大肠杆菌气溶胶和新甲型H1N1病毒气溶胶发生和传播的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物是动物舍环境污染的主要因素,动物舍的生物污染可以引起一系列传染病的流行。近几年的研究表明,一些气载病原微生物能够通过空气传播很远的距离,造成传染病的流行。过去对畜禽养殖环境微生物气溶胶的传播主要研究对象是细菌,是通过舍内外环境中的细菌浓度的变化以及细菌耐药性及某些致病菌含量等来确认的。然而,这些方法受到的影响因素很多,难以保证分类的准确性和科学性。未能证明舍内外环境分离的微生物气溶胶的起源及其同源性,没能获得充分的证据证明微生物气溶胶起源于养殖环境并向周边及社区环境传播。近些年,以ERIC-PCR和PFGE(脉冲场凝胶电泳)为代表的分子生物学细菌分型技术得以应用,以鉴定不同来源细菌的同源性,追溯其来源。并且,随着分子生物学技术的不断变革,对畜禽舍养殖环境病毒气溶胶的传播研究也越来越广泛。
     本研究分别对细菌和病毒的气溶胶发生和传播做了相关研究。对细菌,以大肠杆菌为指示菌,采用Andersen-6级空气微生物样品收集器,分别在5个鸡场舍内空气、舍外上风向10m, 50m和下风向10m, 50m, 100m, 200m, 400m的距离处收集空气样品,每个动物舍设三点采样,每次重复采集5个样本。同时采集鸡的粪便,分离、鉴定大肠杆菌,计算每一个采样点大肠杆菌的浓度(CFU·m?3空气)。然后,对每个鸡舍,先采用ERIC-PCR对不同来源(粪便、舍内、外不同距离空气样品)的大肠杆菌分离株进行基因分型,然后对ERIC-PCR相似系数在90%以上的菌株,再采用脉冲场凝胶电泳(PFGE)技术,进行同源性鉴定,准确确认细菌的来源。根据每个采样点大肠杆菌浓度的变化以及在不同采样点分离的大肠杆菌的遗传距离,确认动物舍内微生物气溶胶的起源及其向舍外环境传播。
     对病毒,分别在山东省德州、济宁、莱芜、临沂、青岛、潍坊、烟台、东营等地的养猪场的舍内和舍外下风向10m、20m,用AGI-30采集空气样品,每个采样点重复采集3个样品,并采集棉拭子。在泰安市岱岳区采集猪血样品,进行血凝及血凝抑制试验,以检测抗体效价。在山东农业大学门诊及富农门诊收集病死猪病料、棉拭子、血液进行处理。运用荧光定量RT-PCR技术检测新型H1N1病毒的含量,探讨猪舍中新型H1N1病毒的气溶胶的传播。
     本实验共分离到118株大肠杆菌。从浓度来看,5个鸡场舍内空气中大肠杆菌的浓度为11-56 CFU·m-3空气,远远高于舍外上风和舍外下风处的大肠杆菌浓度(P<0.05),显示了舍内微生物气溶胶不断产生和集聚;然而,舍外下风不同距离间的大肠杆菌浓度差异并不显著(P>0.05),显示来源于鸡舍内的气载大肠杆菌能够传播到一定了距离。通过ERIC-PCR筛选出来26组大肠杆菌,共82株大肠杆菌同源性高于90%。各组内菌株均需要运用脉冲场凝胶电泳技术进行进一步基因分型。ERIC-PCR和PFGE两种方法相结合进行同源性鉴定显示,从鸡的粪便中分离到的大肠杆菌与从舍内空气中分离到的部分大肠杆菌(17.1%)具有相同来源;从鸡场舍外下风方向(10m, 50m, 100m, 200m)分离到的多数大肠杆菌(59.1%)与舍内空气或粪便中分离的大肠杆菌来源相同。而从鸡舍上风分离到的大肠杆菌与舍内空气或粪便中分离的大肠杆菌相似指数较小(<80%),表明这些细菌并非来源于该鸡舍。舍外下风向各采样点分离的大肠杆菌与上风向10m,50m分离得的大肠杆菌同源性较低,排除下风向采得的大肠杆菌来自上风向的可能。而很多从舍内空气和舍外下风方向分离到的大肠杆菌与粪便中的相似指数较高(>85%),说明粪便中的细菌能够形成气溶胶,并且通过舍内外气体交换传播到舍外,依气象条件传播到舍外不同的距离。造成周边环境的生物污染以及病原微生物的扩散,给邻近的社区居民形成感染风险。
     本研究建立了在线检测新型H1N1病毒的荧光定量RT-PCR方法,本次试验共对山东省九个地区40个养猪场,及山东农业大学门诊进行了样品采集,共采集到空气样品和棉拭子样品162份,血液样品27份。其中,舍外20米的37个样品均为阴性,舍外十米37个样品有3个样品为阳性,潍坊1个,德州2个。本实验共收集40个猪场157个空气样品,其中41个样品为阳性,阳性率为26%。27份血清样品进行血凝血凝抑制实验,阳性11个,效价分别为3、3、5、3、8、2、8、8、7、4、4。初步说明新型H1N1病毒可以通过空气传播一定的距离(至少10m),为新甲流的防控提供了必要的依据。
Microorganisms and their products in bioaerosol from animal houses can cause serious air pollution. They may also affect the health and the production capability of the animals and induce prevalence of aerosol infectious diseases. The polluted air in livestock farms is often associated with the outbreak of the epidemic diseases and the environmental problems. It is known that many airborne pathogen microorganisms, including viruses and bacteria, can spread over a large area through the air. Bioaerosol disseminated from animal houses to their environments has been studied with an emphasis on total bacterium amount, pathogenic bacteria and antibiotic resistances of the bacteria in animal houses and their ambient air. It is difficult to differentiate between two strains that have very close genetic relationship using traditional bacterial taxonomy, and can not get the enough evidence to prove the transmission of microorganism from animal houses to their sorroudings. In recent years, the bacteria classification technologies of molecular biology represented from ERIC-PCR and PFGE(Pulse field gel electrophoresis) were used to identify the bacteria homology.
