扫描探针显微镜生物成像研究与光镊的FDTD模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文描述了扫描探针显微镜在生物领域的应用和光镊的数值模拟研究。对于前者,阐述了原子力显微镜(AFM)对生物样品的成像研究,原子力与光子扫描隧道组合显微镜(AF/PSTM)的实验操作及其对各种样品的成像,特别是生物样品的成像。对于后者,探讨了时域有限差分法在光镊理论研究中的应用。
     扫描探针显微镜是对固体表面进行高分辨研究的工具。原子力显微镜由于对样品的导电性没有特殊要求,并且能在接近生理条件下测量活的生物样品,从而成为生物领域的重要研究工具。本文通过对变形杆菌、狗肾上皮细胞和流感病毒的原子力显微镜成像研究,说明了原子力显微镜对临床医学和环境科学的应用。在对狗肾上皮细胞成像时,观察到细胞表面的小孔凹陷和突起,并获得了细胞膜表面细胞被(糖萼)的结构。在对流感病毒成像时,观察到了病毒表面的糖蛋白突起。
     原子力与光子扫描隧道组合显微镜结合了原子力显微镜与光子扫描隧道显微镜的功能,能够在获得原子力显微镜形貌和相位图像的同时,通过对称照明样品,减少了原有光子扫描隧道显微镜所存在的假象;通过图像分解,可以获得样品的透过率和折射率图像。本文探讨了原子力与光子扫描隧道组合显微镜的实验操作,即如何具体实现原子力显微镜与光子扫描隧道显微镜的功能。文章通过对各种样品成像,验证了原子力与光子扫描隧道组合显微镜的功能。论文探讨了原子力与光子扫描隧道组合显微镜在生物领域的应用,揭示出它也能成为生物应用的重要研究工具。特别是在对海湾扇贝雄性生殖腺切片成像时,不仅观察到了海湾扇贝精子切片的表面形貌,通过光子扫描隧道显微镜透过率和折射率图像,还观察到精子头部细胞核内的精细结构。
     光镊是利用光的辐射压来研究微观及介观粒子的工具。光镊能对生物样品进行非侵入式微操作。本文利用光镊对酵母菌细胞进行了捕获与操作。
     光镊的理论是不完备的,特别是对于微米尺度(光波长)的粒子,至今尚没有较好的理论来描述。本文用三维时域有限差分法,探讨了微米尺度粒子所受的光辐射压力。光辐射压力由Minkowski电介质中的动量转换推出,入射聚焦光场用Richards-Wolf散射场理论来确定。计算所得的辐射压力与实验结果非常符合。
     论文的研究结果表明:
     (1) 用AFM对生物样品成像,可以得到样品表面精细结构的信息;用自行研制的AF/PSTM不仅可以得到表面形貌,还可以得到生物体内部的结构信息。以AFM为基础的显微成像工具在生物领域具有广阔的应用前景。
This thesis describes the biological applications of scanning probe microscopy (SPM) and the study of the optical trapping theory. For the former, biological imaging study of atomic force microscopy (AFM), atomic force/photon scanning tunneling microscope (AF/PSTM) operating, and biological imaging of AF/PSTM are elucidated. For the later, application for the optical tweezers theory using the finite difference time domain (FDTD) method is discussed.
    Scanning probe microscopy is one of powerful techniques studying the solid body surface with high spatial resolution. AFM, overcoming the limitations in imaging non-conducting samples, and allowing measurements of native biological samples in physiological-like conditions, becomes an important tool to the study of samples of biological origin. This thesis illustrates the clinical and environmental researches of atomic force microscopy, utilizing AFM imaging of proteus, canine renal epithelial cell and influenza viruses. In the AFM images of canine renal epithelial cell, the granules and the hole on the cell surface are shown, and the structure of glycocalyx on the cell membrane is obtained. In the AFM images of influenza viruses, the glycoprotein protrusions on the virus surface are shown.
    Atomic force/photon scanning tunneling microscope which combines AFM and photon scanning tunneling microscope, can implement the AFM imaging, and eliminate the spurious image with two-beam symmetric illumination system. With the method of separating image, the transmittivity and refractive index images of sample are obtained using AF/PSTM. In this thesis, the operating of AF/PSTM is discussed, that is how to perform the functions of AFM and PSTM imaging simultaneously. The function of AF/PSTM is validated by imaging research of a variety of samples. Biological applications using AF/PSTM are studied, and it is shown that AF/PSTM is one of powerful techniques in the study of life science. Especially, in the AF/PSTM images of the spermary of reproduction system of Argotecten irrabians, the ultramicroscopic structures of the sperm karyon is shown through transmissivity and refractive index images, while the its topography is obtained.
