新型自杀基因linamarase介导的酶—前药体系高效靶向治疗原发性肝癌的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原发性肝癌是恶性程度最高的肿瘤之一,目前尚无根治方法。自杀基因疗法,又名基因介导的酶-前药疗法,能特异性提高药物在肿瘤中的浓度,并具备独特的旁观者效应,是肿瘤基因治疗的重要方法之一。本研究将木薯来源的linamarase(lis)引入肝癌基因治疗中,利用其水解前体药物linamarin(lin),并产生毒性代谢产物HCN的特性,从而实现对肝癌细胞的杀伤。通过建立lis稳转肝癌细胞系,发现其本身对细胞生长,细胞周期等特性并无影响。此外单独使用前体药物lin也未发现细胞毒性,从而提示了该策略的安全性。为提高目的基因的表达及针对肝癌的靶向性,我们以ViraPower?病毒载体系统为基础,分别构建CMV及AFP启动子转录的lis腺病毒载体。体外实验表明,含CMV启动子的腺病毒联合lin具备针对多种肿瘤细胞的强大抑制效应及旁观者效应。而含AFP启动子的病毒仅具备对AFP阳性肝癌细胞的特异性杀伤,从而体现了其针对肝癌的特异性和靶向性。动物实验提示lis能特异性表达于肝癌组织中,联合使用lin后能显著抑制肿瘤生长并延长动物存活时间。结果表明,lis/lin系统是一种潜在的肝癌基因治疗策略,值得进一步深入研究。
     目的:
     1.构建稳定转染lis基因的肝癌细胞系,实现lis酶在真核细胞中的活性表达,观察它对肿瘤细胞的体内、体外生物学特性的影响。初步了解lis基因及lin对肝癌细胞的作用;
     2.运用ViraPower?腺病毒载体系统,构建CMV启动子转录下的lis重组腺病毒载体,观察该病毒载体的感染效率及目的基因表达情况。应用重组病毒联合前体药物lin进行多种肿瘤细胞系的体内、体外治疗,探讨腺病毒载体介导的lis/lin系统的抑瘤效果及作用机理;
     3.克隆AFP启动子,检测其靶向转录活性。构建AFP启动子转录的lis重组腺病毒,通过体外实验及裸鼠荷瘤实验来检验该病毒前药体系针对AFP阳性肝癌细胞的特异性杀伤,实现lis/lin系统治疗原发性肝癌转录水平上的靶向调控。
     方法:
     1.PCR法从木薯cDNA中克隆并扩增lis cDNA,将该基因亚克隆至pcDNA3.1+质粒中,构建重组真核表达载体。脂质体转染及药物筛选相结合,构建稳定转染lis肝癌细胞系HepG2/lis。观察稳转细胞形态学变化,生长曲线,流氏细胞周期,裸鼠体内成瘤曲线等,并进行肿瘤细胞内lis酶活性分析。用不同浓度的lin培养HepG2细胞,观察lin本身对HepG2细胞生长的影响及细胞毒性;
     2.将lis cDNA亚克隆于ViraPower?腺病毒载体系统的入门克隆pENTRTM2B中,利用特异性LR反应将入门克隆中的lis导入腺病毒骨架载体pAd/CMV/V5-DEST中(含CMV启动子) ,获得重组病毒骨架载体pAd/CMV/lis。线性化骨架载体并转染293A细胞,包装重组腺病毒Ad-CMV-lis。扩增并纯化重组腺病毒,TCID50法测定它的滴度。利用含报告基因的腺病毒Ad-CMV-EGFP感染肿瘤细胞,摸索病毒的最佳感染复数。通过联合Ad-CMV-lis及前药lin进行多种肿瘤细胞系的体外及体内抑瘤实验,观查该系统的抑瘤活性及旁观者效应。用DNA片段化检测、Annexin-V/PI流式细胞分析、瘤组织病理学及TUNEL染色进一步探索lis/lin系统的抑瘤机理。
     3.RT-PCR法从HepG2(AFP+)细胞基因组中克隆并扩增AFP启动子,亚克隆入pEGFP-1质粒中,利用报告基因EGFP检测其特异性转录活性。用AFP启动子替换pcDNA3.1+质粒中的CMV启动子,然后将lis cDNA插入该质粒多克隆位点中,实现AFP启动子与lis的串联。通过构建病毒入门载体及LR反应,将AFP-lis序列定向克隆于pAd/PL-DEST腺病毒骨架载体中(不含启动子),获得骨架载体pAd/AFP/lis。将其转染293A细胞,包装重组腺病毒Ad-AFP-lis。重组病毒经扩增、纯化后,联合lin进行体内、体外抑瘤实验,验证该体系对AFP阳性肿瘤细胞的特异性及靶向性杀伤。
     结果:
     1.成功构建lis稳转肝癌细胞系HepG2/lis。发现它与空质粒转染组及空白对照细胞相比,在细胞形态,生长曲线,细胞周期分布,体内成瘤生长曲线等方面差异不显著(P>0.05)。HepG2/lis细胞给予lin后,能产生代谢产物HCN,并随lin浓度的增加而增多,提示lis酶在真核细胞中能以活性方式表达。此外单独使用lin对细胞生长并无抑制作用。
     2.成功构建重组腺病毒Ad-CMV-lis。联合应用lin后能在体内、体外有效抑制多种肿瘤细胞的生长,抑瘤作用与lin呈明显的时间、剂量依赖效应。肿瘤细胞治疗后经DNA片段化检测未发现典型的凋亡DNA ladder, Annexin-V/PI流式细胞分析提示经治疗后凋亡及坏死细胞均增高,但以坏死细胞增高为主。瘤组织病理学观察发现Ad-CMV-lis/lin治疗组中出现大量的坏死区,并发现较多的TUNEL阳性染色细胞。
     3.克隆并重组了276bp的AFP启动子。EGFP报告基因分析提示,该启动子具备AFP阳性肝癌细胞的特异性转录活性。成功构建AFP启动子转录下的重组腺病毒Ad-AFP-lis,实现了lis在AFP阳性肝癌细胞系中的高效特异性表达。体外及动物治疗实验均证明,该病毒联合lin治疗,能特异性抑制AFP阳性肝癌细胞系的生长,并延长动物存活时间,而对AFP阴性肝癌细胞系无杀伤效果。
     结论:
     1.植物来源的lis cDNA能稳定表达于真核细胞中,并能正确包装出类似大小,具备β-葡萄糖苷酶活性的lis蛋白。lis cDNA在细胞中的稳定整合对细胞形态、生长特性、细胞周期、成瘤性等生物学特点并无明显影响。而前体药物lin对细胞也具有低毒性,因此lis/lin系统是一种安全的自杀基因治疗策略。
     2.通过重组腺病毒载体,发现腺病毒具有靶细胞感染率及目的基因表达水平高,包装使用方便,病毒滴度高,不整合到宿主基因组中等优点,因此能作为lis/lin自杀基因治疗的高效表达载体。
     3.重组腺病毒Ad-CMV-lis在体内、体外均表现出对多种肿瘤细胞系的抑制作用,提示lis/lin自杀基因系统具备较广的治疗适用范围。由于不同肿瘤的生物学特点不同,因此该系统在其他肿瘤中的应用潜能有待于进一步研究。
     4. 276bp的AFP启动子能调控lis/lin系统在肝癌中的靶向性转录,实现针对AFP阳性肝癌细胞的特异性杀伤。然而由于原发性肝癌中有少部分呈AFP阴性表达,因此改造现有的AFP启动子,提高其针对AFP阴性的肝癌细胞的转录水平,是值得深入研究的问题。
Hepatocellular carcinoma (HCC) is one of the most common malignances worldwide, and there is no effective treatment for it until now. Suicide gene therapy, also known as gene-directed enzyme prodrug therapy, is an important strategy for tumor treatment by improving the specifical concentrations of drugs in tumors and a unique bystander effect. The research here presents a novel suicide gene therapy strategy against HCC based on the linamarase (lis), a gene from cassava, which can hydrolyze prodrug linamarin (lin) into HCN. Lis cDNA was stably expressed in HCC cells. Studies in vitro indicated that stable expression of lis had no direct