杨树SnRK基因克隆及遗传转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蔗糖非发酵相关蛋白激酶SnRK(SNF1-related protein kinase )是一类丝氨酸/苏氨酸蛋白激酶,通过多种复杂的信号传递途径对干旱、高盐及低温胁迫作出响应,激发下游抗逆基因的表达,提高植物的抗逆性。本研究基于杨树全基因组序列信息,克隆杨树SnRK基因,并进行遗传转化研究。主要研究结果如下:
     1.根据已知的拟南芥SRK2C基因序列,在杨树基因组上定位并克隆获得了3个SnRK基因,初步命名为PtSnRK-1、PtSnRK-2和PtSnRK-3。序列分析结果表明3个基因的开放阅读框(ORF)分别为1356bp、1329bp和1320bp,推测分别编码451个、442个和439个氨基酸(aa)残基的蛋白质,分子量分别约为50.22Kda、49.22Kda和48.89Kda。3个PtSnRK基因均具有保守的Protein kinase结构域和NAF结构域。
     2.利用Gateway技术构建了3个克隆基因的过量表达载体pH35GS:: PtSnRK-1、pH35GS::PtSnRK-2和pH35GS::PtSnRK-3。经农杆菌介导将这3个基因转入欧美杂种山杨T89和南林895杨,通过最适遗传转化条件及潮霉素筛选获得了一批转PtSnRK-1、PtSnRK-2和PtSnRK-3基因欧美杂种山杨T89和南林895杨植株,并对转基因植株进行了分子生物学鉴定和抗逆生理指标检测。
     3.PCR和实时定量RT-PCR检测结果表明目的基因已经整合进杨树基因组并超量表达。逆境(PEG6000和NaCl处理)下对叶绿素含量、丙二醛含量、超氧化物歧化酶活性和叶片相对含水量等测定结果显示,3个基因的导入均显著地提高了转基因植株的抗旱和耐盐能力。
SNF1-related protein kinase(SnRK) is a Serine / threonine protein kinase. SnRK genes are capable of mediating signals initiated during drought , salt and cold stress, play important roles in transducing stress signals,increasing protein synthesization and regulating signal transduction. Using the poplar genome database,we cloned three SnRK genes in poplar, and compeleted the transformation of poplar. It would be useful for the development of the gene engineering in genetic improvement of poplar to clone SnRK genes in poplar and develop transgenic polpar.
     The main conclusions of this study were as following:
     1 Three SnRK genes were cloned from Populus trichocarpa,designated as PtSnRK-1 ,PtSnRK-2 and PtSnRK-3 respectively. Bioinformatics analysis of PtSnRK genes showed that the ORF of PtSnRK-1 was 1356bp and encoded for a polypeptide of 451 amino acids, 50.22KD molecular weight. The ORF of PtSnRK-2 was 1329bp and encoded for a polypeptide of 442 amino acids, 49.22KD molecular weight. The ORF of PtSnRK-3 was 1320bp and encoded for a polypeptide of 439 amino acids, 48.89KD molecular weight. All of the three PtSnRK genes had conserved protein kinase domain and NAF domain.
     2 Overexpression vectors pH35GS::PtSnRK-1、pH35GS::PtSnRK-2 and pH35GS: PtSnRK-3 were constructed using gateway cloning technology,and then transfered the three genes into Populus×euramericana cv.‘Nanlin895’and Populus tremula×P. tremuloides Michx-clone T89 respectively mediated by Agrobacterium tumefaciems. Transgenic poplars were selected to survive on the culture medium with antibiotics,which includes Populus×euramericana cv.‘Nanlin895’and Populus tremula×P. tremuloides Michx-clone T89 with single PtSnRK-1,PtSnRK-2 and PtSnRK-3 gene. The molecular biological tests and plant physiological analysis were carried out to verify these transgenic poplars.
     3 The three genes had been integrated into poplar genome and could express excessively,which verified by PCR and real time RT-PCR. The result of physiological analysis such as chloroplast content,SOD activity MDA content and leaf relative water content indicated that the drought-resistance and salt-resistance ability of transgenic poplars with PtSnRK genes were extremely enhanced.
引文
[1]Albrecht G, Biemelt S, Baumgartner S. Accumulation of fructans following oxygen deficiency stress in related plant specieswith different flooding tolerances[J].New Phytologist,1997,136(1): 137-144.
    [2]Albrecht G, MustrophA, FoxTC. Sugar and fructan accumulation during metabolic adjustment between respiration and fermentation under low oxygen conditions in wheat roots[J].Physiologia Plantarum,2004,120(1):93-105.
    [3]Anderberg RJ, Walker-Simmons MK.Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases[J]. Proc Natl Acad Sci USA,1992, 89:10183–10187.
    [4]Arakawa T,Timasheff SN.The stabilizarion of proteins by osmolytes[J].Biophys J,1985,47:411.
    [5]ArisiAC,CornieG,JouaninL,et al.Overexpression of Fe-SOD in transformed poplar modifies the regulation of photosynthesis at low CO2 partial pressures or following exposure to the prooxidant hebicide methyl viologen[J].Plant Phiysiol,1998,11(2):565-574.
    [6]Billard J-P, F Hervieu. Russian Journal of Plant Physiogy, 1997,44(4):541-546.
    [7]Botella J R, et al.Calcium-dependent protein kinase gene expression in response to physical and chemical stimuli in mungbean (Vigna radiata)[J]. Plant Mol. Biol, 1996, 30:1129-1137.
    [8]Boudsocq M, Barbier-Brygoo H, Lauriere C. Identification of nine sucrose non-fermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana[J]. J Biol Chem, 2004,279:41758-41766.