     To get in-depth understanding of microbial aerosol development and transmission to the surroundings of a chicken house, using Escherichia coli as indicator bacteria in this study, air samples were collected by the Andersen-Grade 6 Air Microorganism Sampler from air in the 5 chicken houses, and at 10- and 50-m upwind sites and at 10-, 50-, 100-, 200-, and 400-m downwind sites outside of the chicken houses; meanwhile, chicken manure samples were collected to isolate and identify Escherichia coli, and calculate the Escherichia coli concentration (expressed in CFU/m3 air) at each sampling point. Then, for each chicken house, genotyping of Escherichia coli isolates of different origins were carried out by ERIC-PCR, and then homology identification of the strains with ERIC-PCR similarity coefficient >90% was carried out by pulsed field gel electrophoresis (PFGE ), to accurately determine the origin of the strains. The mode of microbial aerosols in a chicken house to transmit to its surroundings was determined, according to changes of Escherichia coli concentrations at each sampling point, as well as genetic distances of Escherichia coli strains isolated at different samplings. With respect to the concentrations, the Escherichia coli concentrations of the 5 chicken houses were 11-56 CFU/m3 air, far higher than those at the upwind and downwind sites outside of the chicken houses, suggesting that microbial aerosols were unceasingly produced and accumulated in the chicken houses. However, there was no significant difference of Escherichia coli concentrations (P>0.05) at the downwind sites with different distances, suggesting that airborne Escherichia coli derived from the chicken houses were possibly transmitted to a certain distance. Homology identification, carried out by the combination of the two methods, i.e. ERIC-PCR and PFGE, showed that, Escherichia coli isolated from chicken manure and some Escherichia coli (17.1%) isolated from air in the chicken houses were of the same origin. The majority of Escherichia coli (59.1%) isolated at the downwind sites (10-, 50-, 100-, and 200-m) outside of a chicken house, and Escherichia coli isolated from chicken manure, were of the same origin. However, Escherichia coli isolated at the upwind sites were of small similarity coefficient (<80%) with Escherichia coli isolated from chicken manure or from air in the chicken houses, suggesting that they were not derived from the chicken houses. Escherichia coli isolated at each downwind sampling point were of low homology with Escherichia coli isolated at 10- and 50-m upwind sites, excluding the possibility that Escherichia coli isolated at downward sites were from the upwind sites. However, most of Escherichia coli isolated from air in the chicken houses and at the downwind sites outside of the chicken houses were of high similarity coefficient (>85%), suggesting that bacteria in chicken manure was able to form into aerosols, and transmit to the surroundings of the chicken houses through air exchange to a different distance based on different meteorological conditions, leading to biological contaminations of surroundings, and transmission of microbial pathogens. Using the combination of ERIC and PFGE in this study, homology analysis of strains with ERIC-PCR similarity coefficients >90% was carried out by PFGE, to obtain more accurate results.