effects on the proliferation and cell cycle of hepatoma cells. In addition, the administration of lin lonely is harmless too, indicating that the system is safe. In order to enhance target gene expression in HCC cells, we reconstructed adenoviruses involving lis with CMV or AFP promoter based on ViraPower? adenovirus system respectively. In vitro studies showed that Ad-CMV-lis combined with lin had strong antitumor effect and bystander effect on a variety of tumor cells. While Ad-AFP-lis with lin only showed inhibiting effect on AFP-positive hepatoma cells, which indicated the target specificity of the adenovirus to HCC. Animal experiments showed that lis was expressed highly in the tissue of tumors specifically , and significantly inhibited tumor growth and prolonged animal survival combined with lin. All findings suggest that lis/lin system may provide a practical and promising approach for the treatment of HCC and be worthy of further study.
     Objective:
     1. To construct a new hepatoma cell line which can stably express lis cDNA and evaluate the activity of lis enzyme expressing in eukaryotic cells. To observe the effect of lis on the biological characteristics of hepatoma cells in vitro and in vivo.
     2. At the base of ViraPower ? adenovirus system, to reconstruct an adenoviruse vector containing lis cDNA which is regulated by CMV promoter. To Evaluate the infective efficiency of the virus and the level of gene expression in cells infected by the adenovirus. The antitumor effect and the mechanism of the adenovirus mediated lis / lin system is explored in vitro and in vivo.
     3. To clone AFP promoter and detect its target transcription activity. Reconstruction of an adenovirus containing lis cDNA transcripted by AFP promoter. To test the inhibitory effect of the system against the AFP positive HCC cells by in vitro and tumor-bearing nude mice. Finally, achieving the targeted transcription regulation of lis / lin system in HCC.
     Methods:
     1. Lis cDNA was cloned and amplified from cassava cDNA by PCR method. the sequence was then subcloned into pcDNA3.1+ plasmid, an eukaryotic expression vector. HepG2/lis cell which was stablely transfected with lis plasmid was built by lipofectamine and drug screening. The characteristics of HepG2/lis was observed, including cell morphology, growth curve, cell cycle, tumorigenesis in nude mice and enzyme activity of lis. The toxicity of lin itself in cells was also observed by administrated HepG2 cells using different concentrations of lin;
     2. Lis cDNA was subcloned into the pENTRTM2B entry vector of ViraPower? system, and then delivered to pAd/CMV/V5-DEST destination vector (containing CMV promoter) by using specific LR reaction between th entry vector and the destination vector. The newly obtained pAd/CMV/lis destination vector was linearized and then transfected into 293A cells for packaging recombinant adenovirus. The recombinant adenovirus (named Ad-CMV-lis) was amplified and purified, and the titers of the virus was also determined by TCID50 method. Hepatoma cells was infected by Ad-CMV-EGFP which contained the EGFP reporter gene to explore the best MOI of virus infection. A variety of tumor cell lines was treated by Ad-CMV-lis and lin in vitro and in vivo to observe the antitumor activity and bystander effect of the system. The inhibitory mechanism of lis/lin system was further explored by a variety of detection, including DNA fragmentation detection, Annexin-V/PI flow cytometry analysis, tumor histopathology and TUNEL staining.