    [9]Boudsocq M, Droillard MJ, Barbier-Brygoo H, Lauriere C. Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2by osmotic stresses and abscisic acid[J]. Plant Mol Biol, 2007,63:491–503.
    [10]Capell T, Escobar C, Lui H, et al.Overexpression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants[J]. Theor Appl Genet ,1998 ,97:246–254.
    [11]Chan CWM, et al. Gene disruptions of calcium-dependent protein kinases in Arabidopsis thaliana:towards understanding their in vivo functions[C]. Australia: 10th International Araidopsis Conference (Abstract No.6-7), 1999.
    [12]Che D, Meagher R B, Andrew C P Heaton, et al. Expression of mercuric ion reductase in Eastern cotton wood (populus deltoids) confers mercuric ion reduction and resistance[J]. Plant Biotecnol. J,2003, 1: 311-319.
    [13]Chen Shaoliang ,Wang Shasheng,Arie Altman and Aloys Hütermann. Stomatal and non-stomatal control of photosynthesis in poplar genotypes in response to water stress[J].Journal of Beijing Forestry University (English Ed.),1996, Vol.5, No.2, pp.63-72.
    [14]Chiang H-H,A M Dandekar,1995. Plant Cell Environ,18:1280–1290.
    [15]Chinnusamy V, SchumakerK, Zhu J-K. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants[J]. J. Exp. Bot. 2004, 55: 225-236.
    [16]Close T J, Meyer N C, Radik J.Nucleotide sequence of a gene encoding a 58.5-kilodalton barley dehydrin that lacks a serine tract[J]. Plant Physiol, 1995, 107(1):289~290.
    [17]CONFALONIERIM,BALESTRAZZI A,BISOFFI S,et al.Factors affecting Agrobacterium tumefaciens mediated transformation in several black poplar clones[J].Plant Cell Tissue Organ Culture,1995,43: 215- 222.
    [18]Conley, T. R. , Sharp ,R. E. , Walker. J. C. Water deficit rapidly stimulates the activityof a protein kinase in the elongation zone of the maize primary root[J].Plant physiology, 1997,113(1):219-226.
    [19]DelauneyA J,Verma D P S.Proline biosynthesis and osmoregulation in plants[J].Plant journal,1993, 4(2):215-223.
    [20]Delauncy AJ, Hu CAA, Kishor PBK, Verma DPS. Cloning of ornithine-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia Coli and regulation of proline biosynthesis[J]. Journal of Biological Chemistry, 1993, 268(25): 18673-18678.
    [21]Dianne B. Jennings, Marilyn Ehrenshaft, D. Mason Pharr, and John D. Williamson .Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense[J].PNAS,1998, 95:15129-15133.
    [22]Dickmann DL, Liu Z, Nguyen PV, Pregitzer KS. Photosynthesis, water relations, and growth of two hybrid Populus genotypes during a severe drought[J].Can JFor Res, 1992,22:1094-1106.
    [23]Doty,S L.Shang TQ,Wilson AM. Enhanced phytoremediation of volatile environmental pollutants with transgenic trees[J].PNAS,2007,104(43): 16816-16821.
    [24]Ende W van den, Moors S, Hoenacker G van,et al.Effect of osmolytes on the fructan pattern in feeder roots produced during forcing of chicory (Cichorium intybusL.) [J]. Journal of Plant Physiology,1998, 153 (34): 290-298.
    [25]Fridorich I. Super-oxide dismutase[J]. Ann Rev Biochem, 1975,44: 147-159.
    [26]Frossard R,Stadelmann Fx,Niederhauer J. Effects of different heavymetals on fructan,sugar,and starch content of ryegrass[J]. Plant Physiology,1989,134:180-183.
    [27]Gallardo F, Fu J M, Canton F R,et al .Expression of a conifer glutamine synthetase gene in transgenic poplar[J].Planta,1999,210 (1):19-26.
    [28]Gao SQ,Xu HJ, Cheng XG, et al.Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factor GmDREB of soybean (Glycinemax)[J].Chinese Science Bulletin, 2005 ,50 (23) :2617.
    [29]Godwin I, Todd G, Ford-Lloyd B, et al. The effects of acetosyringone and pH on Agrobacterium me- diated transformation vary according to plant species[J]. Plant Cell Reports, 1991,9:671-675.
    [30]Gomez-Cadenas A, Verhey SD, Holappa LD, Shen Q, Ho TH,Walker-Simmons MK. An abscisic acid-induced protein kinase, PKABA1, mediates abscisic acid-suppressed geneexpression in barley aleurone layers[J]. Proc Natl Acad Sci USA,1999,96:1767-1772.
    [31]Groover A.,Fontana J.R.,Dupper G.,et al.Gene and enhancer trap tagging of vascular-expressed genes in poplar trees[J].Plant Physiol.2004,134:1742-1751.
    [32]Halford NG, Hardie DG.SNF1-related protein kinases: global regulators of carbon metabolism in plants? [J]. Plant Mol Biol,1998,37:735-748.
    [33]Harbak EM, et al. Characterization of eight new members of the calmodulin-like domain protein kinase gene family from Arabidopsis thaliana[J]. Plant Mol. Biol., 1996, 31: 405-412.
    [34]Harmon A C, et al. A calcium-dependent but calmodulin-independent protein kinase from soybean[J]. Plant Physiol., 1987, 83: 830-837.
    [35]Harmon AC,Yoo BC ,Mccaffery C. Pseudo substrate inhibition of CDPK, a protein kinases with a calmodulin-like domain [J].Biochem ,1994 ,33 :7278-7287.
