用户名: 密码: 验证码:
超精密加工表面粗糙度测量方法对比及功率谱密度评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学仪器、微机电系统,光电信息技术的迅速发展,各工业部门对零件表面质量的要求越来越高,如X射线反射镜和激光陀螺反射基片均要求表面粗糙度在亚纳米级尺度。这对超精密表面测量技术和测量理论体系提出了更高的要求。因此本文围绕超精密加工表面测量的相关问题开展了相应的研究工作,具体研究内容包括如下几个方面:
     综述了二维及三维表面形貌的传统评定方法,讨论了这些传统参数在应用中的局限性,进而引入了功率谱密度评价方法,并对一维及二维功率谱密度的定义及估计算法进行了详细地分析。鉴于传统估计算法的固有缺陷,提出了三种提高功率谱密度估计质量的方法,并举以实例针对每种方法进行了验证,结果表明三种方法均能不同程度地克服原算法的缺陷,提高了功率谱密度估计精度。
     总结了原子力显微镜、触针式轮廓仪及白光干涉仪的原理及性能参数,分析了这些仪器的误差影响因素,并在此基础上,应用这些典型的仪器分别对包括石英玻璃、单晶硅片及微晶玻璃在内的三种试样表面形貌进行了测量,给出了这些表面的粗糙度值。而不同的测量仪器具有不同的频带宽度,因此所测得的粗糙度值并不能直接地进行对比。通过计算这些表面的一维功率谱密度,并在三种仪器共有的频段内计算每种仪器对应的功率谱密度曲线下方的面积,即均方根值,实现了对不同仪器测得的粗糙度值进行直接地对比。通过对比发现,原子力显微镜是用于测量高频表面结构的最佳仪器。通过对测量结果的进一步分析发现,测量条件(如采样间距,扫描范围)的改变直接影响着表面粗糙度,考虑到目前尚没有指导选择合理采样条件的标准文件,因而本文提出了基于频谱分析的确定合理采样条件的方法,并通过测量两种典型表面验证了这一方法,证明了此方法是合理的。
     除此之外,本文还应用了原子力显微镜对在不同工艺条件下得到的超精密加工表面进行了测量,并应用功率谱密度表征了各种表面。通过对功率谱密度曲线的对比研究发现,功率谱密度是指导加工方法选择及工艺参数优化的有力工具,它能够定量地描述表面轮廓在空间频段的分布情况,为系统地分析超精密加工工艺对表面质量的影响提供了丰富的信息。
Along with the rapid development of scientific instruments,micro-electro-mechanical systems, and opto-electronics information technology, the surface quality of the parts have become increasingly demanding, such as x-ray laser, gyro mirrors, and reflective substrate, their surface roughness call in below 1nm scale. Therefore, this also imposes a higher demand on the surface of ultra-precision measurement technology and measurement of the theoretical system. In this paper, related research work around the measurement of ultra-precision machined surface was carried out. The main content of this thesis includes the following parts:
     A review of traditional methods of surface metrology for one-dimensional profiles and areas was carried out. Limitations and complications using these mathematical tools were discussed. Thus the Power Spectral Density (PSD) was introduced. The definition and calculation of one-dimensional PSD and two-dimensional PSD were analyzed in detail. Three ways to reduce the variance of the PSD estimate were suggested. Examples were shown of the variance reduction possible in the PSD's.
     Specifications and schematics of three typical measuring instruments including atomic force microscopy (AFM), mechanical stylus profiler (MSP), and white light interferometer (WLI) were presented. And the errors of these instruments were analyzed. Based on the discussion of measurement techniques above, the Surface topography was measured on three samples including fused silica, silicon wafer and glass-ceramic using the AFM, MSP and WLI. Results of surface roughness were presented. It is known that the measurement instruments have different surface spatial wavelength band limits. So the measured roughnesses were not directly comparable. One-dimensional PSD functions were calculated from the digitized measurement data and we obtained root mean square roughness by integrating areas under the PSD curves between fixed upper and lower band limits. In this way roughnesses measured with different instruments could be directly comparable. The differences between them were discussed. AFM was concluded to be the most suitable surface measuring instrument for roughness measurement in high-frequency bandwidth. Moreover, from the measurement result, it was found that the roughness parameters changes with measuring parameters (for example, the sampling interval and area). Given that there are no national or international standards available for the measurement of surface roughness in three-dimensions, a philosophy of surface roughness measurement in terms of the Nyquist wavelength limit was discussed. A sampling interval selection approach based on spectral analysis was then proposed. Experiment results based on measurements carried out on two samples were presented to demonstrate the effectiveness of the proposed approach.