     3. AFP promoter was cloned by RT-PCR from the genome of HepG2 cells (AFP+), then subcloned into plasmid pEGFP-1. The specific transcriptive activity of AFP promoter was detected by using EGFP reporter gene analysis. CMV promoter of pcDNA3.1+ plasmid was replaced by AFP promoter, then lis cDNA was inserted into the multiple cloning sites of the plasmid, achieving the tandem of AFP promoter with lis. By construction of adenovirus entry plasmid and the LR reaction, the AFP-lis sequence was subcloned into the pAd/PL-DEST backbone vector (no promoter). 293A cells was transfected with pAd/AFP/lis plasmid to package recombinant adenovirus Ad-AFP-lis. The recombinant virus was amplificated, purified and titered. The targeting specificity and antitumor effect of the new adenovirus with lin to AFP-positive tumor cells were detected in vitro and in vivo.
     Results:
     1. Lis was successfully introduced to stable transgenic HepG2/lis cell line. There were no significant differences in morphology, growth curve, cell cycle distribution and in vivo tumor growth curve of HepG2/lis cells compared with those of the empty plasmid transfection group or blank control cells (P> 0.05). When lin was administered to HepG2/lis cells, HCN could be detected in the metabolites and the amount of it was increaseing with the increased concentration of lin, suggesting that the protein of lis expressed in eukaryotic cells can be enzyme activity. In addition, lin itself shown no inhibitory effect on cell growth.
     2. Recombinant adenovirus Ad-CMV-lis was successfully constructed. The inhibitory effect treated with Ad-CMV-lis and lin in a variety of tumor cells was significant in a time- and dose-dependent manner in vitro and in vivo. There was no typical DNA ladder detected by the DNA fragment assay in the tumor cells after treatment. Annexin-V/PI flow cytometry analysis showed that apoptosis and necrosis cells were all increased, but consisted mainly of necrotic cells. Histopathological observation of tumors found many necrotic area arising in the Ad-CMV-lis/lin treatment group, and a more positive TUNEL staining cells detected.
     3. The 276bp sequence of AFP promoter was cloned and then reorganized. EGFP reporter gene analysis showed that the promoter had specific transcription activity in AFP-positive HCC cells. The recombinant adenovirus Ad-AFP-lis transcripted under the AFP promoter was successfully constructed. By using this adenovirus, lis could be highly and specifically expressed in AFP-positive HCC cell line. Treatment experiments in vitro and in vivo have proved that the united lin/Ad-AFP-lis treatment can inhibit the growth of AFP-positive HCC cells, and prolong animal survival time, while the AFP-negative hepatoma cell line was free of inhibitory effect.
     Conclusion:
     1. Lis cDNA of plant origin can be stably expressed in eukaryotic cells and be correctly packaged to protein at a similar size, withβ-glucosidase activity. The stable integration of lis cDNA into cells had no significant impact in the cell morphology, growth, cell cycle, tumorigenesis and other biological characteristics. The prodrug lin also had low toxicity, so lis/lin system is a safe suicide gene therapy strategy.
     2.Through recombinant adenovirus vector, we found that adenovirus has many advantages, including efficient infection , a high level of gene expression, easy to packaging in high-titer, not integrated into the host genome. So it can be a more efficient expression vector for lis/lin suicide gene therapy.
     3. Recombinant adenovirus Ad-CMV-lis shown a wide range of inhibition of tumor cell lines in vitro and in vivo, suggesting that lis/lin suicide gene system has a wider scope of application. Due to the different biology characteristics in different tumor, the potential applications of this system to other tumors must be further studied.
     4. The AFP promoter of 276bp can regulate the targeting transcription of lis/lin system in HCC and achieve its target of AFP-positive hepatoma cell-specific destruction. However, due to negative expression of AFP in a small number of primary liver cancer, the transformation of existing AFP promoter, enhancement its transcription level to AFP-negative hepatoma cells, is worthy of in-depth study.
引文
[1] Anderson WF, Blaese RM, Culver K. The ADA human gene therapy clinical protocol: Points to Consider response with clinical protocol, July 6, 1990. Hum Gene Ther 1990;1:331-62.
    [2] Hsu IC, Metcalf RA, Sun T, Welsh JA, Wang NJ, Harris CC. Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 1991;350:427-8.
    [3] Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 1991;253:49-53.
    [4] Truant R, Antunovic J, Greenblatt J, Prives C, Cromlish JA. Direct interaction of the hepatitis B virus HBx protein with p53 leads to inhibition by HBx of p53 response element-directed transactivation. J Virol 1995;69:1851-9.
    [5] Anderson SC, Johnson DE, Harris MP, Engler H, Hancock W, Huang WM, et al. p53 gene therapy in a rat model of hepatocellular carcinoma: intra-arterial delivery of a recombinant adenovirus. Clin Cancer Res 1998;4:1649-59.
    [6] Peng Z. Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther 2005;16:1016-27.
    [7] Hui AM, Shi YZ, Li X, Takayama T, Makuuchi M. Loss of p16(INK4) protein, alone and together with loss of retinoblastoma protein, correlate with hepatocellular carcinoma progression. Cancer Lett 2000;154:93-9.
    [8] Huang J, Shen W, Li B, Luo Y, Liao S, Zhang W, et al. Molecular and immunohistochemical study of the inactivation of the p16 gene in primary hepatocellular carcinoma. Chin Med J (Engl) 2000;113:889-93.
    [9] Yoshikawa H, Matsubara K, Qian GS, Jackson P, Groopman JD, Manning JE, et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced bymethylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet 2001;28:29-35.