    [36]Harper J F, et al. A calcium-dependent protein kinase with a regulatory domain similar to calmodulin[J].Science, 1991, 252: 951-954.
    [37]Harper J F, et al. Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin–like domain[J]. Biochem., 1994, 33: 7267-7277.
    [38]Harvey HP, Driessche RVD. Nutrition, xylem cavitation and drought resistance in hybrid poplar[J].Tree Physiol, 1997,17:647-654.
    [39]Hohmann,S. Osmotic stress signaling and osmoadaptation in yeasts [J].Microbiology and Molecular Biology Reviews, 2002,66(2):300-372.
    [40]Holford D, Hernandez N, Newbury H. Factors influencing theefficiency of T-DNA transfer during cocu- ltivation of Antirrhinum majus with Agrobacterium tumefaciens[J]. Plant Cell Rep, 1992,11:196-199.
    [41]Holmstrom KO, Somersalo S, Mandal A, et al.Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine[J].J Expt Bot ,2000 ,51:177-185.
    [42]Horsch R B, Fry J E, Hofimann N L, et al. A simple and general method for transferring genes into plants [J]. Science, 1985, 227: 1229-1231.
    [43]Hong Y, et al. Expression of three members of the calcium-dependent protein kinase gene family in Arabidopsis thaliana[J]. Plant Mol. Biol., 1996, 30: 1259-1275.
    [44]Hou FL(侯风莲), Wang WZ(王文章), Feng YL(冯玉龙), Hou LJ(侯丽娟), Kong LW(孔令武). Study on physiological ecological charactereistics of Populuspseud-simonii[J]. Bull Bot Res(植物研究), 1996,16 (2):208-213.
    [45]Hoyos,M.E.,Zhang,S.Calcium-Independent activation of salicylic acid-induced protein kinase and a 40-Kilodalton protein kinase by hyperosmotic stress[J].Plant Physiol, 2000,122:1355-1364.
    [46]Hrabak EM.Calcium-dependent protein kinases and their relatives[J]. Adv Bot Res,2000, 32:185-233.
    [47]Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N,Kudla J, Luan S, Nimmo HG, Sussman MR et al.The Arabidopsis CDPK-SnRK superfamily of protein kinases[J]. Plant Physio l,200- 3,132:666-680.
    [48]Ibrahim L, Proe MF, Cameron AD. Interactive effects of nitrogen and water availabilities on gas exchan- ge and whole plant carbon allocation in poplar[J].Tree Physiol, 1998,18:481-487.
    [49]Ichimura,K,Mizoguchi,T,Yoshida,R,Yuasa,T and Shinozaki,K. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6[J].The Plant Journal, 2000,24(5):655-665.
    [50]Imai R,Meenzs M,Elizabeth A B.Expression of an ABA induced gene of tomato in transgenic tobacco during periods of water deficit[J].J Exp Bat,l995,46:1077-l084.
    [51]Ingham DJ,Beer S,Money S,et al.Quantitative real-time PCR assay for determining transgene copy number in transformed plants[J].Biotechnology,2001,31(1):132-140.
    [52]JanssonS.,Douglas C.J.Populus:A model system for plant biology.Annu Rev Plant Biol,2007,58:435-458.
    [53]John D.Plant Genetic Transformation and gene expression[M]. A Laboratory Manual Blackwell Scientific Publications Oxford London E dinburgh,1988.
    [54]Junling Huai ,Meng Wang ,Junguang He.,et al. Cloning and characterization of the SnRK2 gene family from Zea mays[J]. Plant Cell Rep ,2008,27:1861-1868.
    [55]Kalir A,Poljakoff-Mayber A.Changes in activity of malate dehydrogenase,catalase,peroxidase and superoxide dismutase in leaves of Helimione porlulacoides(L)aellen exposed to high sodium chloride concentrations[J].Ann.Bot,1981,47:75-85.
    [56]Kasuga M,Liu Q,Miura S, et al. Improving plant drought,salt,and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J].Nature Biotech , 1999, 17: 287-291.
    [57]Kavi Kishor P B,Z Hong. Plant Physiol,1995,99:1642-1649.
    [58]Kerepesi I ,Galiba G, Banyai E. Osmotic and salt stresses induced differential alteration in water soluble carbohydrate content in wheat seedlings[J]. Journal of Agricultural and Food Chemistry,1998, 46(12): 5347- 5354.
    [59]Kerepesi I ,Galiba G. Osmotic and salt stress induced alteration in soluble carbohydrate content in wheat seedlings[J].Crop Science,2000,40(2):482-487.
    [60]Kishor et al.Overxpression of delta 1-pyrroline-5-carboxylate synthetase increase proline production and confers osmotolerance in transgenic plants[J].Plant physiology,1995,108(4):1387-1394.
    [61]Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T.Differential activation of the rice sucrose non-fermenting 1-related protein kinase2 family by hyperosmotic stress and abscisic acid[J].Plant Cell,2004,16:1163-1177.
    [62]KovtunY,ChiuWL,TenaG,et al.Functional analysis of oxidative stress-activated mitogen activated protein kinase cascade in plants[J].Proc Natl Acad Sci USA, 2000 ,97:2940-2945.
    [63]Li C.Variation of seedling traits of Eucalyptus microtheca origins in different watering regimes[J].Silvae Genetica, 1998,47(23):132-136.
    [64]Li C,Berninger F,Koskela J, Sonninen E.Drought responses of Eucalyptus microthecaprovenances depend on seasonality of rainfall in their place oforigin[J].Aust J Plant Physiol, 2000,27:231-238.