     The project established a method to detect the novel H1N1 influenza virus by Real-Time RT-PCR with a novel probe provides. We collected 135 samples in 20 pig farms in 5 areas in Shan Dong province. The experiment detected positive samples at the downwind 10m, which indicated the novel H1N1 influenza virus may transmit to the surroundings of the pig farms through air exchange to a different distance. The detection system also provided a powerful technical support for the study of the source, spread and infective dose of H1N1, and was significant for evaluation of public environmental sanitation and early warning of epidemic situation.
引文
柴同杰,柴家前, Wolfgang Mueller.牛舍空气微生物及向环境传播的研究[J].中国预防兽医学报, 1999, 21(4): 311-313.
    柴同杰,张继祥,侯颜平,等.畜禽舍微生物气溶胶向环境扩散的研究[J].畜牧与兽医, 2001, 33(4):10-12.
    柴同杰,赵云玲,刘辉,刘文波,等.禽舍微生物气溶胶含量及其空气动力学研究[J].中国兽医杂志, 2001, 37(3):9-11.
    柴同杰,赵云玲,刘文波,等.鸡舍环境耐药细菌气溶胶及其向环境传播的研究[J].中国预防兽医学报, 2003, 25(3): 209-214.
    车风翔,于玺华, 1998.空气微生物采检理论及其技术应用[M].北京:中国大百科全书出版社, p1,15.
    段会勇,柴同杰,蔡玉梅,等. ERIC-PCR对鸡舍大肠杆菌气溶胶向舍外环境传播的鉴定[J].中国科学(C辑:生命科学) , 2008, (01):74-83.
    段会勇,王磊,柴同杰.兔舍内气载需氧菌和气载葡萄球菌的检测[J].家畜生态学报, 2005, 26(4): 96-99.
    段会勇,王磊,柴同杰.兔舍环境空气微生物气溶胶的检测[J].中国草食动物,2005, 25(3): 41-43.
    高平平,赵立平.微生物群落结构探针杂交评价不同培养基从活性污泥分离优势菌群的能力[J].微生物学报, 2003, 43(2):264-270.
    金莉莉,王秋雨,侯潇. ERIC-PCR技术在李斯特氏菌种、菌株鉴定中的应用[J].遗传, 2003, 25(2):195-197.
    金莉莉,王芳,王秋雨. ERIC-PCR鉴定单核细胞增生利斯特氏菌[J].中国公共卫生, 2003, 19(7):879.
    金丕焕.医学统计方法[M].上海医科大学出版社, 1992.
    李艳琴,孙永艳,崔丽方,等. ERIC-PCR在人工混合菌体系中的检出灵敏度[J].微生物学通报, 2004, 31(4):61-64.
    李亮,魏桂芳,童耕雷,等.用PCR指纹图技术分析焦化废水接触氧化池中悬浮污泥和生物膜的微生物种群组成[J].中国微生态学杂志, 2004, 16(1):8-12.