    [10] Yoshida T, Ogata H, Kamio M, Joo A, Shiraishi H, Tokunaga Y, et al. SOCS1 is a suppressor of liver fibrosis and hepatitis-induced carcinogenesis. J Exp Med 2004;199:1701-7.
    [11] Zeng JZ, Wang HY, Chen ZJ, Ullrich A, Wu MC. Molecular cloning and characterization of a novel gene which is highly expressed in hepatocellular carcinoma. Oncogene 2002;21:4932-43.
    [12] Liu SX, Sun WS, Cao YL, Ma CH, Han LH, Zhang LN, et al. Antisense oligonucleotide targeting at the initiator of hTERT arrests growth of hepatoma cells. World J Gastroenterol 2004;10:366-70.
    [13] Jiang Y, Zhou XD, Liu YK, Huang XW, Zhao Y, Xue Q, et al. Antisense Tcf inhibits the neoplastic growth of liver cancer cells. J Cancer Res Clin Oncol 2004;130:671-8.
    [14] Dai DJ, Lu CD, Lai RY, Guo JM, Meng H, Chen WS, et al. Survivin antisense compound inhibits proliferation and promotes apoptosis in liver cancer cells. World J Gastroenterol 2005;11:193-9.
    [15] Fu XY, Wang HY, Tan L, Liu SQ, Cao HF, Wu MC. Overexpression of p28/gankyrin in human hepatocellular carcinoma and its clinical significance. World J Gastroenterol 2002;8:638-43.
    [16] Tavian D, Salvi A, De Petro G, Barlati S. Stable expression of antisense urokinase mRNA inhibits the proliferation and invasion of human hepatocellular carcinoma cells. Cancer Gene Ther 2003;10:112-20.
    [17] Maret A, Galy B, Arnaud E, Bayard F, Prats H. Inhibition of fibroblast growth factor 2 expression by antisense RNA induced a loss of the transformed phenotype in a human hepatoma cell line. Cancer Res1995;55:5075-9.
    [18] Wang XH, Li SB, Tong Q, Xie GJ, Wu QM. Effects of adenovirus-mediated human cyclooxygenase-2 antisense RNA on the growth of hepatocellular carcinoma. World J Gastroenterol 2005;11:6110-4.
    [19] Liang ZH, Wu PH, Li L, Xue G, Zeng YX, Huang WL. Inhibition of tumor growth in xenografted nude mice with adenovirus-mediated endostatin gene comparison with recombinant endostatin protein. Chin Med J (Engl) 2004;117:1809-14.
    [20] Hong SY, Lee MH, Kim KS, Jung HC, Roh JK, Hyung WJ, et al. Adeno-associated virus mediated endostatin gene therapy in combination with topoisomerase inhibitor effectively controls liver tumor in mouse model. World J Gastroenterol 2004;10:1191-7.
    [21] Kang MA, Kim KY, Seol JY, Kim KC, Nam MJ. The growth inhibition of hepatoma by gene transfer of antisense vascular endothelial growth factor. J Gene Med 2000;2:289-96.
    [22] Gu S, Liu CJ, Qiao T, Sun XM, Chen LL, Zhang L. Inhibitory effect of antisense vascular endothelial growth factor 165 eukaryotic expression vector on proliferation of hepatocellular carcinoma cells. World J Gastroenterol 2004;10:535-9.
    [23] Ho HK, Pok S, Streit S, Ruhe JE, Hart S, Lim KS, et al. Fibroblast growth factor receptor 4 regulates proliferation, anti-apoptosis and alpha-fetoprotein secretion during hepatocellular carcinoma progression and represents a potential target for therapeutic intervention. J Hepatol 2009;50:118-27.
    [24]Rowe PM. Multidrug-resistance gene employed to advantage. Lancet 1997;349:858.
    [25] Sutherland HJ, Eaves CJ, Lansdorp PM, Phillips GL, Hogge DE. Kinetics of -93-committed and primitive blood progenitor mobilization after chemotherapy and growth factor treatment and their use in autotransplants. Blood 1994;83:3808-14.
    [26] Ortaldo JR, Winkler-Pickett RT, Jr Bere EW, Watanabe M, Murphy WJ, Wiltrout RH. In vivo hydrodynamic delivery of cDNA encoding IL-2: rapid, sustained redistribution, activation of mouse NK cells, and therapeutic potential in the absence of NKT cells. J Immunol 2005;175:693-9.
    [27] Vera M, Razquin N, Prieto J, Melero I, Fortes P, Gonzalez-Aseguinolaza G. Intratumoral injection of dendritic cells transduced by an SV40-based vector expressing interleukin-15 induces curative immunity mediated by CD8+ T lymphocytes and NK cells. Mol Ther 2005;12:950-9.
    [28] Leng J, Zhang L, Yao H, Cao X. Antitumor effects of interleukin-18 gene-modified hepatocyte cell line on implanted liver carcinoma. Chin Med J (Engl) 2003;116:1475-9.
    [29] Santodonato L, Ferrantini M, Palombo F, Aurisicchio L, Delmastro P, La Monica N, et al. Antitumor activity of recombinant adenoviral vectors expressing murine IFN-alpha in mice injected with metastatic IFN-resistant tumor cells. Cancer Gene Ther 2001;8:63-72.
    [30] Waehler R, Ittrich H, Mueller L, Krupski G, Ameis D, Schnieders F. Low-dose adenoviral immunotherapy of rat hepatocellular carcinoma using single-chain interleukin-12. Hum Gene Ther 2005;16:307-17.
    [31] Sangro B, Mazzolini G, Ruiz J, Herraiz M, Quiroga J, Herrero I, et al. Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J Clin Oncol 2004;22:1389-97.