    [65]Li SY(李生英), Lan RG(兰荣光), Xu TY(许童羽), Zhou YB(周永斌), Zhao WZ(赵文忠), Wu YE(吴艳娥), Xu SH(许绍惠). The Physio-ecological characteristics of different poplar tree varieties and their relation to growth[J].J Shenyang Agric Univ(沈阳农业大学学报),1998,29(1):47-52.
    [66]Li,J.,Assmann,S.M.An abscisic acid-activated and calcium-independent protein kinase from guard cells of Fava Bean[J].The plant cell , 1996,8(12) :2359-2368.
    [67]Li J, Wang XQ, Watson MB, Assmann SM.Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase[J]. Science ,2000, 287:300–303.
    [68]Lipton C R,Dautlick J X,et al.Guidelines for the validation and use of immunoassays for determining of introduced proteins in biotechnology enhanced crops and derived food ingredients[J].Food Agric Immunol,2000,(12):153-164.
    [69]Lown J M,Davery M R,Power J B,et al.A study of some factors affecting Agrobacterium transformation and plant regeneration of dendranthema grandiflora Tzelev(Syn Chrysan themum morifoliumRamat)[J].Plant Cell Tiss org Cult,1993,33:170-180.
    [70]Marc De Block,Dirk De Brouwer,Paul Tenning.Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants [J]. Plant Physiol,1989,91(2):694-701.
    [71]Mazzoleni S, Dickmann DI.Differential physiological and morphological responses of two hybrid Populus clones to water stress[J].Tree Physiol, 1988,4:61-70.
    [72]MCKERSIE BD,CHEN Y,BEUS M,BOWLEY S R,BOWLER C.Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativaL.)[J].Plant Physio l ,1993,103(4):1155-1163.
    [73]Miki,B.L.,H.Labbe,J.Haffori,et al.Transformation of Brassia hapus canola Cultivars with Arabidopsis thaliana acetohyacid synthase[J].Genes and nalysis of herbiccide resisfance.Theor.APP L.Genet, 1992, 84: 480-486.
    [74]Mingjuan Tang,Jingwen Sun,Yun Liu,et al.Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain conta- ining transcription factor, in the woody oil plant Jatropha curcas[J]. Plant Mol Biol, 2007, 63: 419-428.
    [75]Munnik,T., Ligterink,W., Meskiene,I.,Calderini,O.,Beyerly , J.,Musgrave, A.,and Hirt, H. Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyperosmotic stress[J].The Plant Journal, 1999, 20(4):381-388.
    [76]Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J.Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production[J]. Plant Cell,2002, 14:3089–3099.
    [77]NAGAEM, NOZAWAA,KOIZUMIN, et a.l.The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana[J]. J BiolChem,2003,278(43):42240-42246.
    [78]Nelson,R.S.et al.Virus tolerance plant grouth anmd field perfamance of transgenic tomoto plants express ing coat protein from tomato mosaic virus[J].Biotechnology,1988(6):403-409.
    [79]Padmanabhan V, Dias D MAL, Newton RJ. Expression analysis of a gene family in loblolly pine ; Pinus taed a L. G induced by water deficit stress[J].Plant Molecular BiologyY ,1997K ,35; 6GP801-807.
    [80]Pardo JM,Reddy MP,Yang S.Stress signaling through Ca2+/Calmodulin dependent protein phosphatase calcineurin mediates salt adaptation in plants[J]. ProcNatl Acad Sci USA ,1998 ,95:9681–9683.
    [81]Park YS, Hong SW, Oh SA, Kwak JM, Lee HH, Nam HG.Two putative protein kinases from Arabidopsis thaliana contain highly acidic domains[J]. Plant Mol Biol,1993, 22:615–624.
    [82]Pellegrineschi A, Reynolds M, Pacheco M, et al.Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions [J].Genome, 2004, 47:493-500.
    [83]Pergitzer KS, Dickmann DI, Hendrick R, Nguyen PV. Whole-tree carbonand nitrogen partitioning in young hybrid poplars[J].Tree Physiol, 1990,7:79-93.
    [84]Perl A,Perl-Treves R,Galili S,et al.Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu/Zn superoxide dismutase[J].Theor Appl Genet,1993,85:568-576.
    [85]PERLAK F J,Deatow R W,Armstrong T A.Insect resistant cotton plants[J].Bio/Technology ,1990,8:939-943.
    [86]PERLAK F J, Fuchs R L, Dean D A,et al. Modification of the coding sequence enhances plant expression of insect control protein genes[J]. Proc Natl AcadSci, USA, 1991,88:3324-3328.
    [87]Pilon-Smits EAH, Ebskamp MJM, Jeuken MJW, et al. Microbial fructan production in transgenic potato plants and tubers[J]. Ind Crops Prod,1996,5:35-46.
    [88]RhodesD,HansonAD.Quaternaryammonit and tertiary sulfoniume compounds in Higher Plants[J].Ann Rev Plant Physiol Plant Mol Biol,1993,44:357-384.
    [89]Richard S, Morency M J, Drevet C,et al.Isolation and characterization of a dehydrin gene from white spruce induced upon wounding K drought and cold stresses[J]. PlantMol. Biol. Y, 2000K 43:1GP1–10.
    [90]Rndolph AS,Crowe JH,Crowe LM.Effects of three stabilizing agentsproline,betaine,and trehaloseon membrane phospholipids[J].Arch Biochem Biophys,1986,245(1):134
    [91]Roberts D M, et al.Calcium-modulated proteins: Targets of intracellular calcium signals in higher plants[J].Annu. Rev. Plant Physiol. Mol. Biol., 1992,43: 375-414.
