程进展,2000,20(2):26-30
    [20] D.Riesenberg R.Guthke. High-cell-density cultivation of microorganisms[J]. Appl Microtechnol Biotechnol, 1999, (51):422-430
    [21] 李寅,高海军,陈坚.[M]高细胞密度发酵技术,北京,化学工业出版社,2006.
    [22] E.Grothe,Y.Chisti,Poly ( β-hydroxybutyric acid) themoplastic production by Alcaligenes latus: Behavior of feed-batch culture[J],Bioprocess Engineering 22(2000)441-449
    [23] C.W.Liria and B.V.Kilikian, Effect of yeast extract on E-coli growth and acetic acid production,D.C.Suarez[J],Word Journal of Microbiology & Biotechnology ,14:331-335
    [24] Soo Park, Kiyoshi Toda, Production of a high concentration acetic acid by Acetobacter acetjusing a repeated fed-batch culture with cell recycling[J], Applied Microbiology and biotechnology (1991)35:149-153
    [25] 李民,修朝阳,陈长庆,脯氨酰胺内肽酶培养条件的优化及高密度培养[J],生物工程学报,16卷2期,200年3月,183-187
    [26] C.C.Chang, D.D.Y.Ryu, C.S.Park, Recombinant bioprocess optimization forheterologous protein production using two-stage, cyclic fed-batch culture[J],Appl Microbiol Biotechnol (1998)49:531-537
    [27] K.P.Ho,C.Y.Tam,B.Zhou, Growth and carotenoid production of Phaffia Rhodozyma in fed-batch culture with different feeding methods[J],Biotechnology letters21:175-178,1999
    [28] Raf-Callew, Aert and Luc-de Vuyst ,Bacteriocin Production with Lactobacillus amylovorus DCE471 Is improved and stabilized by fed-batch fermentation[J] Applied and environmental microbiology ,Feb,2000,606-613
    [29] 陈洪章,李左虎,酵母高密度发酵[J],工业微生物,1998,28(1),28-31
    [30] Christopher J.Hewitt,Gerhard Nebe-Von Caron, Use of Muliti-Staining Flow Cytometry to Characterize the Physiological State of W3110 in High Cell Density Fed-Batch Culture[J], Biotechnology and bioengineering,VOL,63NO.6,JUNE20,1999
    [31] 李民,陈长庆等,利用恒溶氧-补料分批技术高密度培养飞大肠杆菌生产重组人骨形成蛋白-2A[J],生物工程学报1998,14(3):270-274
    [32] 杨如燕,重组大肠杆菌YK573/PSB-7K高密度培养过程中有机酸的 RP-HPLC快速控制[J],工业微生物,1999,29(1),25-28
    [33] 徐浩,高密度发酵生产突变型重组人肿瘤坏死因子rhTNFα-DK2的研究[J],工业微生物,1999,28(2),20-29
    [34] 杨如燕,基因工程菌高密度发酵液中碳源物质甘油的定量检测及其浓度的优化控制[J],工业微生物,1999,29(1),25-28
    [35] 陈坚,李寅等,培养模式对重组大肠杆菌高密度培养生产谷胱甘肽的影响[J]生物工程学报,1998,14(4),452-455
    [36] 从春水,利用pH电极流加葡萄糖培养重组大肠杆菌生产人α-肿瘤坏死因子的研究[J],生物工程学报,1999,15(1),87-91
    [37] Yang,R. and Ray .B. Factors influencing production of bacteriocins by lactic acid bacteria. Food Microbiol.1994,11,281-291
    [38] Raj A E, Kumar H S S, Kumar S U ,et al.Hiah-cell density fermentation of recombinant sacchromyces cerevisiae using glycerol. Biotechnol Prog,2002,18:1130
    [39] S Kleist, G Miksch, B Hitzmann, et al. Optimization of the extracelluarproduction of a bacterial phytase with Escherichia coli by using differentfed-batch fermentation strategies[J]. Appl. Microbiol. Biotechnol.,2003,61: 456-462.
    [40] Alfafara CG, Miura K, Shimizu H, Shioya S, Suga K. Cysteine addition strategy for maximum glutathione production in fed-batch culture of saccharomyces cerevisiae. Appl Microbiol biotechnol, 1992, 37:141
    [41] Konstantinov B K, Kishimoto M, Seki T, et al. A balanced DO-stat and itsapplication to the control of acetic acid excertion by recombinant Escherichiacoli[J]. Biotechnol. Bioeng., 1990, 36: 750-758.
    [42] Yamane T, Kishimoto M, Yoshida F. Semi-batch culture ofmethanol-assimilating bacteria with exponentially increased methanol feed[J]. J Ferment. Technol., 1976, 54: 229-240.
    [43] B S Kim, S C Lee, S Y Lee, et al. High cell density fed-batch cultivation of Escherichia coli using exponential feeding combined with pH-stat[J]. Bioprocess Biosyst. Eng., 2004, 24: 147-150.