    [32] Lee WC, Wang HC, Hung CF, Huang PF, Lia CR, Chen MF. Vaccination of advanced hepatocellular carcinoma patients with tumor lysate-pulsed dendriticcells: a clinical trial. J Immunother 2005;28:496-504.
    [33] Nettelbeck DM. Virotherapeutics: conditionally replicative adenoviruses for viral oncolysis. Anticancer Drugs 2003;14:577-84.
    [34] Vaha-Koskela MJ, Heikkila JE, Hinkkanen AE. Oncolytic viruses in cancer therapy. Cancer Lett 2007;254:178-216.
    [35] Vollmer CM, Ribas A, Butterfield LH, Dissette VB, Andrews KJ, Eilber FC, et al. p53 selective and nonselective replication of an E1B-deleted adenovirus in hepatocellular carcinoma. Cancer Res 1999;59:4369-74.
    [36] Shinozaki K, Ebert O, Suriawinata A, Thung SN, Woo SL. Prophylactic alpha interferon treatment increases the therapeutic index of oncolytic vesicular stomatitis virus virotherapy for advanced hepatocellular carcinoma in immune-competent rats. J Virol 2005;79:13705-13.
    [37] Drozdzik M, Qian C, Xie X, Peng D, Bilbao R, Mazzolini G, et al. Combined gene therapy with suicide gene and interleukin-12 is more efficient than therapy with one gene alone in a murine model of hepatocellular carcinoma. J Hepatol 2000;32:279-86.
    [38] VandenDriessche T, Vanslembrouck V, Goovaerts I, Zwinnen H, Vanderhaeghen ML, Collen D, et al. Long-term expression of human coagulation factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in factor VIII-deficient mice. Proc Natl Acad Sci U S A 1999;96:10379-84.
    [39] Majhen D, Ambriovic-Ristov A. Adenoviral vectors--how to use them in cancer gene therapy?. Virus Res 2006;119:121-33.
    [40] Pandori M, Hobson D, Sano T. Adenovirus-microbead conjugates possess enhanced infectivity: a new strategy for localized gene delivery. Virology 2002;299:204-12.
    [41] Nasz I, Adam E. Recombinant adenovirus vectors for gene therapy and clinical trials. Acta Microbiol Immunol Hung 2001;48:323-48.
    [42] Adam E, Nasz I. [Adenovirus vectors and their clinical application in gene therapy]. Orv Hetil 2001;142:2061-70.
    [43]Jaffe HA, Danel C, Longenecker G, Metzger M, Setoguchi Y, Rosenfeld MA, et al. Adenovirus-mediated in vivo gene transfer and expression in normal rat liver. Nat Genet 1992;1:372-8.
    [44] Young LS, Mautner V. The promise and potential hazards of adenovirus gene therapy. Gut 2001;48:733-6.
    [45] Burand JP, Summers MD, Smith GE. Transfection with baculovirus DNA. Virology 1980;101:286-90.
    [46] Crystal RG. Transfer of genes to humans: early lessons and obstacles to success. Science 1995;270:404-10.
    [47] Tripathy SK, Black HB, Goldwasser E, Leiden JM. Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat Med 1996;2:545-50.
    [48] Felgner PL. Improvements in cationic liposomes for in vivo gene transfer. Hum Gene Ther 1996;7:1791-3.
    [49] Bodor A, Kutas J. [Liposomes in gene therapy]. Acta Pharm Hung 2003;73:115-22.
    [50] Choi BY, Chung JW, Park JH, Kim KH, Kim YI, Koh YH, et al. Gene delivery to the rat liver using cationic lipid emulsion/DNA complex: comparison between intra-arterial, intraportal and intravenous administration. Korean J Radiol 2002;3:194-8.
    [51] Richardson SC, Kolbe HV, Duncan R. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution andability to complex and protect DNA. Int J Pharm 1999;178:231-43.
    [52] Chan P, Kurisawa M, Chung JE, Yang YY. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials 2007;28:540-9.
    [53] Mansouri S, Cuie Y, Winnik F, Shi Q, Lavigne P, Benderdour M, et al. Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials 2006;27:2060-5.
    [54] Gao S, Chen J, Xu X, Ding Z, Yang YH, Hua Z, et al. Galactosylated low molecular weight chitosan as DNA carrier for hepatocyte-targeting. Int J Pharm 2003;255:57-68.
    [55] Grimm CF, Ortmann D, Mohr L, Michalak S, Krohne TU, Meckel S, et al. Mouse alpha-fetoprotein-specific DNA-based immunotherapy of hepatocellular carcinoma leads to tumor regression in mice. Gastroenterology 2000;119:1104-12.
    [56] Min AD, Theise ND. Prospects for cell-based therapies for liver disease. Panminerva Med 2004;46:43-8.
    [57] Gindi T, Ghazarian DM, Deitch D, Farber E. An origin of presumptive preneoplastic foci and nodules from hepatocytes in chemical carcinogenesis in rat liver. Cancer Lett 1994;83:75-80.
    [58] Mitaka T. Reconstruction of hepatic organoid by hepatic stem cells. J Hepatobiliary Pancreat Surg 2002;9:697-703.
    [59] Malhi H, Irani AN, Gagandeep S, Gupta S. Isolation of human progenitor liver epithelial cells with extensive replication capacity and differentiation into mature hepatocytes. J Cell Sci 2002;115:2679-88.
    [60] Ehtesham M, Kabos P, Kabosova A, Neuman T, Black KL, Yu JS. The use of interleukin 12-secreting neural stem cells for the treatment of intracranialglioma. Cancer Res 2002;62:5657-63.
    [61] Zhong XG, He S, Yin W, Deng JY, Chen B. [Tropism of adult liver stem cells toward hepatocellular carcinoma cells in vitro]. Zhonghua Gan Zang Bing Za Zhi 2005;13:644-7.
