耻垢分枝杆菌ercc3基因相互作用蛋白的串联亲和纯化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
XPB/Ercc3是真核生物中TFIIH复合体的一个亚基,编码一个3’→5’方向的解螺旋酶,具有ATP依赖性的3’→5’helicase活性和ssDNA依赖性的ATPase活性。XPB作为TFIIH的一个组分参与转录起始与核苷酸切除修复(NER),分别负责转录泡的打开与包含损伤位点的内切片段的移除。XPB作为细胞内关键途径的感受器和效应器还参与了细胞周期的调控和其他调控途径。在分枝杆菌属的原核生物中,通过同源比对发现了ercc3基因的同源编码序列,但未发现在真核中与ercc3相互作用并共同行使功能的那些基因的同源序列。并且,分枝杆菌有其自有的转录起始机器和核苷酸切除修复系统。因此,ercc3在分枝杆菌中的功能就成为一个需要阐明的问题。
     本文利用基于噬菌体基因的分枝杆菌重组工程系统,将串联亲和标签protein A-TEV protease site-calmodulin binding protein(TAP tag)定点敲入至耻垢分枝杆菌的ercc3基因表达框C末端,使带有TAP标签的Ercc3蛋白在基因组天然启动子的调控下表达,其表达量,定位与调控水平都和野生型ercc3基因一样。然后我们利用标签与两种不同亲和配体的结合作用,经过两次亲和纯化分离细胞裂解液中的Ercc3蛋白。由于整个纯化过程在温和条件下进行,与Ercc3蛋白相互作用的蛋白也被一起纯化出来。纯化组分经过跑SDS-PAGE分离,银染染色后,切下特异性的条带,trypsin酶解后打质谱分析。
     从质谱结果中我们得到了一系列蛋白,我们选择了其中的DNA依赖性RNA聚合酶β’亚基RpoC和β亚基RpoB,以及同源重组蛋白RecA进一步研究。经过farwestern和SBP pull-down验证,我们发现Ercc3与RNA聚合酶β’亚基RpoC在体外有直接的相互作用。在与实验室其他成员的合作中发现,Ercc3蛋白还与预测为DNA repair related ATPase的ATP依赖性的DNA结合蛋白ATPase,和预测为转录因子的共操纵子邻近基因MSMEG_5705有相互作用。但ercc3基因的敲除尚未发现明显的表型。
     根据以上结果,我们推测, ercc3基因可能与其相互作用蛋白共同参与耻构分枝杆菌的转录起始,并且很可能是介导耻垢分枝杆菌,以及结核分枝杆菌在特殊生存状态下的转录调控。
Eukaryotic XPB/Ercc3 is a subunit of protein complex TFIIH which participate in transcription initiate, promotor clearance and nucleotide excision repair(NER) of DNA damage. XPB uses its ATP-dependent helicase activity and ssDNA-dependent ATPase activity to play a role in the opening of DNA double strand in transcription and remove of damage contained DNA fragment in NER. XPB also participate cell cycle regulation and other regulation pathway as a molecular sensor and responsor to a lot of cell pathways. In prokaryotic life Mycobacterium, we found the homologue of eukaryotic ercc3, but no other transcription and NER relative gene which interact and co-work with eukaryotic ercc3. Mycobacterium has its prokaryote transcription and NER system of itself. So the function of ercc3 gene in Mycobacterium is still to a question at issue.
     By a Mycobacterim recombineer system base on phage gene, we inserted TAP tag (protein A-TEV protease site-calmodulin binding protein) into C teminal of ercc3 gene in M.smegmatis genome. As a result, the recombinant M.smegmatis express ercc3-tap gene as the wild type ercc3 gene, since they are both simple copy and transcripted by the same promotor. Used the method of TAP(tandom affinity purification), we purified the Ercc3-TAP and its interaction protein from cell extraction. After SDS-PAGE and silver stain, the purification of interaction protein was identified by LC-MS.
     The LC-MS result revealed a list of possible interaction protein with Ercc3, include DNA-directed RNA polymeraseβ’andβsubunit (rpoC and rpoB), and recombinant protein recA. By in-vitro test such as farwestern and pull-down, we found Ercc3 interaction directly with RpoC in-vitro. And other experience found Ercc3 also interact with hypothetical protein ATPase and MSMEG_5705. But we didn’t find distinct phenotype on ercc3-delected strain. From the data above, we can deduce that ercc3 (with its interaction partner) may participate in transcription initiation, particularly transcription in some special environment.
引文
[1] Matsuno M, Kose H, Okabe M, et al. TFIIH controls developmentally-regulated cell cycle progression as a holocomplex[J]. Genes Cells, 2007. 12(11): p. 1289-300.
    [2] Coin F, Proietti De Santis L, Nardo T, et al. p8/TTD-A as a repair-specific TFIIH subunit[J]. Mol Cell, 2006. 21(2): p. 215-26.