    [92]Romero C, Belles JM, Vaya JL, Serrano R, Culianez-Macia FA.Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance[J]. Planta,1997,201:293-297.
    [93]Rough C L, Senecoff J F, Meagher R B, et al.Development of transgenic yellow poplar formercury phytoremediation[J]. Nat Biotechno,1998, 16: 925-928.
    [94]Samia Djennane,Jean-Eric Chauvin,et al.Introduction and expression of a deregulated tobacco nitrate reductase gene in potato lead to highly reduced nitrate levels in transgenic tubers[J].Transgenic Research,2002,(11):175-184.
    [95]Saneoka H, Nagasaka C. Hahn D T, et al.Salt tolerance of glycinebetaine deficient and containing maize lines[J]. Plant Physiology, 1995, 107: 631–638.
    [96]Schonfeld M A,et al. Rater relations in winter wheat as drought resistance indicators[J].Crop Science,1988:28(3):526-531.
    [97]Sheen J. Ca2+-dependent protein kinases and the stress signal transduction in plants[J]. Science, 1996, 274:1900-1902.
    [98]Shimamoto,K.,R.Terada,T.Lzawa,et al.Fertile transgenic rice plants generated from transformed protoplast[J].Nature,1986,72:770-777
    [99]Shou H, Bordallo P, Wang K.Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize[J]. J Exp Bot ,2004,55:1013-1019.
    [100]SoPhia Diamanr,Noa Eliahu,David Rosenthal,Pierre Goloubinoff.Chemical chaperones regulate molecular chaperons in vitro and in cells under combined salt and heat stresses [J].J.Biol.Chem,2001, 276 (43):39586– 39591.
    [101]Soryu,N.Transformation of cucumber plant using Agrobaeterium tarme faciens and regeneration from hypoceotyl exolants[J].Plant Cell Report,1996,15: 809-814.
    [102]Souch CA, Stephens W. Growth, productivity and water use in three hybrid poplar clones[J].Tree Physiol, 1998,18:829– 835.
    [103]Song J.,Lu S.,Chen Z.Z,et al.Genetic transformation of Populus trichocarpa genotype Nisqually-1:a functional genomic tool for woody plants[J].Plant Cell Physiol.2006,47:1582-1589.
    [104]Suzuki M. Fructans in crop production and preservation.In: Suzuki M, Chatterton NJ (eds). Science and Technology of Fructans. Boca Raton Fla: CRC Press, 1993.227-247.
    [105]Tarczynski MC, Jensen RG, Bohnert HJ. Stress protection of transgenic tobacco by production of osmolyte mannitol[J]. Science ,1993,259:508–510.
    [106]Taylor G.Populus:Arabidopsis for forestry,Do we need a model tree?[J].Ann Bot.2002,90:681–689.
    [107]Tian Wen Zhang.Rice transformation with a phytoalexin gene and bioassay of the transgenic plant[J].Acta BotanicaSinica,1998,40(9):803-808.
    [108]Timothy JT, Tuskan GA, Gebre GM, Todd DE. Drought resistance of two hybrid Populus clones grown in a large-scale plantation[J].Tree Physiol,1998,18:653-658.
    [109]Trojanowska M T.The effects of growth regulators on somaclonal variation in rye and selection of somaclonal variants with increased agronomic traits[J].Cellar&Molecular Biology Letters,2002,7: 1111-1120.
    [110]Tuskan GA,DiFazio S,Jansson S,et al.The genome of black cottonwood Populus trichocarpa (Torr&Gray ex.Brayshaw)[J].Science.2006,313:1596–15604
    [111]Umezawa T,Yoshida R,Maruyama K, et al. SRK2C, a SNF1-related protein kinase 2,improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA,2004,101:17306-17311.
    [112]Van Camp W,WillekensH,Bower C,et al.Elevated levels of superoxide dismutase protect transgenic plants against ozone damage[J].Bio/Technology,1994,12:165-168.
    [113]Wang ChangWen ,Tillberg J E. Effects of nitrogen deficiency on accumulation of fructan and fructanm etabolizing enzyme activities in sink and source leaves of barley (Hordeum vulgare) [J].Physiologia Plan- tarum,1996,97(2):339-345.
    [114]Wang C, Tillberg JE. Effects of short-term phosphorus deficiency on carbohydrate storage in sink and source leaves of barley[J].New Phytol, 1997,136:131-135.
    [115]Wei Tang,R.Newton,C.Li,et al.Enhanced stress tolerance in transgenic pine expressing the pepper CaPF1 gene is associated with the polyamine biosynthesis[J].Plant cell report,2007 ,2(1):115-124.
    [116]Welin B V,Olson A,Nylander M, Palva E T.Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana[J].Plant Mol Biol, 1994,26(1):131-144.
    [117]Wim Van den Ende, An Michiels, Dominik Van Wonterghem,et al.Defoliation induces fructan 1_E-xohydrolase II in witloof chicory roots.Cloning and purification of two isoforms,Fructan 1_ Ex ohydrolase Iia and Fructan 1_Exohydrolase Iib.Mass fingerprint of the Fructan 1_Exohydrolase II enzymes[J].Plant Physiology,2001,126(3):1186-1195.
    [118]Winton L L. Shoot and tree production from aspen tissue cultures. AmJ Bot, 1970, 57: 904-909
    [119]Xiang Y,Huang Y and Xiong L.Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement[J].Plant Physiol,2007,144:1416-1428.
    [120]Xu J, LiHD, Chen LQ,et al.A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis[J].Cell,2006,125:1347-1360.