    [62] Zhong XG, He S, Yin W, Deng JY, Cheng B. Selective tropism of liver stem cells to hepatocellular carcinoma in vivo. World J Gastroenterol 2007;13:3886-91.
    [63] Neda H, Wu CH, Wu GY. Chemical modification of an ecotropic murine leukemia virus results in redirection of its target cell specificity. J Biol Chem 1991;266:14143-6.
    [64] Cristiano RJ, Smith LC, Woo SL. Hepatic gene therapy: adenovirus enhancement of receptor-mediated gene delivery and expression in primary hepatocytes. Proc Natl Acad Sci U S A 1993;90:2122-6.
    [65] Chaisomchit S, Tyrrell DL, Chang LJ. Development of replicative and nonreplicative hepatitis B virus vectors. Gene Ther 1997;4:1330-40.
    [66] Hanafusa T, Yumoto Y, Hada H, Shinji T, Koide N, Tsuji T. Replication of hepatitis B virus which carries foreign DNA in vitro. Biochem Biophys Res Commun 1999;262:530-3.
    [67] Han J, Il YY. Specific gene transfer mediated by galactosylated poly-L-lysine into hepatoma cells. Int J Pharm 2000;202:151-60.
    [68] Takahashi H, Ozturk M, Wilson B, Maki A, Ozawa K, Koizumi M, et al. In vivo expression of two novel tumor-associated antigens and their use in immunolocalization of human hepatocellular carcinoma. Hepatology 1989;9:625-34.
    [69] Mohr L, Schauer JI, Boutin RH, Moradpour D, Wands JR. Targeted gene transfer to hepatocellular carcinoma cells in vitro using a novel monoclonalantibody-based gene delivery system. Hepatology 1999;29:82-9.
    [70]陈志南,刘彦仿,杨继震.抗人肝细胞单克隆抗体的产生及其相应抗原P60的免疫组化定位研究.单克隆抗体通讯1989;27:33-6.
    [71] Bilbao R, Bustos M, Alzuguren P, Pajares MJ, Drozdzik M, Qian C, et al. A blood-tumor barrier limits gene transfer to experimental liver cancer: the effect of vasoactive compounds. Gene Ther 2000;7:1824-32.
    [72] van der Eb MM, Cramer SJ, Vergouwe Y, Schagen FH, van Krieken JH, van der Eb AJ, et al. Severe hepatic dysfunction after adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene and ganciclovir administration. Gene Ther 1998;5:451-8.
    [73] Gerolami R, Cardoso J, Bralet MP, Cuenod CA, Clement O, Tran PL, et al. Enhanced in vivo adenovirus-mediated gene transfer to rat hepatocarcinomas by selective administration into the hepatic artery. Gene Ther 1998;5:896-904.
    [74] Jr Hurford RK, Dranoff G, Mulligan RC, Tepper RI. Gene therapy of metastatic cancer by in vivo retroviral gene targeting. Nat Genet 1995;10:430-5.
    [75] Peeters MJ, Patijn GA, Lieber A, Meuse L, Kay MA. Adenovirus-mediated hepatic gene transfer in mice: comparison of intravascular and biliary administration. Hum Gene Ther 1996;7:1693-9.
    [76] Miller N, Whelan J. Progress in transcriptionally targeted and regulatable vectors for genetic therapy. Hum Gene Ther 1997;8:803-15.
    [77] Ido A, Nakata K, Kato Y, Nakao K, Murata K, Fujita M, et al. Gene therapy for hepatoma cells using a retrovirus vector carrying herpes simplex virus thymidine kinase gene under the control of human alpha-fetoprotein gene promoter. Cancer Res 1995;55:3105-9.
    [78] Kanai F, Lan KH, Shiratori Y, Tanaka T, Ohashi M, Okudaira T, et al. Invivo gene therapy for alpha-fetoprotein-producing hepatocellular carcinoma by adenovirus-mediated transfer of cytosine deaminase gene. Cancer Res 1997;57:461-5.
    [79] Bui LA, Butterfield LH, Kim JY, Ribas A, Seu P, Lau R, et al. In vivo therapy of hepatocellular carcinoma with a tumor-specific adenoviral vector expressing interleukin-2. Hum Gene Ther 1997;8:2173-82.
    [80] Ohashi M, Kanai F, Tateishi K, Taniguchi H, Marignani PA, Yoshida Y, et al. Target gene therapy for alpha-fetoprotein-producing hepatocellular carcinoma by E1B55k-attenuated adenovirus. Biochem Biophys Res Commun 2001;282:529-35.
    [81] Ishikawa H, Nakata K, Mawatari F, Ueki T, Tsuruta S, Ido A, et al. Utilization of variant-type of human alpha-fetoprotein promoter in gene therapy targeting for hepatocellular carcinoma. Gene Ther 1999;6:465-70.
    [82] Nakamura K, Zen Y, Sato Y, Kozaka K, Matsui O, Harada K, et al. Vascular endothelial growth factor, its receptor Flk-1, and hypoxia inducible factor-1alpha are involved in malignant transformation in dysplastic nodules of the liver. Hum Pathol 2007;38:1532-46.
    [83] Ido A, Uto H, Moriuchi A, Nagata K, Onaga Y, Onaga M, et al. Gene therapy targeting for hepatocellular carcinoma: selective and enhanced suicide gene expression regulated by a hypoxia-inducible enhancer linked to a human alpha-fetoprotein promoter. Cancer Res 2001;61:3016-21.
    [84] Miyatake S, Iyer A, Martuza RL, Rabkin SD. Transcriptional targeting of herpes simplex virus for cell-specific replication. J Virol 1997;71:5124-32.