    李海鹏,赵春贵,陈涛.枯草芽孢杆菌TY7210菌株的ERIC-PCR快速鉴别[J].山西大学学报, 2006, 29(1):89-92.
    鲁海峰,魏桂芳,李仲逵,等. ERIC-PCR分子杂交技术分析大熊猫肠道菌群结构[J].中国微生态学杂志, 2005, 17(2):81-84.
    马瑞华,柴同杰,郭冬梅,等.应用ANDERSEN-6级撞击式采样器检测病室肠杆菌气溶胶含量的研究[J].中国实用护理杂志, 2005, 4:11-12.
    屈凤琴.鸡舍空气中致病微生物的监测[J].中国家禽, 2000, 22(4): 29-30.
    徐幼云.环境卫生工作手册(修订版) [M].北京:人民卫生出版社, 1992.
    杨朝国,安乙敏.病原微生物分子生物学分型方法的选择[M].国外医学:病毒学分册, 2000, 7(2):48-51.
    于玺华,车凤翔.现代空气微生物学及采检鉴技术[M].北京:军事医学科学出版社, 1998.
    姚美玲,张彬,柴同杰.鸡兔舍耐药大肠杆菌气溶胶向环境扩散的研究[J].西北农林科技大学学报, 2007, 35(8):60–64.
    晏群,陈丽华,刘文恩,等.分子生物学分型技术ERIC-PCR的建立[J].实用医学杂志, 2003, 19(6):688-699.
    杨秀平,肖向红,周洪琪,等.动物生理学[M].北京:高等教育出版社, 2002, p136.
    张鹤平.养殖场及其周围环境空气中细菌播散研究[D].中国农业大学, 2005.
    钟召兵,柴同杰,段会勇.鸡舍环境中气载需氧菌及气载葡萄球菌的研究[J].西南农业学报, 2008, 3(21):802-806.
    朱森树,李志刚.家兔饲养室空气微生物浓度及通风效果观察[J].中国养兔杂志, 2000,(5):4-6.
    赵立平,肖红,李艳琴,等. ERIC-PCR:一种快速鉴别环境细菌菌株的方法[J].应用与环境生物学报, 1999, 5:30-33.
    张美玲,周志华,赵立平.粪便样品中大肠杆菌多态性分子研究[J].微生物学通报, 2005, 32(2):5-9.
    Alex Donaldson. Airborne spread of foot-and-mouth disease [J]. Microbiology Today, 1999, 26:118-119.
    Andersen AA. New sampler for the collection, sizing, and enumeration of viable airborne particles [J]. J Bacterial, 1958, 76:471-484.
    Beutin L, Steinrück H, Krause G et al. Comparative evaluation of the Ridascreen Verotoxin enzyme immunoassay for detection of Shiga-toxin producing strains of Escherichia coli (STEC) from food and other sources [J]. Journal of Applied Microbiology, 2007, 102:630-639.
    Borges L, Gd A, Vechia VnD et al. Characterisation and genetic diversity via REP-PCR of Escherichia coli isolates from polluted waters in southern Brazil [J]. FEMS Microbiol Ecol, 2003, 45: 173-180.
    Brown JH, Cook KM, Ney FG et al. Influence of particle size upon the retention of particulate matter in the human lung [J]. Am J Public Health Nations Health, 1950, 40(4):450-458, 480.
    Byoung-Kwon Hahm , Yadilka Maldonado , Edgar Schreiber , et al. Subtyping of foodborne and environmental isolates of Escherichiacoli by multiplex-PCR, rep-PCR, PFGE,ribotyping and AFLP. Journal of Microbiological Methods 53 (2003) 387–399
    Brown JKM, Hovmoller M S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease [J]. Science, 2002, 297: 537-541.
