芝麻隐性细胞核雄性不育基因的遗传定位和差异表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芝麻的杂种优势广泛存在,利用雄性不育生产杂交种是杂种优势利用的重要途径。我国已培育出多个隐性细胞核芝麻雄性不育系(RGMS),其育性稳定、无不良胞质效应、恢复源广,在生产F1种子中广泛应用,并已育成多个杂交品种。然而,直到目前为止,对芝麻细胞核雄性不育的遗传特性和败育机理了解较少,有必要对其进行深入的研究。本研究以芝麻隐性细胞核雄性不育两用系95ms-5AB为材料,利用形态学、细胞学及分子生物学等方法,对其开展组织形态、遗传定位和差异表达研究,主要结果和结论如下:
     1.形态学研究发现,雄性不育系95ms-5可育株和不育株的植株形态无明显差异,但不育花药绿色、瘦瘪,花粉少而小,形态异常。可育花药长度和花柱长度都明显比不育花的长,而花冠长度和花丝长度无明显差异。与86ms-1转育得到的不育系相比,95ms-5A每朵花的平均花粉数量少,花粉偏小。95ms-5A和86ms-1转育不育系花粉离体培养均不萌发。
     2.组织学观察结果说明95ms-5A雄配子的发育异常出现在单核小孢子期,其败育特征为四分体后小孢子形态异常,与降解不完全的胼胝质发生粘连及绒毡层降解推迟等。电镜观察可见不育花粉外壁凹陷,未见萌发沟和颗粒状突起。
     3.95ms-5的测交和姊妹交后代遗传分析表明,95ms-5A的细胞核雄性不育受单一隐性基因Sims1(Sesamum indicum male sterility1)控制。与已报道的隐性细胞核雄性不育ms86-1的等位性分析表明,95ms-5A不育基因Sims1与ms86-1的不育基因不等位。
     4.利用分离群体分组分析法(BSA)研究分析了SiMs1基因的扩增片断长度多态性(AFLP)连锁标记,并通过对近等基因系95ms-5A和95ms-5B姊妹交后代获得的237株定位群体扩增分析,构建了SiMs1基因的遗传连锁图,共有9个标记,分布于SiMs1基因的两侧。将SiMs1基因定位于8.0cM的遗传区间内,其两侧最近的标记P06MG04和P12EA14,距离目标基因分别为1.2cM和6.8cM。且标记P01MC08与SiMs1基因共分离。相关研究结果为芝麻SiMsl基因的分子标记辅助选择、图位克隆及杂优育种奠定了坚实基础。
     5.利用cDNA-AFLP技术开展了95ms-5A不育花蕾和95ms-5B可育花蕾的转录谱分析,以阐明该隐性细胞核雄性不育的败育机理。共获得30条可重复的差异表达转录衍生片段(TDFs),其中在不育花蕾中呈下调表达的TDFs27条,上调表达的3条。成功克隆了27个TDFs,对其功能分析结果表明:11个TDFs的对应基因参与了能量代谢、信号传导和植物细胞壁的形成,其余16个TDFs与GenBank中未知功能蛋白同源或未匹配到同源序列。
     6.对21个基因进行了花蕾不同发育时期的实时荧光定量PCR分析,它们的表达模式与cDNA-AFLP分析结果完全一致。上述差异基因不同发育阶段的表达模式和基因功能注释分析表明,95ms-5A中一些胼胝质壁或绒毡层降解相关基因,如胼胝质合成酶催化类亚基蛋白、类受体蛋白激酶等,在小孢子母细胞或四分体之前某个阶段表达受到抑制,这可能是导致绒毡层降解延迟和雄配子发育受阻的直接原因。一些功能未知的基因在可育与不育花蕾的某个时间段也表现出极显著的表达水平差异,也很有可能是导致雄性不育的重要原因。通过半定量Real-time PCR对其中8个差异表达基因的组织特异性表达分析,鉴定筛选到一个雄蕊特异表达新基因,该基因在不育花蕾和可育花蕾间表达差异极显著,且功能未知。
The hybrid vigor is widely existed in sesame (Sesamum indicum L.). One of the important ways for heterosis utilization is to use the genic male sterile lines for producing hybrid seeds. In China, several sesame recessive genic male sterile lines (RGMS) have been bred, which are characterized by male sterile stability, no negative cytoplasmic effects and broad restoring resources. Many hybrid varieties have been bred by producing F1seeds using RGMS lines. However, we have little knowledge about the genetic characterization and mechanism of sesame male sterility. Therefore, it is necessary to conduct further studies on these aspects. In this study,95ms-5AB, a two-type line, was used for studies on histology, mapping and differential expression by phenotypic, cytological and molecular biology methods. The main results and conclusions are as follows:
     1. The phenotypic observations showed that95ms-5A plants did not show any other obvious differences from the male fertile95ms-5B plants, except for having greenish, shriveled and slim anthers with few, small and degenerative pollens. The lengths of anther and style in fertile flowers are larger than those of sterile flowers, but no difference in corolla and filament length between fertile and sterile flowers. Compared with the RGMS lines transferring from86ms-1,95ms-5A had less mean pollens and smaller pollen size. The pollen grains of95ms-5A and86ms-1lines could not germinate in vitro.