    [85] Brand K, Loser P, Arnold W, Bartels T, Strauss M. Tumor cell-specific transgene expression prevents liver toxicity of the adeno-HSVtk/GCV approach. Gene Ther 1998;5:1363-71.
    [86] Marais R, Spooner RA, Light Y, Martin J, Springer CJ. Gene-directed enzyme prodrug therapy with a mustard prodrug/carboxypeptidase G2 combination. Cancer Res 1996;56:4735-42.
    [87] Fillat C, Carrio M, Cascante A, Sangro B. Suicide gene therapy mediated by the Herpes Simplex virus thymidine kinase gene/Ganciclovir system: fifteen years of application. Curr Gene Ther 2003;3:13-26.
    [88] Kuriyama S, Nakatani T, Masui K, Sakamoto T, Tominaga K, Yoshikawa M, et al. Bystander effect caused by suicide gene expression indicates the feasibility of gene therapy for hepatocellular carcinoma. Hepatology 1995;22:1838-46.
    [89] Yang L, Chiang Y, Lenz HJ, Danenberg KD, Spears CP, Gordon EM, et al. Intercellular communication mediates the bystander effect during herpes simplex thymidine kinase/ganciclovir-based gene therapy of human gastrointestinal tumor cells. Hum Gene Ther 1998;9:719-28.
    [90] Engelmann C, Heslan JM, Fabre M, Lagarde JP, Klatzmann D, Panis Y. Importance, mechanisms and limitations of the distant bystander effect in cancer gene therapy of experimental liver tumors. Cancer Lett 2002;179:59-69.
    [91] Sung MW, Yeh HC, Thung SN, Schwartz ME, Mandeli JP, Chen SH, et al. Intratumoral adenovirus-mediated suicide gene transfer for hepatic metastases from colorectal adenocarcinoma: results of a phase I clinical trial. Mol Ther 2001;4:182-91.
    [92] Kievit E, Bershad E, Ng E, Sethna P, Dev I, Lawrence TS, et al. Superiority of yeast over bacterial cytosine deaminase for enzyme/prodrug gene therapy in colon cancer xenografts. Cancer Res 1999;59:1417-21.
    [93] Gavelli A, Baque P, Mala M, Saint-Paul MC, Staccini P, Brossette N, et al.[Vaccination by suicide gene therapy against a model of hepatic metastasis from colon cancer in the rat]. Ann Chir 2000;125:552-9.
    [94] Krohne TU, Shankara S, Geissler M, Roberts BL, Wands JR, Blum HE, et al. Mechanisms of cell death induced by suicide genes encoding purine nucleoside phosphorylase and thymidine kinase in human hepatocellular carcinoma cells in vitro. Hepatology 2001;34:511-8.
    [95] Hughes BW, King SA, Allan PW, Parker WB, Sorscher EJ. Cell to cell contact is not required for bystander cell killing by Escherichia coli purine nucleoside phosphorylase. J Biol Chem 1998;273:2322-8.
    [96] Grignet-Debrus C, Calberg-Bacq CM. Potential of Varicella zoster virus thymidine kinase as a suicide gene in breast cancer cells. Gene Ther 1997;4:560-9.
    [97] Huber BE, Richards CA. Regulated expression of artificial chimeric genes contained in retroviral vectors: implications for virus-directed enzyme prodrug therapy (VDEPT) and other gene therapy applications. J Drug Target 1996;3:349-56.
    [98] Drozdzik M, Qian C, Xie X, Peng D, Bilbao R, Mazzolini G, et al. Combined gene therapy with suicide gene and interleukin-12 is more efficient than therapy with one gene alone in a murine model of hepatocellular carcinoma. J Hepatol 2000;32:279-86.
    [99] Yang LC, Huang ZH, Kong H, Li Q, Chen F, Yu JL, et al. [A double suicide gene system driven by KDR promoter selectively kills human hepatic carcinoma cells and human umbilical vein endothelial cells.]. Nan Fang Yi Ke Da Xue Xue Bao 2009;29:1-4.
    [100]Kawashita Y, Ohtsuru A, Kaneda Y, Nagayama Y, Kawazoe Y, Eguchi S, et al. Regression of hepatocellular carcinoma in vitro and in vivo byradiosensitizing suicide gene therapy under the inducible and spatial control of radiation. Hum Gene Ther 1999;10:1509-19.
    [101]Yazawa K, Fisher WE, Brunicardi FC. Current progress in suicide gene therapy for cancer. World J Surg 2002;26:783-9.
    [102]Mkpong OE, Yan H, Chism G, Sayre RT. Purification, Characterization, and Localization of Linamarase in Cassava. Plant Physiol 1990;93:176-81.
    [103]Cortes ML, de Felipe P, Martin V, Hughes MA, Izquierdo M. Successful use of a plant gene in the treatment of cancer in vivo. Gene Ther 1998;5:1499-507.
    [104]Kousparou CA, Epenetos AA, Deonarain MP. Antibody-guided enzyme therapy of cancer producing cyanide results in necrosis of targeted cells. Int J Cancer 2002;99:138-48.
    [105]Cortes ML, Garcia-Escudero V, Hughes M, Izquierdo M. Cyanide bystander effect of the linamarase/linamarin killer-suicide gene therapy system. J Gene Med 2002;4:407-14.
    [106]Hernandez T, Lundquist P, Oliveira L, Perez CR, Rodriguez E, Rosling H. Fate in humans of dietary intake of cyanogenic glycosides from roots of sweet cassava consumed in Cuba. Nat Toxins 1995;3:114-7.
    [107]Frakes RA, Sharma RP, Willhite CC. Comparative metabolism of linamarin and amygdalin in hamsters. Food Chem Toxicol 1986;24:417-20.