     In addition, some samples obtained by different process methods were also measured with an AFM. The measured surfaces were characterized by the PSD. PSD, which can describe quantitatively the distribution of super-smooth surface morphology in spatial frequency band, has the spectral description function and can provide abundant data for system analysis of ultra-presicison machining process. The result shows that the PSD is of great guidance to the selection of manufacturing methods and process improvement.
引文
1袁巨龙,王志伟,文东辉等.超精密加工现状综述.机械工程学报. 2007, 43(1):35~45
    2 P. M. Lonardo, D. A. Lucca, L. De Chiffre. Emerging Trends in Surface Metrology. CIRP Annals-Manufacturing Technology. 2002, 51(2):701~723
    3 V. Vladimir, Martynov, Y. Platonov. Surface Roughness Analysis of Multilayer X-ray Optics. Proc. of SPIE. 2008, 7077:04-1~04-8
    4彭翰生,张小民,范滇元,朱健强.高功率固体激光装置的发展与工程科学问题.中国工程科学. 2001, 3(3):1~8
    5王金林,陈明,韩荣久.激光陀螺超光滑反射镜基片的光学加工和检测技术.航空精密制造技术. 2003, 39(2):5~9
    6 Y. S. Allsion, A. P. Andreas. Digital Filtering Methodology Used to Reduce Scale of Measurement Effects in Roughness Parameters for Magnetic Storage Supersmooth Hard Disks. Wear. 2006, 260(4-5):538~548
    7袁长良,丁志华,武文堂.表面粗糙度及其测量.机械工业出版社. 1989:47~52
    8李丽伟,董申,程凯.超光滑表面的加工、表征和功能.工具技术. 2002, 36(8):15~18
    9唐文彦,张军.触针法测表面粗糙度的发展及现状.机械工艺师. 2000, (11):40~43
    10 http://www.taylor-hobson.com
    11 R. J. Hocken, N. Chakraborty, C. Brown. Optical Metrology of Surfaces. CIRP Annals-Manufacturing Technology. 2005, 54 (2):169~183
    12冯斌,王建华.用于表面微观形貌测量的光学方法.工具技术. 2005, 39(1):71~75
    13 D. J. Whitehouse. Surface Metrology. Meas. Sci. Technol. 1997, (8):955~972
    14 ISO/TR 14638. Geometrical Product Specifications (GPS)-Masterplan. 1995
    15 K. J. Stout, P. J. Sullivan, W. P. Dong, et al. The Development Methods for the Characterization of Roughness in Three Dimensions. EUR15178 EN Report. 1993
    16郭军.激光干涉面形貌测量系统3DMOTIF评定研究.华中科技大学博士学位论文. 2004:85~96
    17陆圣凤.表面形貌复合评定理论与方法的研究.华中科技大学博士学位论文. 2003:40~50
    18费斌,王海容,蒋庄德.机械加工表面分形特征的研究.西安交通大学学报.1998, 32(6):83~86
    19李惠芬,蒋向前,李柱.三维表面功能评定技术发展综述.工具技术. 2002, 36(2):8~11
    20 H. Tobben, G. Ringel, F. Kratz, et al. The Use of Power Spectral Density to Specify Optical Surfaces. Proc. of SPIE. 1996, 2775:240~250
    21 R. N. Youngworth, B. B. Gallagher, B. L. Stamper. An Overview of Power Spectral Density (PSD) Caculations. Proc. of SPIE. 2005, 5869:0U-1~0U-5
    22杨力.先进光学制造技术.科学出版社. 2001:303~305
    23 D. M. Aikens, C. R. Wolf, J. K. Lawson. The Use of Power Spectral Density (PSD) Functions in Specifying Optics for the National Ignition Facility. Proc. of SPIE. 1995, 2576:281~292
    24 M. L. Spaeth, K. R. Manes, C. C. Widmayer, et al. National Ignition Facility Wavefront Requirements and Optical Architecture. Optical Engineering. 2004, 43(12):2854~2865
    25 C. F. Cheung, W. B. Lee. Characterization of Nanosurface Generation in Single-point Diamond Turning. International Journal of Machine Tools & Manufacture. 2001, (41):851~875
    26 X. C. Luo, K. Cheng. Nonlinear Effects in Precision Machining Engineering Materials. Proc. of SPIE. 2004, 1189:112~121
    27徐芳,魏全忠,伍凡.用功率谱密度函数评价光学面形中频误差特性.光电工程. 1999, (26):139~142
    28沈卫星,徐德衍.强激光光学元件表面功率谱密度函数估计.强激光与粒子束. 2000, 21(4):392~396
    29高志山,陈进榜等.波面功率谱密度中频波段的干涉测试研究.中国激光. 2000, 27(4):327~331