     2. Histological observations revealed that abnormal inhibited male gametogenesis of95ms-5A appeared during the mononuclear microspore stage. It was characterized by collapsed microspores, adhesion with callose which did not fully degraded and the delayed degeneration of tapetum after the tetrad stage. The morphology of pollens was observed by scanning electron microscope. The sterile pollen wall was cupped and no germinal furrows and particles were observed on pollen exine.
     3. Genetic analysis of test cross and sib-mating of95ms-5indicated that the male sterility of95ms-5A was controlled by a single recessive genic male sterile gene Simsl {Sesamum indicum male sterility1). Allelic test with ms86-1confirmed that Simsl in95ms-5A is different from ms86-1.
     4. Amplified fragment length polymorphism (AFLP) markers linked to SiMsl were screened using bulked segregant analysis (BSA). A genetic linkage map of the SiMs1 gene was constructed using237plants derived from the sib-mating between the near-isogenic lines95ms-5A and95ms-5B. The SiMsl gene was found to be located in a region of8.0cM, with a distance of1.2cM from P06MG04and6.8cM from P12EA14, the closest markers on two sides. And marker P01MC08was identified to be co-segregated with SiMsl. The linkage map constructed in this study will be very useful for marker-assisted selection, and map-based cloning of SiMsl as well as for hybrid breeding in sesame.
     5. cDNA-AFLP technique was used to investigate the transcriptional profiles of the sterile flower buds in95ms-5A and the fertile flower buds in95ms-5B in order to elucidate the mechanism of this RGMS. A total of30reproducible differentially expressed transcript-derived fragments (TDFs) were detected, including27down-regulated and three up-regulated TDFs in sterile buds. The functional annotation analysis of27successfully cloned TDFs indicated that the corresponding genes of11TDFs may participate in the processes of energy metabolism, signal transduction and plant cell development. The other16TDFs were homologous to the proteins with unknown functions or with no homo logy in GenBank.
     6. Real-Time PCR analysis of21genes in buds at different stages was performed and their expression patterns were entirely the same with those identified by cDNA-AFLP. The expression patterns and functional annotation of above genes in different stages suggested that some genes, such as callose synthase catalytic subunit-like protein (TDF04), receptor-like protein kinase (TDF03) etc., related to the callose wall or tapetum degeneration, were suppressed in95ms-5A in a certain phase before the microspore mother cell or tetrad stage, which may lead to the delayed tapetum degeneration and blocked male gametogenesis. Some function unknown genes showed significant difference of expression level in certain stages between fertile and sterile buds, which may also be the reasons for male sterility. Semi-quantification Real-Time PCR was used to carry on tissue-special expressed analysis of8differential expression genes. One novel stamen-special expressed gene was identified, which showed significantly different expression level between fertile and sterile buds, and its function is unknown.
引文
1. 陈凤祥,胡宝成,李成,李强生,陈维生,张曼琳.甘蓝型油菜细胞核雄性不育性的遗传研究.I.隐性核不育系9012A的遗传.作物学报,1998,24(4):431-438
    2. 陈忠正,刘向东,陈志强,王慧,卢永根,梅曼彤.水稻空间诱变雄性不育新种质的细胞学研究.中国水稻科学,2002,16(3):199-205
    3. 程式华.水稻两用核不育系育性转换光温反应型的分类研究.中国农业科学,1996,29(4):11-16
    4. 程勇,邹崇顺,李云昌,李桂英,郑普英,张学昆,刘胜毅.甘蓝型油菜显性核雄性不育基因的AFLP标记鉴定.中国油料作物学报,2008,30(2):148-151
    5. 邓景扬,高忠丽.小麦显性雄性不育基因的发现、鉴定及其在遗传学和育种学上的价值.中国科学(B辑),1982,(1):47-52
    6. 丁法元,蒋居平,张定选,李贵生.芝麻杂种优势与配合力效应关系的研究.华北农学报,1991,6(3):44-49
    7. 董军刚,董振生,刘绚霞,刘创社,李红兵.甘蓝型油菜生态雄性不育系533S花药发育的细胞学研究.西北农林科技大学学报,2004,32(7):61-66.
    8. 杜士云,阳菁,王守海,王德正,吴爽,罗彦长,李阳生.应用基因芯片分析短日低温条件下新型粳稻光温敏核质互作不育系育性相关基因.中国水稻科学,2010,24(6):559-566
    9. 冯雪梅,刘峰,刘玉栋,阴祖军,韩秀兰,沈法富.陆地棉新型核雄性不育系21A的初步研究.植物遗传资源学报,2010,11(4):433-438
    10.符庆功,余小林,曹家树,王永勤,向珣.白菜核雄性不育两用系AFLP扩增特异片段的克隆及序列分析.浙江大学学报(农业与生命科学版),2004,30(5):495-499
    11.付庆云,曹银萍,李友勇.小麦光温敏雄性不育的研究和利用进展.麦类作物学报.2010,30(3):576-580
    12.傅廷栋,涂金星.油菜杂种优势利用的现状与展望.刘后利主编,作物育种学论丛.北京:中国农业大学出版社,2002
    13.高鸿善,柳家荣,屠礼传.核不育芝麻小孢子败育机理的细胞学研究.作物学报,1992,18(6):425-428
    14.郭守鹏,刘海河,张彦萍,谢彬,张成合,申书兴.西瓜核雄性不育两用系G17AB育性基因的AFLP分子标记.园艺学报,2009,36(3):427-430
    15.洪建仁.高温对棉花花器官发育和棉铃生长的影响.中国棉花,1982(5):36-37.