    [121]YANXX,ZHAOTF,HUYJ.Effect of moderate salt stress on cell sin root tips of barley[J].Acta Agriculture Boreali Sinica,1994,9(Supplement):61-64.
    [122]Yang JW(杨建伟), Han RL(韩蕊莲), Wei YK(魏宇昆), Sun Q(孙群), Liang ZS(梁宗锁).Water relation and growth of sea buckthorn and poplar under different soilwater content[J].ActaBot Bor-OccidSin(西北植物学报), 2002,22(3):579-586.
    [123]Yang MH(杨敏生), Qin AC(秦安臣), Cong JS(丛金山). Study on comprehensive judgement of drought resistance ability of white poplar hybrid clones[J].JAgric UnivHebei(河北农业大学学报),1997,20 (1):17-23.
    [124]Yoshiba Y,W inton L L.Shootand tree production from aspen tissue cultures[J].AmJ Bot,1970,57: 904–909.
    [125]Yoshiba Y,Kiyosue T,Nakashima K,Yamaguchi-Shinozaki K.Regulation of levels of proline as an osmolyte in plants under water stress[J].Plant Cell Physiol,1997,38:1095-1102.
    [126]Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, AronsoJ, Ecker JR, Shinozaki K.ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis[J]. Plant Cell Physiol,2002,43:1473-1483.
    [127]Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F,Shinozaki K.The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA)and osmotic stress signals controlling stomatal closure in Arabidopsis[J].J Biol Chem,2006,281:5310-5318.
    [128]Zhao HW,ChenYJ,Hu YL et al.Construction of a trehalose-6-phosphate synthase gene driven by drought-responsive promoter and expression of drought-resistance in transgenic tobacco[J]. Acta Botanica Sinica,2000,42(6):616-619.
    [129]Zhou XY(周晓阳), Zhang H(张辉).Differential Responses in Stomatal Guard Cells of Different Drought Tolerant Poplars to Water Stress[J].J BeijingFor Univ(北京林业大学学报),1999,21(5):1-6.
    [130]边鸣镝,李文亮,周连霞.高等植物SnRK蛋白激酶家族研究进展[J].辽宁农业科学,2008(4): 32-35.
    [131]蔡祖国,徐小彪,周会萍.植物组织培养中的玻璃化现象及其预防[J].生物技术通讯.2005,16(3):353- 355.
    [132]柴宝峰,李洪建,王孟本,等.植物抗旱的分子生物学机制研究进展[J].山西大学学报(自然科学版),1999,22(4):400-406.
    [133]常新东.林木基因操作的现状与展望[J].世界林业研究,1997(4):80-81.
    [134]陈少良,王沙生.水分逆境下杨树光合作用的气孔与非气孔调控[J].北京林业大学学报(英文版),1996, Vol.5, No.2, pp.63-72.
    [135]陈建勋,王晓峰.植物生理学试验指导[M].广州:华南理工大学出版社,2002.
    [136]陈松,吴敬音,何小兰等.转基因抗虫棉组织中Bt毒蛋白表达量的ELISA测定[J].江苏农业学报,1997,13 (3 ):154-156.
    [137]陈志贤,范云六,Danny J L等.利用农杆菌介导法转移tfdA基因获得可遗传的抗2,4-D棉株[J].中国农业科学,1994, 27 (2):31-37.
    [138]杜春芳,李朋波,李润植.一种快速鉴定转基因植物纯合体的新方法[J].生物技术通讯,2004,15(6):585 -587.
    [139]杜金友,陈晓阳,李伟,高琼.干旱胁迫诱导下植物基因的表达与调控[J].生物技术通报,2004,(2): 1014.
    [140]樊军峰,韩一凡,李玲,等.MtlD-gutD双价基因转化美洲黑杨×青杨的研究[J].林业科学,2002,38(6):31 -35.
    [141]封德顺.海藻糖的生物学功能简介[J].生物学通报,1999,34(2):13-14
    [142]冯丽玲,曾庆平,杨雪芹.人RANTES基因在转基因青篙植株中表达的测定[J].中草药,2004, 35(10):1167-1171.
    [143]费云标,孙龙华,黄涛,等.沙冬青高活性抗冻蛋白的发现[J].植物学报,1994,36 (8):649-650.
    [144]付永彩,成卓敏.农杆菌介导的禾本科作物遗传转化新进展[J].农业生物技术学报,1999,10(3):l-5.
    [145]傅荣昭,刘敏,梁红健,张纯花,薛淮,孙勇如.通过根癌农杆菌介导法获得菊花转基因植株[J].植物生理学报,1998,24(1):72-76.
    [146]郭连旺,沈允钢.高等植物光合机构避免强光破坏的保护机制[J].植物生理学通讯,1996,32(1):1-8.
    [147]郝贵霞,朱祯,朱之悌.毛白杨遗传转化系统优化的研究[J].植物学报,1999,41:936-940.
    [148]贺红,李耿光.遗传转化技术在柑桔育种中的研究进展[J].生物学杂志, 1999,16(5):2-4.
    [149]侯彩霞,汤章城.细胞相溶性物质的生理功能及其作用机制[J].植物生理学通讯,1999,35(I):1-7.
    [150]黄绍兴,阎隆性.高等植物对渗透胁迫的基因表达[J].农业生物技术学报,1995,3(3):l-6.
    [151]黄留玉.PCR最新技术原理、方法及应用[M].北京:化学工业出版社,2005.
    [152]洪法水等.自然干旱胁迫下小麦品种游离脯氨酸累积与抗旱性的关系[J].安徽农业科学,1991 (4): 311-314.