    [3] LeRoy G, Drapkin R, Weis L, et al. Immunoaffinity purification of the human multisubunit transcription factor IIH[J]. J Biol Chem, 1998. 273(12): p. 7134-40.
    [4] Winkler GS, Vermeulen W, Coin F, et al. Affinity purification of human DNA repair/transcription factor TFIIH using epitope-tagged xeroderma pigmentosum B protein[J]. J Biol Chem, 1998. 273(2): p. 1092-8.
    [5] Schultz P, Fribourg S, Poterszman A, et al. Molecular structure of human TFIIH[J]. Cell, 2000. 102(5): p. 599-607.
    [6] Thompson LH, Carrano AV, Sato K, et al. Identification of nucleotide-excision-repair genes on human chromosomes 2 and 13 by functional complementation in hamster-human hybrids[J]. Somat Cell Mol Genet, 1987. 13(5): p. 539-51.
    [7] Weeda G, Wiegant J, van der Ploeg M, et al. Localization of the xeroderma pigmentosum group B-correcting gene ERCC3 to human chromosome 2q21[J]. Genomics, 1991. 10(4): p. 1035-40.
    [8] Park E, Guzder SN, Koken MH, et al. RAD25 (SSL2), the yeast homolog of the human xeroderma pigmentosum group B DNA repair gene, is essential for viability[J]. Proc Natl Acad Sci U S A, 1992. 89(23): p. 11416-20.
    [9] Ma L, Westbroek A, Jochemsen AG, et al. Mutational analysis of ERCC3, which is involved in DNA repair and transcription initiation: identification of domains essential for the DNA repair function[J]. Mol Cell Biol, 1994. 14(6): p. 4126-34.
    [10]本杰明·卢因.基因VIII[M],赵寿元译.北京:科学出版社, 2005. 503-507, 669-687, 1028-1034.
    [11] Spangler L, Wang X, Conaway JW, et al. TFIIH action in transcription initiation and promoter escape requires distinct regions of downstream promoter DNA[J]. Proc Natl Acad Sci U S A, 2001. 98(10): p. 5544-9.
    [12] Kim TK, Ebright RH, Reinberg D. Mechanism of ATP-dependent promoter melting by transcription factor IIH[J]. Science, 2000. 288(5470): p. 1418-22.
    [13] Maddukuri L, Dudzinska D, Tudek B. Bacterial DNA repair genes and their eukaryotic homologues: 4. The role of nucleotide excision DNA repair (NER) system in mammalian cells[J]. Acta Biochim Pol, 2007. 54(3): p. 469-82.
    [14] Hoffen A, Balajee AS, van Zeeland AA, et al. Nucleotide excision repair and its interplay with transcription[J]. Toxicology, 2003. 193(1-2): p. 79-90.
    [15] Wang XW, Yeh H, Schaeffer L, et al. p53 modulation of TFIIH-associated nucleotide excision repair activity[J]. Nat Genet, 1995. 10(2): p. 188-95.
    [16] Leveillard T, Andera L, Bissonnette N, et al. Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations[J]. EMBO J, 1996. 15(7): p. 1615-24.
    [17] Chang YC, Jan KY, Cheng CA, et al. Direct involvement of the tumor suppressor p53 in nucleotide excision repair[J]. DNA Repair (Amst), 2008. 7(5): p. 751-61.
    [18] Wang XW, Vermeulen W, Coursen JD, et al. The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway[J]. Genes Dev, 1996. 10(10): p. 1219-32.
    [19] Marini F, Nardo T, Giannattasio M, et al. DNA nucleotide excision repair-dependent signaling to checkpoint activation[J]. Proc Natl Acad Sci U S A, 2006. 103(46): p. 17325-30.
    [20] Liu J, Kouzine F, Nie Z, et al. The FUSE/FBP/FIR/TFIIH system is a molecular machine programming apulse of c-myc expression[J]. EMBO J, 2006. 25(10): p. 2119-30.
    [21] Matsushita K, Tomonaga T, Shimada H, et al. An essential role of alternative splicing of c-myc suppressor FUSE-binding protein-interacting repressor in carcinogenesis[J]. Cancer Res, 2006. 66(3): p. 1409-17.
    [22] Liu J, Akoulitchev S, Weber A, et al. Defective interplay of activators and repressors with TFIIH in xeroderma pigmentosum[J]. Cell, 2001. 104(3): p. 353-63.
    [23] Weber A, Liu J, Collins I, et al. TFIIH operates through an expanded proximal promoter to fine-tune c-myc expression[J]. Mol Cell Biol, 2005. 25(1): p. 147-61.
    [24] Sahay S, Pannucci NL, Mahon GM, et al. The RhoGEF domain of p210 Bcr-Abl activates RhoA and is required for transformation[J]. Oncogene, 2008. 27(14): p. 2064-71.