    16.侯磊,肖月华,李先碧,王文锋,罗小英,裴炎.棉花洞A雄性不育系花药发育的mRNA差别显示.遗传学报,2002,29(4):359-363
    17.冀瑞琴,宋倩,辛喜凤,周雪,冯辉.抑制差减杂交法研究复等位基因遗传的大白菜核雄性不育分子机制.中国农学通报,2011,27(22):167-171
    18.李东霄,邓小莉,李淦,徐龙龙,茹振钢.温敏核不育小麦可育花药和败育花药发育观察.中国细胞生物学学报,2012,34(9):880-885
    19.李仕贵,周开达,朱立煌.水稻温敏显性核不育基因的遗传分析和分子标记定位.科学通报,1999,44(9):955-958
    20.李曙光,赵团结,盖钧镒.大豆突变体NJS-1H核雄性不育性的细胞学与遗传学分析.大豆科学,2010,29(2):181-185
    21.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传验证.上海农业学报,1986,2(2):1-8
    22.李香花,王伏林,陆青,徐才国.水稻光敏核不育基区pms3的精细定位.作物学报,2002,28(3):310-314
    23.李祥义,邓景扬.太谷核不育小麦雄性败育过程的细胞形态学研究.作物学报,1983,9(3):151-156.
    24.李小琴,刘纪麟,万邦惠,徐尚忠,季世国.玉米CMS育性恢复专效性分类系统的研究.华中农业大学学报,1999,18(3):203-206
    25.刘福霞,曹墨菊,荣廷昭,潘光堂.用微卫星标记定位太空诱变玉米核不育基因.遗传学报,2005,32(7):753-757
    26.刘秀珍,李传友,孙兰珍,刘宝申,隋新霞,宋伟.用DDRT-PCR技术对太谷核不育小麦基因差别表达的研究.西北植物学报,2003,23(12):2163-2166
    27.刘玉梅,方智远,Michael D. McMullen,庄木,杨丽梅,王晓武,张扬勇,孙培田.个与甘蓝显性雄性不育基因连锁的RFLP标记.园艺学报,2003,30(5):549-553
    28.逯红栋,巩振辉,黄炜,李大伟,赵尊练.9个辣椒雄性不育材料花蕾生理生化特性研究.西北植物学报,2006,26(4):832-835
    29.缪颖,陈林姣,陈德海,张祖滨.应用Bulked-DNA寻找白菜型油菜核雄性不育基因的RAPD标记.厦门大学学报(自然科学版),2000,39(5):682-685
    30.聂明建,王国槐,朱卫平.甘蓝型油菜3种类型雄性不育系花药败育的细胞学研究.中国农业科学,2007,40(7):1543-1549
    31.斯钦巴特尔,李强,张辉,哈斯阿古拉,贾霄云,高凤云.显性核不育亚麻可育、不育花蕾mRNA差异表达研究及差异片段分析.生物技术通报,2009,(8):67-70
    32.宋来强,傅廷栋,杨光圣,涂金星,马朝芝.1对复等位基因控制的油菜(Brassica napus L.)显性核不育系609AB的遗传验证.作物学报,2005,31(7):869-875
    33.孙日飞,吴飞燕,司家钢,李晓鸥,钮心恰.大白菜核雄性不育两用系小孢子发生的细胞形态学研究.园艺学报,1995,22(2):153-156
    34.孙晓敏,胡胜武,于澄宇.油菜生态不育系H50S花药败育的细胞学观察.西北农业学报,2009,18(5):153-158
    35.屠礼传,梁秀银,王文泉,郑永战,柳家荣,徐博.芝麻杂交种豫芝九号的选育与利用.河南农业科学,1994,(5):8-10
    36.屠礼传,梁秀银,王文泉,郑永战,柳家荣.芝麻基因雄性不育系的研究.华北农学报,1995,10:34-39.
    37.汪强,曹文听,徐桂珍.芝麻隐性核不育材料0176A、54-8A等利用研究.中国油料作物学报,2007,29(2):157-161.