    [153]蒋春燕.实时荧光定量PCR技术[J].动物医学进展,2005,26(12):97-101.
    [154]李春霞.抗冻蛋白基因对山杨等植物遗传转化的研究[D].东北林业大学, 2003.
    [155]李华平,胡晋生,王敏,范怀忠.香蕉茎尖遗传转化法研究[J].热带作物学报,2000,12(4):33-38.
    [156]李旭刚,谢迎秋,朱祯.外源基因在转基因植物中的失活[J].生物技术通报,1998,3:1-8.
    [157]李旭刚,朱祯,冯德江,常团结,刘翔.DNA甲基化对转基因表达的影响[J].科学通报,2001,46(4):322- 326.
    [158]李艳,李毅,陈章良.转基因植物内源基因与外源基因共抑制问题研究进展[J].生物工程学报,1995,15(1):1-5.
    [159]李荣田,张忠明,张启发.RHL基因对粳稻的转化及转基因植株的耐盐性[J].科学通报,2004, 47 (8):613-616.
    [160]李周崎.河北杨体细胞抗盐变异系氨基酸组分变异性分析[J].陕西林业科技,1995,(2):7-10.
    [161]林元震.甜杨葡萄糖-6-磷酸脱氢酶基因克隆及结构分析与功能鉴定[D].北京林业大学, 2006.
    [162]梁峥,骆爱玲.甜菜碱和甜菜碱合成酶[J].植物生理学通讯,1995,31(l):1-8.
    [163]刘斌,李红双,王其会,等.反义磷脂酶Dγ基因转化毛白杨的研究[J].遗传,2002,24(1):40-44.
    [164]刘凤华,孙仲序,崔德才,等.细菌mtl-D基因的克隆及在转基因八里庄杨中的表达[J].遗传学报,2000,27(6):428–433.
    [165]刘光明,苏文金.应用间接ELISA方法定量检测转基因抗虫玉米[ J] .无锡轻工大学学报,2003,22(1):49.
    [166]刘光明,李庆阁,王群力多重荧光PCR同时检测转基因成分35S和Nos方法的建立[J].厦门大学学报(自然科学版),2002,41(4):493.
    [167]刘桂丰,杨传平,蔡智军,等.转betA基因小黑杨的耐盐性分析及优良转基因株系的选择[J].林业科学, 2006,42(7):33-36.
    [168]刘红莉,雷霆,等.LT-B转基因烟草植株的建立[J].西安交通大学学报(医学版),2004,25(5):425-429.
    [169]刘祖棋,张石城.植物抗性生理学[M].北京:中国农业出版社.1994.222-285,369-371.
    [170]马丽.胡杨耐盐相关基因克隆及转化群众杨的研究[D].北京:北京林业大学,2005.
    [171]毛慧珠,唐惕,曹湘玲,等.抗虫转基因甘蓝及其后代的研究[J].中国科学(辑).1996,26(4):339-347.
    [172]梅英.定量PCR的研究进展[J].国外医学临床生物化学与检验学分册.2004,25(1):23-27.
    [173]蔺娜.转AhBADH、PsCAT基因烟草和杨树的获得及其抗性分析[D].山东农业大学,2007.
    [174]彭方仁,黄宝龙.密植板栗树光合特性的研究[J].浙江林学院学报,1997,14(2):151-154.
    [175]全先庆,张渝洁,单雷,毕玉平.脯氨酸在植物生长和非生物胁迫耐受中的作用[J].生物技术通讯.2007,18(1):159-162.
    [176]石春林,朱祯.等.转基因烟草中Bt毒蛋白基因的表达行为[J].植物学报,2000,42(3):269-273.
    [177]苏金,朱汝财.渗透胁迫调节的转基因表达对植物抗旱耐盐性的影响[J].植物学通报,2001,18(2): 129-136.
    [178]孙大业.植物细胞信号转导研究进展[J].植物生理学通讯, 1996,32(2): 81-91.
    [179]孙静文.构树DREB转录因子及木质素合成代谢相关基因的克隆及功能分析[D].中国科学院研究生院(植物研究所),2006.
    [180]孙仲序,杨红花,崔得才,等.转基因杨树的抗盐性分析[J].生物工程学报,2002, 18(4):482-485.
    [181]田长恩,王正询,陈韬,周玉萍,黄自然,黄亚东.抗菌肽D基因导入番茄及转基因植株的鉴定[J].遗传,2000,22(2):86- 89.
    [182]王翠亭,卫志明.根癌农杆菌介导小麦幼胚遗传转化的影响因素[J].植物生理与分子生物学学报,2003, 29(6):521-529.
    [183]王红梅,张献龙,蔡忠民,李运海,刘方.植物转基因沉默机制及消除对策[J].棉花学报,2003,15(4): 248-251.
    [184]王仑山,陆卫,孙彤,李惠娟,王亚馥.枸杞耐盐变异体的筛选及植株再生[J].遗传HEREDITAS (Beijing) ,1995,17(6): 7-11.
    [185]王志敏.高等植物的果聚糖代谢[J].植物生理学通讯,2000,36(1):71-76.
    [186]王志兴,刘昱辉,等.葡萄糖氧化酶基因的克隆及其在转基因烟草中的表达[J].自然科学进展,2003, 13 (3):248-251.
    [187]王学聘,卞祖娴,张香华,卢孟柱.欧美杨转基因植株的PCR检测[J].林业科学,1997,33 (4): 380-383.