    [25] Takeda N, Shibuya M, Maru Y. The BCR-ABL oncoprotein potentially interacts with the xeroderma pigmentosum group B protein[J]. Proc Natl Acad Sci U S A, 1999. 96(1): p. 203-7.
    [26] Maru Y, Kobayashi T, Tanaka K, et al. BCR binds to the xeroderma pigmentosum group B protein[J]. Biochem Biophys Res Commun, 1999. 260(2): p. 309-12.
    [27] Laurent E, Mitchell DL, Estrov Z, et al. Impact of p210(Bcr-Abl) on ultraviolet C wavelength-induced DNA damage and repair[J]. Clin Cancer Res, 2003. 9(10 Pt 1): p. 3722-30.
    [28] Canitrot Y, Falinski R, Louat T, et al. p210 BCR/ABL kinase regulates nucleotide excision repair (NER) and resistance to UV radiation[J]. Blood, 2003. 102(7): p. 2632-7.
    [29] Weber A, Chung HJ, Springer E, et al. The TFIIH subunit p89 (XPB) localizes to the centrosome during mitosis[J]. Cell Oncol. 32(1-2): p. 121-30.
    [30] Mizuki F, Namiki T, Sato H, et al. Participation of XPB/Ptr8p, a component of TFIIH, in nucleocytoplasmic transport of mRNA in fission yeast[J]. Genes Cells, 2007. 12(1): p. 35-47.
    [31] Hafer K, Iwamoto KS, Scuric Z, et al. Adaptive response to gamma radiation in mammalian cells proficient and deficient in components of nucleotide excision repair[J]. Radiat Res, 2007. 168(2): p. 168-74.
    [32] Qadri I, Iwahashi M, Simon F. Hepatitis C virus NS5A protein binds TBP and p53, inhibiting their DNA binding and p53 interactions with TBP and ERCC3[J]. Biochim Biophys Acta, 2002. 1592(2): p. 193-204.
    [33] Jaitovich-Groisman I, Benlimame N, Slagle BL, et al. Transcriptional regulation of the TFIIH transcription repair components XPB and XPD by the hepatitis B virus x protein in liver cells and transgenic liver tissue[J]. J Biol Chem, 2001. 276(17): p. 14124-32.
    [34] Jia L, Wang XW, Harris CC. Hepatitis B virus X protein inhibits nucleotide excision repair[J]. Int J Cancer, 1999. 80(6): p. 875-9.
    [35] Leibeling D, Laspe P, Emmert S. Nucleotide excision repair and cancer[J]. J Mol Histol, 2006. 37(5-7): p. 225-38.
    [36] Stefanini M, Botta E, Lanzafame M, et al. Trichothiodystrophy: from basic mechanisms to clinical implications[J]. DNA Repair (Amst). 9(1): p. 2-10.
    [37] Hashimoto S, Egly JM. Trichothiodystrophy view from the molecular basis of DNA repair/transcription factor TFIIH[J]. Hum Mol Genet, 2009. 18(R2): p. R224-30.
    [38] Poterszman A, Lamour V, Egly JM, et al. A eukaryotic XPB/ERCC3-like helicase in Mycobacterium leprae? [J]. Trends Biochem Sci, 1997. 22(11): p. 418-9.
    [39] Fan L, Arvai AS, Cooper PK, et al. Conserved XPB core structure and motifs for DNA unwinding: implications for pathway selection of transcription or excision repair[J]. Mol Cell, 2006. 22(1): p. 27-37.
    [40] Biswas T, Pero JM, Joseph CG, et al. DNA-dependent ATPase activity of bacterial XPB helicases[J]. Biochemistry, 2009. 48(12): p. 2839-48.
    [41] Richards JD, Cubeddu L, Roberts J, et al. The archaeal XPB protein is a ssDNA-dependent ATPase with a novel partner[J]. J Mol Biol, 2008. 376(3): p. 634-44.
    [42] Roth HM, Tessmer I, Van Houten B, et al. Bax1 is a novel endonuclease: implications for archaeal nucleotide excision repair[J]. J Biol Chem, 2009. 284(47): p. 32272-8.
    [43] Rouillon C, White MF. The XBP-Bax1 helicase-nuclease complex unwinds and cleaves DNA: implications for eukaryal and archaeal nucleotide excision repair[J]. J Biol Chem. 285(14): p. 11013-22.
    [44] Puig O, Caspary F, Rigaut G, et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification[J]. Methods, 2001. 24(3): p. 218-29.
    [45] van Kessel JC, Hatfull GF. Recombineering in Mycobacterium tuberculosis[J]. Nat Methods, 2007. 4(2): p. 147-52.
    [46] Parish T, Stoker NG, Method in molecular biology: Mycobacteria Protocols[M], U S A: Humana Press, 2008. 129-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700