    38.王台,童哲.光周期敏感核不育水稻农垦58S不育花药的显微结构变化.作物学报,1992,18(2):132-135
    39.王晓武,方智远,孙培田,刘玉梅,杨丽梅.一个与甘蓝显性雄性不育基因连锁的RAPD标记.园艺学报,1998,25(2):197-198
    40.王永勤,曹家树,符庆功,余小林,叶纨芝,向旬.利用cDNA-AFLP技术分析白菜核雄性不育两用系的表达差异.中国农业科学,2003,36(5):557-560
    41.王永勤,余小林,曹家树.白菜小孢子发育相关基因BcMF3的分离及序列分析.遗传学报,2004,31(11):1302-1308
    42.吴建勇.甘蓝型油菜显性细胞核雄性不育差异表达基因及雄配子发育研究.[博士学位论文].武汉:华中农业大学,2006
    43.许明,郑鹏婧,张欣,毕高熇.大白菜细胞核雄性不育甲型“两用系”细胞学观察.西北农业学报,2012,21(4):94-98
    44.杨光圣,傅廷栋.油菜细胞质雄性不育恢保关系研究.作物学报,1991,17(2):151-156
    45.杨好伟,远彤,刘学勋.芝麻雄蕊发育与小孢子发生及发育相关性的研究.植物学通报.1963,13(专集):63-66
    46.杨景华,王士伟,刘训言,杨加付,张明方.高等植物功能性分子标记的开发与利用.中国农业科学,2008,41(11):3429-3436
    47.杨守萍,曾维英,段美萍.大豆雄性不育突变体NJ89-1核不育基因的SSR标记和定位.大豆科学,2006,25(4):344-348
    48.杨晓丽.芝麻核雄性不育的超微结构观察、内源激素测定及相关基因的克隆研究.[硕士学位论文].南京:南京农业大学,2008
    49.袁鹤,张成合,刘海河,轩淑欣,李晓峰,申书兴.大白菜雄性核不育基因的染色体定位及AFLP分子标记筛选.中国农业科学,2009,42(6):2061-2067
    50.袁进成,石云素,胡洪凯,赵治海,宋燕春,石艳华,黎裕,王天宇.谷子显性雄性不育基因Msch的AFLP标记.作物学报,2005,31(10):1295-1299
    51.曾千春,周开达,朱祯,罗琼.中国水稻杂种优势利用现状.中国水稻科学,2000,14(4):243-246
    52.张立平,许晨光,赵昌平,张风廷,单福华,苑少华.应用水稻基因芯片分析小麦光温敏核雄性不育系的基因差异表达.中国生物化学与分子生物学报,2011,27(8):761-767
    53.张琳碧,荣廷昭,潘光堂,曹墨菊.太空诱变玉米核雄性不育材料的cDNA-AFLP分析.核农学报,2009,23(1):37-41
    54.张书芳,赵雪云,周邦福.大白菜核基因互作雄性不育系91-5A遗传机制初探.园艺学报,1994,21(4):404-405
    55.张天真,潘家驹.陆地棉473A核雄性不育系小孢子败育的细胞学研究.南京农业大学学报,1991,14(3):7-11
    56.张彦萍,刘海河,谢彬,郭守鹏.西瓜细胞核雄性不育系雄花蕾的mRNA差异表达分析.果树学报,2010,27(6):1037-1041
    57.张银东,刘艳鸣,冯仁军,张云霞.玉米温敏型核雄性不育基因差异表达分析.热带作物学报,2004,25(2):66-71
    58.张英涛,扬海东,陈朱希昭.绒毡层研究进展.植物学通报,1996,13(4):6-13
    59.赵应忠,刘红艳.杂交芝麻品种中芝杂1号的选育及栽培要点.世界农业,2008(11):147
    60.赵应忠,刘红艳.芝麻雄性不育系与核心种质间的遗传距离和杂种优势.中国油料作物学报,2005,27(1):36-40
    61.郑永战,张海洋,梅鸿献,卫双玲,张体德,王文泉,周晓明,张金芳.核不育二系芝麻杂交种郑杂芝H03的选育.河南农业科学,2003,3:14-15.