    [188]魏爱丽,白桦,陈云昭,冯文新.盐胁迫下大豆初生叶愈伤组织SOD活性及其同工酶变化的研究[J].大豆科学,1999,18(1):85-88.
    [189]吴永波,薛建辉.盐胁迫对3种白蜡树幼苗生长与光合作用的影响[J].南京林业大学报,2002,26 (3):19-22.
    [190]肖军,石太渊,郑秀春,段有厚.根癌农杆菌介导的高粱遗传转化体系的建立[J].杂粮作物,2004,24(4):200-203.
    [191]徐纬英.杨树[M],哈尔滨:黑龙江人民出版社.1988.
    [192]许兴,郑国琦,邓西平,等.水分和盐分胁迫下春小麦幼苗渗透调节物质积累的比较研究[J].干旱地区农业研究,2002.20(1):52-56.
    [193]杨传平,刘桂丰,梁宏伟,等.耐盐基因Bet2A转化小黑杨的研究[J].林业科学,2001,37(6):34-38.
    [194]阳成波,印遇龙,龚建华,郁海,黄瑞林,李铁军.实时定量PCR研究进展及其应用[J].中国预防兽医学报,2003,25(5):395-399.
    [195]阳江华,黄德宝,刘术金,等.巴西橡胶树6个蔗糖转运蛋白基因的克隆与序列分析[J].热带作物学报,2007,28(4) :32-38.
    [196]姚元干,石雪晖,杨建国,等.辣椒耐热性与叶片质膜透性及几种生化物质含量的关系[J].湖南农业大学学报,2000,26(2):97-99.
    [197]俞嘉宁,张林生,陈受宜,等.小麦耐逆基因-TaLEA3的克隆及在酵母中的功能分析[J].生物工程学报,2004,20(6):832-837.
    [198]朱馨蕾,马艳,张富春.盐胁迫下胡杨cDNA文库的构建及其nhx基因的克隆[J].植物研究. 2007,27(1) :82-88.
    [199]张蓓.实时荧光定量PCR的研究进展及其应用[J].国外医学临床生物化学与检验学分册,2003,24(6):327-329.
    [200]张宗江,周钟信,等.黄瓜花叶病毒壳蛋白基因转化辣椒及其在转基因株后代的表达[ J] .华北农学报,1994,9(3):67-71.
    [201]张荃,王淑芳.HAL1基因转化番茄及耐盐转基因番茄的鉴定[J].生物工程学报.2001,17(6):658-662.
    [202]张冰玉,苏晓华,黄秦军,等.转果聚糖蔗糖转移酶基因银腺杨的获得[J].林业科技,2005,41(3) :48-53.
    [203]张德强,赵树堂,卢孟柱,等.杨树Na+/H+反向运输蛋白基因( PtNHX1、PtNHX6 )的克隆和检测[J].林业科学,2006,42(11):29-36.
    [204]张建锋,孙启祥, Franz Makeschin.盐胁迫对柳树新无性系苗木生长和土壤酶活性的影响[J].水土保持学报,2005,19(3):125-129.
    [205]张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[J].植物学报,1998,40(1):56-60.
    [206]张树珍.海藻糖的研究进展及其应用前景[J].华南热带农业大学报,2000,6(3):22-29.
    [207]张士功,高吉寅,宋景芝.甜菜碱对NaCl胁迫下小麦细胞保护酶活性的影响[J].植物学通报1999,16(4):429-432.
    [208]张亚兰,李彦舫,杨柏明等.短芒大麦耐盐变异体的筛选与鉴定[J].草业科学,1998,15(1):30-32.
    [209]郑进,刘凯于,洪华珠.杨树抗性转基因研究进展[J].湖北林业科技,2004,1:31-33.
    [210]周苏玫,尹钧,等.转反义trxs基因小麦株系00T89分子鉴定及抗穗民芽特性研究[J].生物工程学报,2006,22(3):438-494.
    [211]周鹏,郑学勤.PRSV-外壳蛋白基因在转基因番木瓜中的表达[J].热带作物报,1995,16增刊:36-39.
    [212]邹维华,赵强,崔德才等.反义磷脂酶Dγ基因与几丁质酶基因转化美洲黑杨G2[J].林业科学,2006,42(1):37-42.
    [213]赵春晖,王荣,等.含与不含前导序列的乙肝病毒表面抗原在转基因番茄中表达的研究[J].农业生物技术学报,2000,8(1):85-88.
    [214]赵亚华,何平,高向阳.根癌农杆菌介导的Mint-1cDNA转化枸杞及其表达的研究[J].中国农业科学,2000,33(2):92-97.
    [215]赵可夫.北京:植物抗盐生理[M].中国科学技术出版社,1993,22-24.
    [216]支立峰,陈明清,余涛,曹军卫,朱英国,李阳生.p5cs转化水稻细胞系的研究[J].湖北师范学院学报(自然科学版),2005,25(4):39-43.
    [217]周鹏,郑学勤. PRSV-外壳蛋白基因在转基因番木瓜中的表达[J].热带作物学报,1995,16增刊:36-39.
    [218]朱新霞,孙黎,陶春萍.甜瓜离体再生继代培养中玻璃化现象的研究[J].西北植物学报.2006,26 (7):1468-1472.
    [219]朱新广,张其德,匡廷云.NaCl胁迫对PSII光能利用和耗散的影响[J].生物物理学报,1999,15(4):787-791.
    [220]朱莉,张春义,范云六.转基因植物中外源基因沉默机制的研究进展[J].生物化学与生物物理进展,1999,26(2):102-104.
    [221]紫守玺等.与小麦抗旱性有关的几个水分指标[J].甘肃农业科技,1990(6):12-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700