    Buttner MP, Stetzenbach LD. Evaluation of four aerobiological sampling methods for the retrieval of aerosolized Pseudomonas syringae [J]. Appl Environ Microbiol, 1991, 57, 1268-1270
    Centers for Disease Control and Prevention (CDC). Follow-up of deaths among U.S. Postal Service workers potentially exposed to Bacillus anthracis–District of Columbia, 2001–2002 [J]. Morb Mortal Wkly Rep, 2003, 52, 937-938.
    Chang CW, Chung H, Huang CF et al. Exposure of workers to airborne microorganisms in open-air swine houses [J]. Appl Environ Microbiol, 2001, 67(1):155-161.
    Chandrashekar MR, Rathish KC, Nagesha CN. Reservoirs of nosocomial pathogens in neonatal intensive care unit [J]. J Indian Med Assoc, 1997, 95: 72-74, 77.
    Cheng DR, Sun HC, Xu JS et al. PCR detection of virulence factor genes in Escherichia coli isolates from weaned piglets with edema disease and/or diarrhea in China [J]. Veterinary Microbiology, 2006, 115:320–328.
    Cássio Pontes Octaviani, Makoto Ozawa, Shinya Yamada, Hideo Goto, and Yoshihiro Kawaoka. High genetic compatibility between swine-origin H1N1 and highly pathogenic avian H5N1 influenza viruses,J. Virol. 5 August 2010, doi: 10.1128/JVI.01140-10.
    Crawford GV, Jones PH. Sampling and differentiation techniques for airborne organisms emitted from wastewater [J]. Water Res, 1979, 13:393-399.
    Crowe CK, Harris DLH, Elliott LP et al. A possible relationship between low facility dust and endotoxin levels and improved growth rates in pigs reared by IsoweanSM [J]. Swine-Health-and-Production, 1996, 4(5):231-236.
    Dalla-Costa LM, Irino K, Rodrigues J et al. Characterisation of diarrhoeagenic Escherichia coli clones by ribotyping and ERIC-PCR [J]. Journal of Medical Microbiology, 1998, 47(3):227-234.
    De-Wei Li, Kendrick B. A year-round comparison of fungal spores in indoor and outdoor air [J]. Mycologia, 1995, 87(2):190-195.
    Di Giovanni GD, Watrud LS, Seidler RJ et al. Comparison of parental and transgenic alfalfa rhizosphere acterial communities usingBiolog GN metabolic fingerprinting and Enterobacterial Repetitive Intergenic Consensus sequence-PCR (ERIC-PCR) [J]. Microbial Ecology, 1999, 37(2):129-139.
    Di Giovanni GD, Watrud LS, Seidler RJ et al. Fingerprinting of mixed bacterial strains and BIOLOG gram-negative (GN) substrate communities by Enterobacterial Repetitive Intergenic Consensus Sequence-PCR (ERIC-PCR) [J]. Current Microbiology, 1999, 38(4):217-223.
    Donaldson AI, Gloster J, Harvey LD et al. Use of prediction models to forecast and analyse airborne spread during the foot-and-mouth disease outbreaks in Brittany, Jersey and the Isle of Wight in 1981 [J]. Veterinary Record, 1982, 110:53-57.
    Donham KJ, Popendorf W, Palmgren U et al. Characterization of dusts collected from swine confinement buildings [J]. Am J Ind Med, 1986, 10:294-297.
    Dutkiewicz J, Pomorski ZJH, Sitkowska J et al. Airborne microorganisms and endotoxin in animal houses [J]. Grana, 1994, 33(2):85-90.
    Duan HY, Chai TJ, Wang YX et al. Exposure to Airborne Endotoxins and Airborne Bacteria in Chinese Rabbitries [J]. Berl. Münch. Tier?rztl. Wochenschr, 2006, 119(1/2):40-44.
    Eubank S, Guclu H, Kumar et al. Modelling disease outbreaks in realistic urban social networks [J]. Nature, 2004, 429:180.
    Gilson E, Clementj M, Perrin D et al. Palindromic units: a case of highly repetitive DNA sequence in bacteria [J]. Trends in Genetics, 1987, 3:226-230.