    30许乔,顾元元等.大口径光学元件波前功率谱密度检测.光学学报. 2001, 21(3):344~347
    31任寰,卓志云,蒋晓东等.波前功率谱密度函数评价方法探讨.强激光与粒子束. 2002, 14(2):279~282
    32张蓉竹. ICF系统光学元件高精度波前检测技术研究.四川大学博士学位论文. 2003
    33程晓锋,郑万国,蒋晓东等.用功率谱密度坍陷评价光学元件波前中频误差特性.强激光与粒子束. 2005, 17(10):279~282
    34柯宏发,杨俊,张耀辉,柳新民.用二维功率谱密度分析工程表面特征.工具技术. 1997, 31(8):38~41
    35吴贤莉.基于功率谱密度的车削质量控制.航空精密制造技术. 1999,35(1):23~24
    36 Y. H. Liu, L. Teng, et al. Application of Power Spectral Density to Specify Optical Super-smooth Surface. Proc. of SPIE. 2006, 6150:311~315
    37庞启龙.基于小波和分形的KDP晶体形貌分析及其光学性能的研究.哈尔滨工业大学博士学位论文, 2008
    38 GB/T 3505-2000产品几何技术规范(GPS),表面结构轮廓法表面结构术语、定义及参数. 2000
    39 ISO/DIS 25178 Geometric Product Specifications (GPS)– Surface Texture: Areal -- Part 2: Terms, Definitions and Surface Texture Parameters. 2008
    40于瀛洁,李国培.关于光学元件波面测量中的功率谱密度.计量学报. 2003, 24(2):103~107
    41 R. Barkat. The Influence of Random Wavefront Errors on the Imaging Characteristics of an Optical System. Optica Acta. 1991, (18):683~694
    42 J. E. Harvey, A. Kotha. Scattering Effects from Residual Optical Fabrication Errors. Proc. of SPIE. 1995, 2576:155~174
    43陈纪修,於崇华,金路.数学分析(下册).高等教育出版社. 2000: 410~425
    44徐宁寿.随机信号估计与系统控制.北京工业大学出版社. 2001:60~64
    45姚天任,江太辉.数字信号处理.华中科技大学出版社. 2000:232~278
    46 E. L. Church, P. Z. Takacas. The Optimal Estimation of Finish Parameters. Proc. of SPIE. 1991, 1530:71 ~78
    47 J. M. Elson, J. M. Bennett. Calculation of the Power Spectral Density from Surface Profile Data. Applied Optics. 1995, 34(1):201~207
    48王贵林.相位光栅干涉计.国防科技参考. 1997, 18(3):22~24
    49肖刚,谢铁邦,王选择.一种小型相位光栅干涉式(PGI)微位移传感器.计量技术. 2005, (1):7~9
    50 C. Y. Poon, B. Bhushan. Comparison of Surface Roughness Measurements by Stylus Profiler, AFM and Non-contact Optical Profiler. Wear. 1995, (190):76~88
    51 P. Pawlus. Mechanical Filtration of Surface Profiles. Measurement. 2004, 35(4):325~341
    52 R. T. Blunt. White Light Interferometry. CS MANTECH Conference, 2006
    53苏大图.光学测量.机械工业出版社. 1988:230~240
    54何永辉,蒋剑峰,赵万生.基于扫描白光干涉法的表面三维轮廓仪.光学技术. 2001, 27(2):150~155
    55 http://www.veeco.com.cn/
    56 D. L. Sedin. Evaluation of Atomic Force Microscopy for the Characterization of Surface Properties. Ph. D Thesis. University of Colorado. 2000
    57 D. J. Whitehouse, J. F. Archard, The Properties of Random Surface of Significance in their Contact. Proc. R. Soc. 1970, A (316):97~121
    58 T. Tsukada, S. Sasajima. An Optimum Sampling Interval for Digitising Surface Asperity Profiles. Wear. 1982, (83):119~128
    59 D. Y. Yim, S. K. Kim. Optimum Sampling Interval for Ra Surface Measurement. Proc. Inst. Mech. Eng. 1991, C (205):139~142
    60 T. Y. Lin, L. Blunt, K. J. Stout. Determination of the Proper Frequency Bandwidth for 3-D Topography Measurement Using Spectral Analysis. Part I: Isotropic Surface. Wear. 1993, (166):221~232.
    61 W. P. Dong, E. Mainsah, K. J. Stout. Determination of Appropriate Sampling Conditions for Three-dimensional Microtopography Measurement. Int. J. Mach. Tools Manufact. 1996, 36 (12):1347~1362
    62 P. Pawlus. Digitisation of Surface Topography Measurement Results. Measurement. 2007, (40):672~686
    63 Gufran Sayeed Khan. Characterization of Surface Roughness and Shape Deviations of Aspheric Surfaces. Ph.D Thesis. Friedrich Alexander University. 2008:30~48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700