    62.朱梅玲,乔进春.扁桃花粉数量及花粉质量的检测.河北果树,2004,(6):8,11
    63.朱英国.水稻的杂种优势与超高产育种.大自然杂志,2012,(6):卷首
    64.俎峰,夏胜前,顿小玲,周正富,曾芳琴,易斌,文静,马朝芝,沈金雄,涂金星,傅廷栋.基于分子标记的油菜隐性核不育7-7365AB遗传模式探究.中国农业科学,2010,43(15):3067-3075
    65. Akama K, Takaiwa F. C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoihibitory domain and over-expression of a truncated mutant results in the accumulation of extremely high levels of GAB A in plant cells. J Exp Bot,2007,58:2699-2707
    66. Akkaya M S, Bhagwat A A, Cregan P B. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics,1992,132(4):1131-1139
    67. Babiychuk E, Cottrill P B, Storozhenko S, Fuangthong M, Chen Y, O'Farrell M K, Van Montagu M, Inze D, Kushnir S. Higher plants possess two structurally different poly (ADP-ribose) polymerases. Plant J,1998,15:635-645
    68. Bachem C W B, Oomen R J F J, Visser R G F. Transcript imaging with cDNA-AFLP:a step-by-step protocol. Plant Molecular Biology Reporter,1998, 16:157-173
    69. Bachem C W B, van der Heven R S, de Bruijn Z M, Vreugdenhil D, Zabeau M, Visser R G F, De Bruijn S M. Visualization of differential gene expression using a novel method of RNA finger-printing based on AFLP:analysis of gene expression during potato tuber development. Plant J,1996,9:745-753
    70. Banerjee P P, Kole P C. Heterosis, inbreeding depression and genotypic divergence for some physiological parameters in sesame (Sesamun indicum L.). J Crop Improv, 2011,25:11-25
    71. Bedigian D. Current market trends:Critical issues and economic importance of sesame. In Sesame:The Genus Sesamum. (ed.) Bedigian D. CRC Press. USA,2010, 423-490
    72. Bonza M C, Morandini P, Luoni L, Geisler M, Palmgren M G, De Michelis M I. At-ACA8 encodes a plasma membrane-localized calcium-ATPase of Arabidopsis with a calmodulin-binding domain at the N terminus. Plant Physiol,2000,123: 1495-1506
    73. Botstein D, White R L, Skolnick M M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980,32:314-331
    74. Boursiac Y, Lee S M, Romanowsky S, Blank R, Sladek C, Chung W S, Harper J F. Disruption of the vacuolar calcium-ATPases in Arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway. Plant Physiol,2010, 154:1158-1171
    75. Chaudhury AM, Lavithis M, Taylor P E, Craig S, Singh M B, Signer E R, Knox R B, Dennis E S. Genetic control of male fertility in Arabidopsis thaliana:structural analysis of premeiotic developmental mutants. Sex Plant Reprod,1994,7:17-28
    76. Chen C M, Hao X F, Chen G J, Cao B H, Chen Q H, Liu A Q, Lei J J. Characterization of a new male sterility-related gene Camfl in Capsicum annum L Mol Biol Rep,2012,39:737-744
    77. Chen C, Chen G, Hao X, Cao B, Chen Q, Liu S, Lei J. CaMF2, an anther-specific lipid transfer protein (LTP) gene, affects pollen development in Capsicum annuum L. Plant Sci,2011,181:439-448
    78. Chen J, Hu J, Vick B A, Jan C C. Molecular mapping of a nuclear male-sterility gene in sunflower (Helianthus annuus L.) using TRAP and SSR markers. Theor Appl Genet,2006,113:122-127
    79. Chen Y, Lei S, Zhou Z, zeng F, Yi B, Wen J, Shen J, Ma C, Tu J, Fu T. Analysis of gene expression profile in pollen development of recessive genic male sterile Brassica napus L. line S45A. Plant Cell Rep,2009,28:1363-1372
    80. Chu M G, Li S C, Wang S Q, Zheng A P, Deng Q M, Ding L, Zhang J, Zhang M H, He M, Liu H N, Zhu J, Wang, L X, Li P. Fine mapping of a male sterility gene, vr1, on chromosome 4 in rice. Mol Breeding,2011,28:181-187
    81. Dellaporta S L, Wood J, Hicks J B. Maize DNA miniprep. In:Messing J, Sussex I (eds) Molecular biology of plants:a laboratory course manual. Cold Spring Harbor Press, New York,1985, pp 36-37
    82. Diatchenko L, Lau Y F, Campbell A P, Chenchik A, Moqadam F, huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdiov E D, Siebert P D. Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA,1996,93(12): 6025-6030
    83. Ding L, Li S C, Wang S Q, Deng M Q, Zhang J, Zheng A P, Wang L X, Chu M G, Zhu J, Li P. Phenotypic characterization and genetic mapping of a new gene required for male and female gametophyte development in rice. Mol Breeding,2012,29: 1-12
    84. Dong X, Hong Z, Sivaramakrishnan M, Mahfouz M, Verma D P. Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. Plant J,2005,42:315-328
    85. Edwardson J R. Cytoplasmic male sterility. Botany Review,1956,22:696-738
    86. Feder N, O'brien T P. Plant microtechnique:some principles and new methods. Am J Botany,1968,55(1):123-142
    87. Frei dit Frey N, Mbengue M, Kwaaitaal M, Nitsch L, Altenbach D, Haweker H, Lozano-Duran R, Njo M F, Beeckman T, Huettel B, Borst J W, Panstruga R, Robatzek S. Plasma membrane calcium ATPases are important components of receptor-mediated signalling in plant immune responses and development. Plant Physiol,2012,159:798-809