    Gillings M, Holley M. Repetitive element PCR fingerprinting (rep-PCR) using enterobacterial repetitive intergenic consensus (ERIC) primers is not necessarily directed at ERIC elements [J]. Letters in Applied Microbiology, 1997, 25(1):17-21.
    Gilson E, Perrin D, Hofnungm. DNA polymerase I and a protein complex bind specifically to E. coli palindromic unit highly repetitive DNA: implications for bacterial chromosome organization [J]. Nucleic Acids Research, 1990, 18 (13):3941-3952.
    Gonzalez A, Hierro N, Poblet M et al. Application of molecular methods to demonstrate species and strain evolution of acetic acid bacteria population during wine production [J]. International Journal of Food Microbiology, 2005, 102:295-304.
    Herdlitschka HP. Untersuchungen an tierischen luftkeimquellen [D]. Stuttgart: Uni Hohenheim, 1980.
    Hermann JR, Hoff SJ, Mu?oz-Zanzi C et al. Effect of temperature and relative humidity on the stability of infectious porcine reproductive and respiratory syndrome virus in aerosols [J]. Vet Res, 2007, 38:81-93.
    Houf K, Zutterl D, HooF JV et al. Assessment of the genetic diversity among arcobacters isolated frompoultry products by using two PCR-based typing methods [J]. Applied and Environmental Microbiology, 2002, 68(5):2172 -2178.
    Hojovec J, Fiser A, Kubicek KZ. Die Rolle von Indikator keimen fuer die Beurteilung der Stalluft [J]. Mh Vet Med, 1977, 32:766-769.
    Hulton CS, Higgins CF, Sharp PM. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimuirum and other enterobacteria [J]. Mol Microbiol, 1991, 5:825-834.
    Hargreaves M, Parappukkaran S, Morawska L et al. A pilot investigation into association between indoor airborne fungal and non-biological particle concentrations in residentialhouses in Brisbane, Australia [J]. Science of the Total Environment, 2003, 312: 89-101.
    Ibenyassine K, AitMhand R, Karamoko Y et al. Use of repetitive DNA sequences to determine the persistence of enteropathogenic Escherichia coli in vegetables and in soil grown in fields treated with contaminated irrigation water [J]. Letters in Applied Microbiology, 2006, 43:528-533.
    Jackson V, Blair IS, McDowell DA et al. The incidence of significant foodborne pathogens in domestic refrigerators [J]. Food Control, 2007, 18:346-351.
    Jarnych VS. Aerosole in der Veterinaermedizin [M]. VEB Deutscher Landwirtschaftsverlag Berlin, 1976, p74-88.
    Jennifer F, Robert C, David AE. Airborne infectious disease and the suppression of pulmonary bioaerosols [J]. DDT, 2006, 11(1/2): 51-57.
    Jones AM, Govan JRW, Doherty CJ et al. Identification of airborne dissemination of epidemic multiresistant strains of Pseudomonas aeruginosa at a CF centre during a cross infection outbreak [J]. Thorax, 2003, 58: 525-527.
    Jones AM, Harrison RM. The effects of meteorological factors on atmospheric bioaerosol concentrations-a review [J]. Science of the Total Environment, 2004, 326:151-180.
    Judd AK, Schneider M, Sadowsky MJ et al. Use of repetitive sequences and the polymerase chain reaction technique to classify Genetically related Bradyrhizobium japonicum serocluster 123 strains [J]. Appl Environ Microbiol, 1993, 59(6):1702-1708.
    Jurkovi? D, Kri?kováL, Sojka M et al. Genetic diversity of Enterococcus faecium isolated from Bryndza cheese [J]. International Journal of Food Microbiology, 2007, 116:82-87
    Khan AA, Mccarthy S, Wang RF et al. Characterization of United States outbreak isolates of Vibrio parahaemolyticus using Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR and development of a rapid PCR method for detection of O3:K6 isolates [J]. FEMS Microbiology Letters, 2002, 206:209-214.
