用户名: 密码: 验证码:
SiC_f/Ti基复合材料界面的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiC连续纤维增强Ti基复合材料(TMC)的比强度和比刚度高、使用温度高、疲劳和蠕变性能好、减重效果显著,在航空发动机上有广阔的应用前景。由于Ti的化学活性大,在复合材料的SiC纤维/Ti界面处仍存在着严重的界面反应,极大的损害SiC/Ti基复合材料的力学性能,制备工艺对复合材料的性能也有很大影响。本文通过扫描电镜、X射线衍射和电子背散射等分析手段,对用FFF法制备的以Ti-6Al-4V合金以及Ti基体复合材料的界面反应以及性能影响因素进行了分析;本文还对液态复合工艺制备SiC连续纤维增强Ti基复合材料进行了探索研究。
     该实验所用纤维为国防科技大学提供的细纤维和西北工业大学提供的粗纤维,利用扫描电镜观察分析了复合材料的界面反应与断口形貌,发现由FFF法制备的复合材料中无涂层纤维与基体之间、基体与涂层之间有明显的界面反应层,SiC纤维中的元素向基体扩散,在界面生成脆性产物,加大了界面的脆性,使材料呈现脆性断裂。在复合材料中还发现“耳状”空洞等组织缺陷,本实验通过在纤维层中添加钛粉解决了此问题,但是钛粉的加入方法与加入量还有待深入研究。
     实验采用离心铸造法作为液态复合工艺制备复合材料的方法,研究发现,液态复合工艺的最大缺点是金属液与纤维在高温下会发生严重的界面反应,从而影响到复合材料的性能。在相同的制备条件下,无涂层纤维与基体的界面反应层厚度可达到110μm左右,而TiN与C涂层纤维与基体的反应厚度为5~10μm,约为无涂层纤维复合材料的十分之一,说明纤维表面的障碍涂层对金属液与纤维的反应有很好的阻碍作用,如果采用理想的涂层,提高冷却速度,减少金属液与纤维之间的界面反应时间,则液态复合工艺将是一种方便、低成本的SiC/Ti基复合材料制备工艺。
Continuous SiC fiber reinforced titanium matrix composites (TMC) has high specific strength and stiffness, high service temperature, good anti-fatigue and creep-resistant performance and significant weight reduction effect. These advantages give it a wide prospect of application on aeroengine. But due to the high chemical activity of titanium, there is serious interface reaction between SiC fibers and titanium matrix which will cause severe damage on the mechanical properties of SiCf/Ti composites. Some elements of the SiC fiber diffuse into the matrix and give birth to some brittle products, these brittle products will increase the brittleness of the interface which makes the fracture mechanism of the material become brittle fracture. On the other hand, the manufacture process has a great impact on the mechanical properties of SiCf/Ti composites too. By means of SEM microstructure observation, X-ray diffraction and electron backscatter diffraction analysis, we analyzed the interface reaction of SiCf/Ti and SiCf /Ti-6Al-4V interface in SiCf/Ti and SiCf /Ti-6Al-4V composites made though FFF method respectively. Beside that, factors influencing mechanical properties were also studied in this thesis. The liquid composite process of SiCf/Ti composites was studied in this thesis too.
     Fibers used in this thesis are domestic fibers, including thick fibers come from National University of Defense and Technology and thin fibers come form Northwestern Polytechnical University. By the way of SEM, we observed and analyzed the interface reaction and fracture morphology of the composites made by FFF method and significant interfacial reaction layers were observed between fibers and matrix, matrix and coatings. Also, some defects as“earring”holes were observed in the microstructure. These problems were solved with the method of adding titanium powder into fibers layer. But how to adding and how much titanium powder should be added still need further research.
     By using centrifugal casting method as liquid composite technology of the preparation of SiCf/Ti matrix composites found that,the drawback of liquid composite process is there will be a serious interfacial reaction between liquid metal and the fiber at high temperature, this reaction will damage the mechanical properties of Sic/Ti composites. Preparation in the same conditions, the interfacial reaction layer's thickness between the uncoated fiber and the matrix is 100μm, but TiN-coated and C-coated fibers' reaction layer's thickness is 5-10μm only, less than one-tenth of uncoated fiber composites,it indicate that Barrier coatings on the surface of Sic fibers can prohibit this kind of reaction effectively. If we can find an ideal coating and reduce the reaction time between Sic fibers and titanium slurry by rise the cooling speed, we will make liquid composite process becomes a convenient and low cost process.