    [108]Link N, Aubel C, Kelm JM, Marty RR, Greber D, Djonov V, et al. Therapeutic protein transduction of mammalian cells and mice by nucleic acid-free lentiviral nanoparticles. Nucleic Acids Res 2006;34:16.
    [109]Garcia-Escudero V, Gargini R, Izquierdo M. Glioma regression in vitro and in vivo by a suicide combined treatment. Mol Cancer Res 2008;6:407-17.
    [110]Lambert JRJP. Stable reagents for the colorimetric determination of cyanideby modified Koenig reactions. Anal. Chem. 1975;47:916.
    [111]Marshall E. Clinical research. Gene therapy a suspect in leukemia-like disease. Science 2002;298:34-5.
    [112]Marshall E. Gene therapy. Second child in French trial is found to have leukemia. Science 2003;299:320.
    [113]Birchall JC, Kellaway IW, Gumbleton M. Physical stability and in-vitro gene expression efficiency of nebulised lipid-peptide-DNA complexes. Int J Pharm 2000;197:221-31.
    [114]Tzukert K, Gorodestky R, Avrahami I, Krasny L, Shimony N, Elkin G, et al. A novel dynamic matrix detachment model reveals a shift from apoptosis to necrosis in melanoma cells. Cancer Lett 2008;272:345-54.
    [115]Sangro B, Herraiz M, Prieto J. Gene therapy of neoplastic liver diseases. Int J Biochem Cell Biol 2003;35:135-48.
    [116]Ling CQ, Li B, Zhang C, Zhu DZ, Huang XQ, Gu W, et al. Inhibitory effect of recombinant adenovirus carrying melittin gene on hepatocellular carcinoma. Ann Oncol 2005;16:109-15.
    [117]Ram Z, Culver KW, Walbridge S, Blaese RM, Oldfield EH. In situ retroviral-mediated gene transfer for the treatment of brain tumors in rats. Cancer Res 1993;53:83-8.
    [118]Wilson WR, Pullen SM, Hogg A, Helsby NA, Hicks KO, Denny WA. Quantitation of bystander effects in nitroreductase suicide gene therapy using three-dimensional cell cultures. Cancer Res 2002;62:1425-32.
    [119]Mesnil M, Yamasaki H. Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication. Cancer Res 2000;60:3989-99.
    [120]Shirakawa T, Gardner TA, Ko SC, Bander N, Woo S, Gotoh A, et al.Cytotoxicity of adenoviral-mediated cytosine deaminase plus 5-fluorocytosine gene therapy is superior to thymidine kinase plus acyclovir in a human renal cell carcinoma model. J Urol 1999;162:949-54.
    [121]Borowitz JL, Rathinavelu A, Kanthasamy A, Wilsbacher J, Isom GE. Accumulation of labeled cyanide in neuronal tissue. Toxicol Appl Pharmacol 1994;129:80-5.
    [122]Denny WA, Wilson WR, Hay MP. Recent developments in the design of bioreductive drugs. Br J Cancer Suppl 1996;27:32-8.
    [123]Denny WA. Prodrugs for Gene-Directed Enzyme-Prodrug Therapy (Suicide Gene Therapy). J Biomed Biotechnol 2003;2003:48-70.
    [124]Akintonwa A, Tunwashe OL. Fatal cyanide poisoning from cassava-based meal. Hum Exp Toxicol 1992;11:47-9.
    [125]Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005;73:1907-16.
    [126]Tatsumi T, Shiraishi J, Keira N, Akashi K, Mano A, Yamanaka S, et al. Intracellular ATP is required for mitochondrial apoptotic pathways in isolated hypoxic rat cardiac myocytes. Cardiovasc Res 2003;59:428-40.
    [127]Zamaraeva MV, Sabirov RZ, Maeno E, Ando-Akatsuka Y, Bessonova SV, Okada Y. Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase. Cell Death Differ 2005;12:1390-7.
    [128]Dachs GU, Dougherty GJ, Stratford IJ, Chaplin DJ. Targeting gene therapy to cancer: a review. Oncol Res 1997;9:313-25.
    [129]Kedda MA, Kew MC, Skelton M, Hodkinson J. Non-specificity of messenger RNA of alpha-fetoprotein in peripheral blood in detecting earlyspread of hepatocellular carcinoma in black Africans. J Gastroenterol Hepatol 1998;13:885-91.
    [130]Chen XP, Zhao H, Zhao XP. Alternation of AFP-mRNA level detected in blood circulation during liver resection for HCC and its significance. World J Gastroenterol 2002;8:818-21.
    [131]Sato Y, Nakata K, Kato Y, Shima M, Ishii N, Koji T, et al. Early recognition of hepatocellular carcinoma based on altered profiles of alpha-fetoprotein. N Engl J Med 1993;328:1802-6.
    [132]Nakata K, Motomura M, Nakabayashi H, Ido A, Tamaoki T. A possible mechanism of inverse developmental regulation of alpha-fetoprotein and albumin genes. Studies with epidermal growth factor and phorbol ester. J Biol Chem 1992;267:1331-4.
    [133]Gerolami R, Cardoso J, Lewin M, Bralet MP, Sa CA, Clement O, et al. Evaluation of HSV-tk gene therapy in a rat model of chemically induced hepatocellular carcinoma by intratumoral and intrahepatic artery routes. Cancer Res 2000;60:993-1001.
    [134]Ohguchi S, Nakatsukasa H, Higashi T, Ashida K, Nouso K, Ishizaki M, et al. Expression of alpha-fetoprotein and albumin genes in human hepatocellular carcinomas: limitations in the application of the genes for targeting human hepatocellular carcinoma in gene therapy. Hepatology 1998;27:599-607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700