    88. Ganesan J. Induction of genic male sterility system in sesame. Crop Improv,1995, 22(2):167-169
    89. Gottschalk W, Kaul M L H. The genetic control of microsporogenesis in higher plants. Nucleus,1974,17:133-166.
    90. Gubler U, Hoffman B J. A simple and very efficient method for generating cDNA libraries. Gene,1983,25:263-269
    91. Gutierrez R A, Ewing R M, Cherry J M, Green P J. Identification of unstable transcripts in Arabidopsis by cDNA microarray analysis:rapid decay is associated with a group of touch and specific clock-controlled genes. Proc Natl Acad Sci USA, 2002,99(17):11513-11518
    92. Han Y, Zhang A, Huang L, Yu X, Yang K, Fan S, Cao J. BcMF20, a putative pollen-specific transcription factor from Brassica campestris ssp. chinensis. Mol Biol Rep,2011,38:5321-5325
    93. Hong D, Wan L, Liu P, Yang G, He Q. AFLP and SCAR markers linked to suppressor gene (Rf) of a dominant genic male sterility in rapeseed (Brassica napus L.). Euphytica,2006,151:401-409
    94. Hong Z, Delauney A J, Verma D P. A cell plate-specific callose synthase and its interaction with phragmoplastin. Plant Cell,2001,13:755-768
    95. Hu L, Tan H, Liang W, Zhang D. The Post-meiotic Deficicent Anther] (PDA1) gene is required for post-meiotic anther development in rice. J Genet Genomics,2010,37: 37-46
    96. Huang L, Cao J, Ye W, Liu T, Jiang L, Ye Y. Transcriptional differences between the male-sterile mutant bcms and wild-type Brassica campestris ssp.chinensis reveal genes related to pollen development. Plant Biol,2008,10:342-355
    97. Huang L, Ye Y, Zhang Y, Zhang A, Liu T, Cao J. BcMF9, a novel polygalacturonase gene, is required for both Brassica campestris intine and exine formation. Ann Bot. 2009,104(7):1339-1351
    98. Huang T, Wang Y, Ma B, Ma.Y, Li S. Genetic analysis and mapping of genes involved in fertility of Pingxiang dominant genic male sterile rice. J Genet Genomics,2007a,34(7):616-622
    99. Huang Z, Chen Y F, Yi B, Xiao L, Ma C, Tu J, Fu T. Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor Appl Genet,2007b, 115:113-118
    100. Huang Z, Xiao L, Dun X, Xia S, Yi B, Wen J, Ma C, Tu J, Meng J, Fu T. Improvement of the recessive genic male sterile lines with a subgenomic background in Brassica napus by molecular marker-assisted selection. Mol Breed, 2012,29:181-187
    101.Hubank M, Sehatz D G. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Research,1994,22: 5640-5648
    102. Ilarslan H, Horner H T, Palmer R G. Genetics and cytology of a new male-sterile, female-fertile soybean mutant. Crop Sci,1999,39:58-64
    103. Jiang J, Yu X, Miao Y, Huang L, Yao L, Cao J. Sequence characterization and expression pattern of BcMF21, a novel gene related to pollen development in Brassica campestris ssp. chinensis. Mol Biol Rep,2012,39:7319-7326
    104. Jin W, Horner H T, Palmer RG. Genetics and cytology of a new genic male-sterile soybean [Glycine max (L.) Merr.]. Sex Plant Reprod,1997,10:13-21
    105. Kang J, Zhang G, Bonnema G, Fang Z, Wang X. Global analysis of gene expression in flower buds of Ms-cdl Brassica oleracea conferring male sterility by using an Arabidopsis microarray. Plant Mol Biol,2008,66:177-192
    106. Kaul M L H. Male sterility in higher plants. Heidelberg:Springer-Verlag,1988
    107. Kavitha M, Ramalingam R S. Microsporogenesis in the cytoplasmic genic male sterile lines of sesame. Invest Agr Prod Prot Veg,1999,14(1-2):307-309
    108. Kavitha M, Ramalingam S R S, Raveendran T S, Punitha D. Cytoplasmic-genic male sterile lines in sesame (Sesamum indicum L.)-Effect of environmental factors. Crop Research,2000,19(1):162-164
    109. Ke L P, Sun Y Q, Hong D F, Liu P W, Yang G S. Identification of AFLP markers linked to one recessive genic male sterility gene in oilseed rape, Brassica napus. Plant Breed,2005,124:367-370
    110. Ke L, Sun Y, Liu P, Yang G. Identification of AFLP fragments linked to one recessive genic male sterility (RGMS) in rapeseed(Brassica napus L.) and conversion to SCAR markers for marker-aided selection. Euphytica,2004,138: 163-168
    111.Kosambi D. The estimation of map distances from recombination values. Ann. Eugen,1944,12:172-175
    112. Kurek I, Dulberger R, Azem A, Tzvi B B, Sudhakar D, Christou P, Breiman A. Deletion of the C-terminal 138 amino acids of the wheat FKBP73 abrogates calmodulin binding, dimerization and male fertility in transgenic rice. Plant Mol Biol,2002,48:369-381
    113. Lamb R S, Citarelli M, Teotia S. Functions of the poly (ADP-ribose) polymerase superfamily in plants. Cell Mol Life Sci,2012,69:175-189
    114. Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L A. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics,1987,1:174-81