引文
1.杨延清,朱艳.稀有金属材料与工程. 2002,31(3):201~204
    2.陆盘金,周盛年.国外连续纤维增强钛基复合材料的研究与进展.航空制造工程. 1994, 6:35
    3. A. Vassel, J. Y. Guedou. Aero-Engines Applications: Present and Future, 9th World Conf. on Titanium, St-Petersburg, Russia, 1999:7~11
    4. National Advanced Composites Strategic Plan, Sept. 1991. An Initiative of the Aerospace Industries Association
    5. Jim Sorensen. Continuous fiber reinforced intermetallic composites. TMS. 1993:717
    6.吕毓雄,石南林,李斗星等.真空热压扩散制备SiC纤维增强钛基复合材料.金属学报. 1999, 35
    7.赵稼祥.碳化硅纤维及其复合材料的进展.飞航导弹. 2001(1):60~62
    8.曾立英,邓炬,白保良,赵永庆.连续纤维增强钛基复合材料研究概况.稀有金属材料与工程. 2000, 29(1):13
    9.薛金根,龙剑锋,宋永才等. SiCf制备技术研究进展.合成纤维工业. 2001, 24(3):41~44
    10.石南林等.连续SiC纤维的合成工艺与设备.中国专利. No. ZL90106461.0.
    11.石南林等.材料科学与工艺. 2000,16:637
    12.林智群,雷永鹏.碳化硅陶瓷纤维的性能及其在航空航天领域的应用.飞航导弹. 2008(2):55~58
    13.叶波峰等.巡航导弹的特点及发展动向.飞航导弹. 2007(5):18~20
    14.林忠宁.空气负离子在卫生保健中的作用.生态科学. 1999, 118(2):87~90
    15.赵稼祥.碳化硅纤维及其复合材料.高科技纤维与应用. 2002, 27(1):1~6
    16. C M Ward-Close, L C Handrasekaran, J G Robertson, etal. Advances in the fabrication of titanium matrix composite. In: Titanium'98, Proc.Xi′an Int. Titanium Conf. L. Zhou, D. Eylon, G. Lutjering, etal. eds., Beijing: Int. Acad. Publisher. 1998:341
    17. H J Dudek, R Leucht, K Weber, etal. Development of metal matrix composites for high temperatures. Pros. ICCM-11. Australia,1997
    18. R Leucht, H J Dudek, K Weber, etal. Magnetron sputtering form etal matrix composite processing. Z. Metallkd. 1996, 87:424
    19.王玉敏.博士论文.沈阳:中国科学院金属研究所. 2005
    20. S. G. WARRIER, R. Y. LIN. Infrared infiltration and properties of SCS-6/Tialloy composites. JOURNAL OF MATERIALS SCIENCE. 1996,31:1821~1828
    21. SUNILG. WARRIER and RAYY. LIN. METALL URGICAL AND MATERIALS TRANSACTION SA. 1995, 26: 1885~1993
    22. Kiyoshi Mizuuchi, KanryuInoue, Masami Sugioka, MasaoItami. Microstructure and mechanical properties of boron-fiber-reinforced titanium-matrix composites produced by pulsed current hot pressing. Materials Science and Engineering. 2006, 428:175~179
    23.张志华.铝基复合材料的制备及性能研究.兰州大学硕士论文. 2006:17~18
    24.谢有赞.碳石墨材料工艺.湖南大学出版社. 1988:379
    25.宋桂明.碳纤维增强TiC复合材料的制备与高温强度.材料工程. 2001,9:3~6
    26.杨锐,石南林,王玉敏,雷家峰,张国兴,符跃春,李艳华,张德志. SiC纤维增强钛基复合材料研究进展钛工业进展. 2005,22(5):32~36
    27. Zeng W D etal. Composites Part A. 2002,33:1159
    28. Hoecker F, Karger-KocsisJ. Composites. 1994,25(7):729
    29. Akira Fukushima etal. Materials Science and Engineering A. 2000,276:243
    30. Yang J Metal. Mate Sci Eng, 1991,138:169
    31. Yang Y Q, Dudek H J. Scripta Material. 1997,37(4):503
    32.石南林,杜益军,常新春.先进材料进展. 1993,2:4
    33. Yang Y Q etal. Composites PartA. 1998, 29A:1235
    34. Warrier S G, Lin R Y. Scripta Metall urgica et Materialia, 1993,28(3):313
    35. Yang Yanqing(杨延清)etal. Rare Metal Material sand Engineering(稀有金属材料与工程). 2002,31(3):201
    36. Luo Guozhen, Zeng Quanpu, Deng Ju. The Research and Development of TMCs. In: Edited blenkinsopPA, Evans W J, Flower H M.Titanium 95 Science and Technology, The Institute of Materials. 1995:2704~2713
    37. Masaki Kotani, Takahiro Inoue, Akira Kohyama, Kiyohito Okamura, Yutai Katoh Consolidation of polymer-derived SiC matrix composite processing and microstructure. 2002:2179~2188
    38.朱艳,杨延清. SiC/Ti基复合材料界面反应的研究现状及发展趋势.稀有金属快报. 2003,10:4~5