    Kim KY, Kim CN. Airborne microbiological characteristics in public buildings of Korea [J]. Building and Environment, 2007, 42: 2188-2196.
    Lee AK, Arthur PS, Lau et al. Source identification analysis for the airborne bacteria and fungi using a biomarker approach [J]. Atmospheric Environment, 2007, 41:2831-2843.
    Lacey J, Dutkiewicz J. Bioaerosols and occupational lung disease [J]. Journal of Aerosol Science, 1994, 25(8):1371-1404.
    Lighthart B. Microbial aerosols: estimated contribution of combine harvesting to an airshed [J]. Applied and Environmental Microbiology, 1984, 47:430–432.
    Lis DO, Pastuszka JS, Gorny RL. The prevalence of bacterial and fungal aerosol in homes, offices and ambient air of upper Silesia. Preiminary results [J]. Rocz Panstw Zakl Hig, 1997, (48):59-68.
    Leo L.M. Poon, K.H. Chan, G.J. Smith, C.S.W. Leung,Y. Guan, K.Y. Yuen, and J.S.M. Peiris,Molecular Detection of a Novel Human Influenza (H1N1) of Pandemic Potential by Conventional and Real-Time Quantitative RT-PCR Assays, Clinical Chemistry, 2009, 55:8, 1555–1558.
    Malmberg P. Health effects of organic dust exposure in dairy farmers [J]. American Journal of Industrial Medicine, 1990, (17):1, 7-15.
    Marthi B, Fieland VP, Walter Met et al. Survival of bacteria during aerosolization [J]. Appl Environ Microbiol, 1990, 56:3463-3467.
    McCartney AL, Wenzhi W, Tanock GW. Molecular analysis of the composition of the bifidobacterial and lactobacillus microflora of humans [J]. Applied Environmental Microbiology, 1996, (62):4608-4613.
    Merion E, Becerril B, Valle F et al. Deletion of a repetitive extrgenic palindromic(REP) sequence downstreamform the structural gene of Escherichia coli glutamate dehydrogenase affects the stability of its mRNA [J]. Gene, 1986, 50(2/ 3):305-309.
    Mims SA, Mims III FM. Fungal spores are transported long distances in smoke from biomass fires [J]. Atmospheric Environment, 2004, (38):651-655.
    Mueller W, Dossow VA, Dinter PS. Die Tenazitaet von Bakterien im luftgetragenen Zustand. V. Mitt.: Vergleich zwischen kaelber- und ferkelpathogenen E.coli Staemmen; Tieraerztl [J]. Umschau, 1988, (4):258-262.
    Normile D. INFLUENZA: GIRDING FOR DISASTER: Asia Struggles to Keep Humans and Chickens Apart [J]. Science, 2004, 306:399.
    Owen MK, Ensor DS, Sparks LE. Airborne particle sizes and sources found in indoor air [J]. Atmospheric Environment, 1992, 26A:2149-2162.
    Pascual L, Perez-Luz S, Adela Yanez M et al. Bioaerosol emission from wastewater treatment plants [J]. Aerobiologia, 2003, 19:261-270.
    Prazmo Z, Dutkiewicz J, Skorska C et al. Exposure to airborne Gram-negative bacteria, dust, and endotoxin in paper factories [J]. Ann Agric Environ Med, 2003, 10(1):93-100.
    Rasschaert G, Houf K, Imberechts H et al. Comparison of five repetitive-sequence-based PCR typing methods for molecular discrimination of Salmonella enterica isolates [J]. Journal of Clinical Microbiology, 2005, 43(8): 3615-3623.
    Riley EC, Murphy G, Riley RL. Airborne spread of measles in a suburban elementary school [J]. Am J Epidemiol, 1978, 107:421-432.
    Ruixue Wang, Zong-Mei Sheng, and Jeffery K. Taubenberger, Detection of Novel (Swine Origin) H1N1 Influenza A Virus by Quantitative Real-Time Reverse Transcription-PCR, J. CLINICAL MICROBIOLOGY, Aug. 2009, p. 2675–2677, doi:10.1128/JCM.01087-09.