    115. Lao N T, Long D, Kiang S, Coupland G, Shoue D A, Carpita N C, Kavanagh T A. Mutation of a family 8 glycosyltransferase gene alters cell wall carbohydrate composition and causes a humidity-sensitive semi-sterile dwarf phenotype in Arabidopsis. Plant Mol Biol,2003,53:647-661
    116. Laser K D, Lersten N R. Anatomy and cytology of microsporogenesis of cytoplasmic male sterile angiosperms. Bot Rev,1972,38:427-454
    117. Lei S, Yao X, Yi B, Chen W,. Ma C, Tu J, Fu T. Towards map-based cloning:fine mapping of a recessive genic male-sterile gene(BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor Appl Genet,2007,115:643-651
    118. Li Y D, Feng X Y, Zhao Y Z. Studies on induced mutation of sesame male sterility. In Sesame Improvement by Induced Mutations, IAEA-TECDOC-1195. IAEA, Vienna,2001,113-116
    119. Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science,1992,257(14):967-971
    120. Lisitsyn N, Lisitsyn N, Wigler M. Cloning the differences between two complex genomes. Science,1993,259:946-951
    121. Lu G Y, Yang G S, Fu T D. Molecular mapping of a dominant genic male sterility gene Ms in rapeseed(Brassica napus). Plant Breed,2004,123:362-365
    122. Ma X, Xing C, Guo L, Gong Y, Wang H, Zhao Y, Wu J. Analysis of differentially expressed genes in genic male sterility cotton (Gossypium hirsutum L.) using cDNA-AFLP. J Genet Genom,2007,34(6):536-543
    123. Maheswaran M, Subudhi P K, Nandi S. Polymorphism, distribution, and segregation of AFLP markers in a double haploid rice population. Theor Appl Genet,1997,94: 39-45
    124. Mariani C, De Beuckeleer M, Truettner M, Leemans J, Goldberg R. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature,1990,347: 737-741
    125. Mizuno S, Osakabe Y, Maruyama K, Ito T, Osakabe K, Sato T, Shinozaki K, Yamaguchi-Shinozaki K. Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana. Plant J,2007,50:751-766
    126. Mueller U G, Wolfenbarger L L. AFLP genotyping and fingerprinting. Trends Ecol Evol,1999,14(10):389-394
    127. Murai K, Tsumewaki K. Photoperiod sensitive cytoplasm male sterility in wheat With Aegilop scrassa cytoplasm. Euphytics,1993,67:41-48
    128. Murty D S. Heterosis, combining ability and reciprocal effects for agronomic and chemical characters in Sesamum. Theor Appl Genet,1975,45:294-299
    129. Negi M S, Devic M, Delseny M, Lakshmikumaran M. Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to a SCAR marker for rapid selection. Theor Appl Genet,2000,101:146-152
    130. Osman H E, Yermanos D M. Genetic male sterility in sesame:Reproductive characteristics and possible use in hybrid seed production. Crop Sci,1982,22: 492-498
    131. Paran I, Michelmore R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet,1993,85:985-993
    132. Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res,2001,29:e45
    133. Pfahler P L, Pereira M J, Barnett R D. Genetic and environmental variation in anther, pollen and pistil dimensions in sesame. Sexual Plant Reprod,1996,9(4):228-232
    134. Pfahler P L, Pereira M J, Barnett R D. Genetic variation for in vitro sesame pollen germination and tube growth. Theor. Appl. Genet.,1997,95(8):1218-1222.
    135. Prabakaran A J, Rangasamy S R S, Ramalingam, R S. Identification of cytoplasm-induced male sterility in sesame through wide hybridization. Curr Sci,1995,68(10): 1044-1047
    136. Sanguinetti C J, Dias Neto E, Simpson A J. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques,1994,17:914-921
    137. Sawhney V K, Bhadula S K. Micro sporogenesis in the normal and male-srerile stamenless-2 mutant of tomato (Lycopersicon esculentum). Can J Bot,1988,66: 2013-2021
    138. Sears E R. Genetics and farming. Yearbook of Agriculture,1947:245-255
    139. Sehnable P S, Wise R P. The molecular basis of cytoplasmic male sterility and fertility restoration. Trend Plant Sci,1998,3:175-180
    140. Singh R B, Kaul M L H. Male sterility in barley IV. Anther form and development. Plant Breed,1991,107:326-332
    141. Song L Q, Fu T D, Tu J X, Ma C Z, Yang G S. Molecular validation of multiple allele inheritance for dominant genic male sterility gene in Brassica napus L. Theor Appl Genet,2006,113:55-62
    142. Spena A, Estruchj J J, Prinsen E, Nacken W, Van Onckelen H, Sommer H. Anther-specific expression of the rolB gene of Agrobacterium rhizogenes increases IAA content in anthers and alters anther development and whole flower growth. Theor Appl Genet,1992,84:520-527
    143. Taylor P E, Glover J A, Lavithis M, Craig S, Singh M B, Knox R B, Dennis E S, Chaudhury A M. Genetic control of male fertility in Arabidopsis thaliana:structural analyses of postmeiotic developmental mutants. Planta,1998,205:492-505