    39. C H Jan, D Swenson, X Y Zheng, J C Lin, etal: On the Determination of Diffusion Coemeientsin Multi-PhaseTernary Couples. ActaMetall.Mater1991,39:303~315
    40. J L Ratliff, G W Powell. Research on Difusionin Multi Phase Ternary Systems: Reaction Difusionin Ti/SiC and Ti-6Al-4V/SiC Systems. AFMLTeehn.Report. 1970:70~72
    41. Martineau P, Pailler R, Lahaye M, etal. SiC Filament/Titanium Matrix Composites Regarded as Model Composites: Part2 Fibre/Matrix Chemical Interactions at HighTemperatures. Journal of Materials Seience. 1984,19:2749~2770
    42.朱艳. SiC纤维增强Ti基复合材料界面反应研究.西北工业大学博士学位论文. 2003: 46~54
    43. Zhu Y, YangY Q. Activity Coefficients in Ti and Intermetallics. Rare Metal Materials and Enfineering, 2003,32(8):600~603
    44.罗组,石南林,祖亚培,段亚丁,文钟展.电化学表面处理对SiC纤维的强化作用,材料研究学报. 2001,15(l):105~109
    45.马志鹏.碳纤维增强铝基复合材料表面TiN离子镀膜工艺研究.哈尔滨工业大学,硕士学位论文. 2006:6
    46. Nutt S R, Wawner F. E. SiC filament/titanium matrix composites regarded as model composites. I-Filament microanalysis and strength characterizaction, Journal of Materials Science. 1984,19:2731~2738
    47.刘海威. CVD法制备高性能SiC连续纤维技术.西北工业大学,硕士学位论文. 2007:47~50
    48.杨延清,吕祥鸿,马志军,李建康,原梅妮,黄斌. SiCf/Ti基复合材料的界面反应.中国科技论文在线. 2007,2(5):344
    49. S. K. Choi, M. Chandresekaran and M. J. Brabers: J. Mater. Sci. 1990,25:1957
    50. Y. Zhu, Y. Q.Yang and Y. Chen: Rare Met. Met. Mater. Eng., 2003,32(8):600
    51. YangYanqing, Ma Zhijun, LüXianghong, Li Jiankang, ChenYan, Ai Yunlong. Studies on Interface of SiCf/Ti-6Al-4V Composites.稀有金属材料与工程. 2006,35(10):1516~1520
    52. Zhou L, Eylon D, Lutjering G, Ouchi Ceds. ProcXITC’98. Beijing: Int Acad Publisher. 1998:341~348
    53. Buhl Hed. Advanced Aerospace Materials.Berlin:Springer-Verlag. 1992:124-159
    54. Yang Y Q, Dudek H J, Kumpfert J. Interfacial Reaction and Stability of SCS-6SiC/Ti-25Al-10Nb-3V-1Mo Composite. Mater Sci and Eng A. 1998, A246:213~220
    55.刘翠霞,杨延清,张荣军,任晓霞.涂碳前后SiC纤维的强度测试和评价.材料工程. 2009,2:66~67
    56.石南林,刘清民,常新春,全荣,夏非. SiC纤维的强度与表面微观形貌.金属学报. 1999,26(3):226
    57.刘海威,杨延清,张荣军,刘翠霞,任晓霞,徐向红. CVD碳涂层对SiC纤维性能的影响.机械科学与技术. 2007,26(10):1375~1376
    58.杨延清,朱艳,陈彦,张清贵,张建民. SiC纤维增强Ti基复合材料的制备及性能.稀有金属材料与工程. 2002,31(3):201~203
    59.杨锐,石南林,王玉敏,雷家峰,张国兴,符跃春,李艳华,张德志. SiC纤维增强钛基复合材料研究进展.钛工业进展. 2005,22(5):32~36
    60. X.Guo, B. Derby. SOLID-STATE FABRICATION AND INTERFACES OF FIBRE REINFORCED METAL MATRIX COMPOSITES. Progress in Materials Science. 1995,39:41l~495
    61.戚正风.固态金属中的扩散与相变.机械工业出版社. 1998
    62. HallI W, Ni Chan Ying. Thermal stability of on SCS-6/Ti-22Al-23Nb composite. Materials Science and Engineering. 1995,92(193):987~993
    63.朱艳,杨延清,马志军,陈彦. SCS-6SiC/Ti2AlNb复合材料的界面反应及机理.稀有金属材料与科学. 2002,31(6):410~414
    64. Y. Q. Yang, Y. Zhu, Z. J. Ma and Y. Chen: Proc. 10th Word Conf. on Titanium, G. Luetjering, J. Albrechteds, Weinheim: Wiley-VCH Verlag Gmb H & Co. 2004:2479
    65. H. J. Dudek and K.Weber: J. Mater. Letters. 2002,21:1651
    66. Z. Fan, Z. X. Guo, B. Cantor the kinetics and mechanism of interfacial reactionin sigma fibre-reinforced TMCs Composties, Composites. 1997:131~140
    67. Guo xing hang, Qiang Kang, Nan Linshi, Ge ping Li, Dong Ll Kinetics and Mechanism of Interfacial Reaction in a SiC/TiC omposite J. Mater. Sci. Technol. 2003,(5)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700