    Schroeder CM, White DG, Meng J. Retail meat and poultry as a reservoir of antimicrobial-resistant Escherichia coli [J]. Food Microbiol, 2004, 21:249-255.
    Sharples GJ, Lloyd RG. A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes [J]. Nucleic Acids Research, 1990, 18(22):6503-6508.
    Shinn EA, Smith GW, Prospero et al. African dust and the demise of Caribbean coral reefs [J]. Geophysical Research Letters, 2000, 27:3029-3032.
    Singh A, and Singh AB. Aspergillus spp. as an important occupational risk factor among suscep tible individual [J]. Aerobiologia, 1999, 15: 233-240.
    Somarelli JA, Makarewicz JC, Sia R et al. Wildlife identified as major source of Escherichia coli in agriculturally dominated watersheds by BOX A1R-derived genetic fingerprints [J]. Journal of Environmental Management, 2007, 82:60-65.
    Stege H, Jensen TK, M?ller K et al. Preventive Veterinary Medicine [M]. 2000, 46: p279-292.
    Strachan NJC, Doyle MP, Kasuga F et al. Dose response modelling of Escherichia coli O157 incorporating data from foodborne and environmental outbreaks [J]. International Journal of Food Microbiology, 2005, 103:35-47.
    Stewart SL, Grinshpun SA, Willeke K et al. Effect of impact stress on microbial recovery on an agar surface [J]. Appl Environ Microbiol, 1995, 61:1232-1239.
    Szczuka E, Kaznowski A. Typing of clinical and environmental Aeromonas sp. strains by random amplified polymorphic DNA PCR, repetitive extragenic palindromic PCR, and Enterobacterial Repetitive Intergenic Consensus sequence PCR [J]. Journal of Clinical Microbiology, 2004, 42(1):220-228.
    Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes [J]. Nucleic Acids Res, 1991, 19:6823-6831.
    Ventura M, Meylan V, Zink R. Identification and tracing of Bifidobacterium species by use of Enterobacterial Repetitive Intergenic Consensus sequences [J]. Applied and Environmental Microbiology, 2003, 69(7):4296-4301.
    Vidotto MC, Queiroz MB, Lima NCS de et al. Prevalence of ibeA gene in avian pathogenic Escherichia coli (APEC) [J]. Veterinary Microbiology, 2007, 119:88-89.
    Versalovic, J., Koeuth, T. and Lupski, J.R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 19(1991). 6823-6831.
    Weiss RA, McMichael AJ. Social and environmental risk factors in the emergence of infectious diseases [J]. Nat Med, 2004, 10 (12):70-76.
    Wiegand B, Hartung J, Hinz T et al. Air quality in Louisiana type broiler houses. Part 2: Bacteria and endotoxin levels in airborne dust [J]. Landbauforschung Volkenrode, 1993, 43(4):236-241.
    World Health Organization. 13 August 2010,posting date. Influenza-update113. http://www.who.int/csr/don/2010_08_13/en/index.html.
    Wolinsky SM. Public Health: Chicken Monster or Chicken Little? [J]. Science. 2006, 311(5762): 780-781.
    W.Yuan,T.J.Chai,Z.M.Miao ERIC-PCR identification of the spread of airborne Escherichia coli in pig houses. Science of the Total Environment 408(2010)1446–1450
    Zucker BA, Müller W. Airborne microorganisms in animals stables. 3. Relationship between inhaled endotoxins, dust and airborne bacteria in a poultry housing unit [M]. Berliner und Munchener Tierarztliche Wochenschrift, 2000a, 113: p7-8, 279-283.
    Zucker BA, Trojan S et al. Airborne gram-negative bacterial flora in animal houses [J]. Journal of Veterinary Medicine Series B-Infectious Diseases and Veterinary Public Health, 2000b, 47(1):37-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700