    144. Tsvetova M I, Elkonin L A. Cytological investigation of male sterility in sorghum caused by a dominant mutation (Mstc) derived from tissue culture. Sex Plant Reprod, 2003,16:43-49
    145. Uzun B, Cagirgan M I. Identification of molecular markers linked to determinate growth habit in sesame. Euphytica,2009,166:379-384
    146. Vos P, Hoger R, Bleeker M. AFLP:a new technique for DNA fingerprinting. Nucl Acids Res,1995,23:4407-4414
    147. Wan L, Xia X, Hong D, Li J, Yang G. Abnormal vacuolization of the tapetum during the tetrad stage is associated with male sterility in the recessive genic male sterile Brassica napus L. Line 9012A. J Plant Biol,2010,53:121-133
    148. Wang D J, Guo A G, Li D R, Tian J H, Huang F, Sun G L. Cytological and molecular characterization of a novel monogenic dominant GMS in Brassica napus L. Plant Cell Rep,2007,26:571-579
    149. Wang J X, Yang G S, Fu T D, Meng J L. Development of PCR-based markers linked to the fertility restorer gene for the polima cytoplasmic male sterility in rapeseed (Brassica napus L). J Genet,2000,27(11):1012-1016
    150. Wang Y Q, Ye W Z, Cao J S, Yu X L, Xiang X, Lu G. Cloning and characterization of the microspore development-related gene BcMF2 in Chinese cabbage pak-choi (Brassica campestris L. ssp. chinensis Makino). Journal of Integrative Plant Biology, 2005,47(7):863-872
    151.Warmke H E, Overman M A. Cytoplasmic male sterility in sorghum. I. Callose behavior in fertile and sterile anthers. J Hered,1972,63:103-108
    152. Weaver J B, Ashley T. Analysis of a dominant gene for male sterility in upland cotton, Gossypcuim hirsutum L. Crop Sci,1971, (11):596-598
    153. Wei L, Miao H, Zhao R, Han X, Zhang T, Zhang H. Identification and testing of reference genes for Sesame gene expression analysis by quantitative real-time PCR. Planta,2013,237:873-889
    154. Williams J G K. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res,1990,18:6531-6534
    155. Worrall D, Hird D L, Hodge R, Paul W, Draper J, Scott R. Premature dissolution of the microsporocyte callose wall causes male sterility in transigenic tobacco. Plant Cell,1992,4(7):759-771
    156. Wu H M, Cheung A Y. Programmed cell death in plant reproduction. Plant Mol Biol, 2000,44:267-281
    157. Wu J Y, Yang G S. Meiotic abnormality in dominant genic male sterile Brassica napus. Molecular Biology,2008,42:572-578
    158. Wu J, Shen J, Mao X, Liu K, Wei L, Liu P, Yang G. Isolation and analysis of differentially expressed genes in dominant genic male sterility (DGMS) Brassica napus L. using subtractive PCR and cDNA microarray. Plant Sci,2007,172: 204-211
    159. Xiao L, Yi B, Chen Y F, Huang Z, Chen W, Ma C, Tu J, Fu T. Molecular markers linked to Bn;rf:a recessive epistatic inhibitor gene of recessive genic male sterility in Brassica napus L. Euphytica,2008,164:377-384
    160. Xie Y Z, Hong D F, Xu Z H, Liu P W, Yang G S. Identification of AFLP markers linked to the epistatic suppressor gene of a recessive genic male sterility in rapeseed and conversion to SCAR markers. Plant Breed,2008,127:145-149
    161. Xu Z, Xie Y, Hong D, Liu P, Yang G. Fine mapping of the epistatic suppressor gene (esp) of a recessive genic male sterility in rapeseed (Brassica napus L.). Genome, 2009,52:755-760
    162. Yi B, Chen Y, Lei S, Tu J, Fu T. Fine mapping of the recessive genic male-sterile gene (Bnmsl) in Brassica napus L. Theor Appl Genet,2006,113:643-650.
    163. Ying M, Dreyer F, Cai D C, Jung C. Molecular markers for genic male sterility in Chinese cabbage, Euphytica,2003,132(2):227-234
    164. Zhang Y, Shewry P R, Jones H, Barcelo P, Lazzeri P A, Halford N G. Expression of antisense SnRK1 protein kinase sequence causes abnormal pollen development and male sterility in transgenic barley. Plant J,2001,28(4):431-441
    165. Zheng Q F, Shen B Z, Dai X K, Mei M H, Maroof M A S, Li Z B. Using bulked extremes and recessive class to map genes for photoperiod sensitive genic male sterility in rice. Proc Natl Acad Sci USA,1994,91:8675-8679
    166. Zhou Z, Dun X, Xia S, Shi D, Qin M, Yi B, Wen J, Shen J, Ma C, Tu J, Fu T. BnMs3 is required for tapetal differentiation and degradation, microspore separation, and pollen-wall biosynthesis in Brassica napus. Journal of Experimental Botany,2012, 63(5):2041-2058
    167. Zhu Y, Dun X, Zhou Z, Xia S, Yi B, Wen J, Shen J, Ma C, Tu J, Fu T. A separation defect of tapetum cells and microspore mother cells results in male sterility in Brassica napus:the role of abscisic acid in early anther development. Plant Mol Biol,2010,72,111-123

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700