    [44] Suzuki T, Yamane T, Shimizu S. Mass production of poly-2-hydroxxybutyric acid by fed-batch culture with controlled carbon/nitrogen feeding. Appl Microbiol Biotechnol, 1986,24:370-374
    [45] R.Gonzalez. Growth and final product formation by Bifid bacterium infantis in aerated fermentations. Appl Microbiol Biotechnol, 2004,65:606-610
    [46] Beom S K ,Sang Y L, et al. High cell density fed-batch cultivation of Escherichia coil using exponential feeding combined with PH-star. Bioprocess Bio-systems Engineering, 2004,26:147-150
    [47] J H Choi, K J Jeong, S C Kim, et al. Efficient secretory production of alkaline phosphatase by high cell density culture of recombinant Eschrichia coil using the Bacillius sp. endoxylanase signal sequence. Appl Microbiol Biotechnol,2000,53:640-645
    [48] Nakaon K, Rischke M, Sato S, et al. Influence OF Acetic acid on the growth of Escherichia coil K12 during high cell density cultivation in a dialysis reactor. Appl Microbiol Biotechnol,1997,47:597-601
    [49] Korz D J, Rinas U, Hellmuth K, et al. Simple fed-batch technique for high cell density cultivation of Escherichia coil. Appl Microbiol Biotechnol,1995,45:59-65
    [50] Horn U, Strittmatter W, Krebber A, et al. High volumetric yields of functional dimeric miniantibodies in Escherichia coil, using an optimized expression vector and high cell density fermentation under non-limited growth conditions. Appl Microbiol Biotechnol,1996,46:524-532
    [51] Hangjing H, Darin R, Tingyue Gu, et al. Enhanced amylase production by Bacillus subtilis using a dual exponential feeding strategy. Bioprocess and Biosystems Engineering, 2004,24:67-73
    [52] Lee I Y, Choi E S, Kim G.J, et al. Optimization of fed-batch fermentation for production of poly-b-hydroxybtyrate in Alcaligens eutrophus. Microbial Biotechnol, 1994(4):146-150
    [53] Suzuki T, Yamane T, Shimizu S. Mass production of thiostrepton by fed-batch culture of Streptomyces laurentii with PH-star modal feeding of multi-subtrate. Appl Microbiol Biotechnol,1987,25:526-531
    [54] Suzuki T. A dense-cell culture system for microorganisms using a stirred ceramic membrane reactor incorporating asymmetric porous cermic filters. Ferment Bioeng,1996,82:264-271
    [55] Kim G.J, Lee I Y, Choi D K, et al. High cell density cultivation of pseudomonas putida BM01 using glucose. Microbial Biotechonl, 1996(6):221-224
    [56] 李世杰,方尚玲等,苏云金杆菌深层发酵补料分批培养研究[J],湖北农业科学,2001,1:39-41
    [57] 詹晓北,郑智永等,PH值对聚唾液酸分批发酵的影响及补料发酵[J],无锡轻工业大学学报,2001,20(3):223-226
    [58] 李寅,陈坚等,重组大肠杆菌生产谷胱甘肽发酵条件的研究[J],微生物学 报,1999,39(4):355-359
    [59] 郑志永,姚善泾,应用溶氧反馈控制高密度培养重组大肠杆菌过程中乙酸的产生,高校化学工程学报,2006,2(20):233-236
    [60] 李寅,高海军,陈坚.高细胞密度发酵技术[M].北京:化学工业出版社,2006
    [61] 郑志,姜绍通,潘丽军等.EDTA定钙法测定发酵液中乳酸含量的探讨[J]食品科学,2003,26(3):102-105
    [62] 郑志,姜绍通,潘丽军,黄静.反相高效液相色谱法测定发酵液中乳酸的含量.食品科学,2003,24(12):89-91
    [63] 陈毓荃.生物化学实验方法和技术[M].北京:科学出版社,2002
    [64] 贾士儒.生物工艺与工程实验技术[M].北京:轻工业出版社,2002
    [65] 李永飞,吕欣,段作营.清夜补料酒精发酵工艺研究[J].食品与发酵工业,2002,28(2):17-19
    [66] 李寅,高海军,陈坚.高细胞密度发酵技术[M].北京:化学工业出版社,2006
    [67] 刘馨磊,肖春明等,补料分批法高密度培养凝结芽孢杆菌[J].生物技术,2001,11(6):21-23
    [68] 匡群,孙梅,施大林等.耐氨米根霉发酵生产L-乳酸的研究[J].生物技术,2005,15(4):65-67
    [69] Monond J. The growth of bacterial culture[J]. Ann. Rev. Microbiol. 1949 (3):371-372
    [70] 陈坚,李寅.发酵过程优化原理与实践[M],北京,化学工业出版社,2002
    [71] Luedeking B, Piret E L. A Kinetic study of lactic acid fermentation batch process at controlled PH[J], Biochem. Microbiol. Tech. Eng . 1959(1):431-459

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700