    Optical tweezers is a term describing the manipulation of microscopic and mesoscopic particles using the light radiation pressure force. Non invasive manipulation of biological
引文
[1] Binnig G, Rohrer H, Gerber C et al. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 1982, 49 (1): 57-61.
    [2] Binnig G, Rohrer H, Gerber C et al. 7X7 reconstruction on Si (111) resolved in real space. Phys. Rev. Lett. 1983, 50 (2): 120-123.
    [3] Binnig G, Quate C F, and Gerber C. Atomic force microscope. Phys. Rev. Lett. 1986, 56 (9): 930-933.
    [4] Israelachvili J. Intermolecular and Surface Forces, 2~(nd) ed. London: Academic, 1991.
    [5] Stillinger F H and Weber T A. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B, 1985, 31 (8): 5262-5271.
    [6] Bazant M Z, and Kaxiras E. Environment-dependent interatomic potential for bulk silicon. Phys. Rev. B, 1997, 56 (14): 8542-8552.
    [7] Hamaker H C. The London-van der Waals attraction between spherical particles. Physica (Amsterdam) 1937, 4: 1058-1072.
    [8] Giessibl F J. Forces and frequency shifts in atomic resolution dynamic force microscopy. Phys. Rev. B, 1997, 56 (24): 16010-16015.
    [9] Law B M, and Rieutord F. Electrostatic forces in atomic force microscopy. Phys. Rev. B, 2002, 66 (3): 035402.
    [10] Chen C J. Introduction to Scanning Tunneling Microscopy. New York: Oxford University Press, 1993.
    [11] Rugar D and Hansma P. Atomic force microscopy. Phys. Today, 1990, 43 (10): 23-30.
    [12] Giessibl F J, Bielefeldt H, Hembacher S et al. Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy. Appl. Surf. Sci. 1999, 140 (3-4): 352-357.
    [13] Binnig G. Atomic Force Microscope and Method for Imaging Surfaces with Atomic Resolution. US Patent No. 4, 724, 318. 1986.
    [14] McClelland G M, Erlandsson R, and Chiang C. Atomic force microscopy: general principles and a new implementation. Rev. Prog. Quant. Nondestr. Eval. 1987, 6B: 1307-1314.
    [15] Albrecht T R, Akamine S, Carver T E et al. Microfabrication of cantilever styli for the atomic force microscope. J. Vac. Sci. Technol. A, 1990, 8 (4): 3386-3396.
    [16] Karrai K and Grober R D. Piezoelectric tip-sample distance control for near field optical microscopes. Appl. Phys. Lett. 1995, 66 (14): 1842-1844.
    [17] Giessibl F J. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 1998, 73 (26): 3956-3958.[18] Marcus R, Ravi T, Gmitter T et al. Formation of silicon tips with 1 nm radius. Appl. Phys. Lett. 1990, 56 (3) : 236-238.
    [19] Giessibl F J, Hembacher S, Bielefeldt H et al. Imaging silicon with crystallographycally oriented tips by atomic force microscopy. Appl. Phys. A: Matter. Sci. Process, 2001, 72 (1): 15-17.
    [20] Sarid D. Scanning Force Microscopy, 2nd ed. New York: Oxford University Press, 1994.
    [21] Meyer G and Amer N M. Novel optical approach to atomic force microscopy. Appl. Phys. Lett. 1988, 53 (12): 1045-1047.
    [22] Ohnesorge F and Binnig G. True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science, 1993, 260 (5113): 1451-1456.
    [23] Giessibl F J and Binnig G. True atomic resolution on KBr with a low-temperature atomic force microscope in ultrahigh vacuum. Ultramicroscopy. 1992, 42-44: 281-286.
    [24] Schimmel T, Koch T, Kuppers J et al. True atomic resolution under ambient conditions obtained by atomic force microscopy in the contact mode. Appl. Phys. A: Matter. Sci. Process. 1999, 68 (4): 399-402.
    [25] Jarvis S P, Tokumoto H, and Pethica J B. Measurement and interpretation of forces in the atomic force microscope. Probe Microsc. 1997, 1 (1): 65-79.
    [26] Martin Y, Williams C C, and Wickramasinghe H K. Atomic force microscope—force mapping and profiling on a sub 100-A scale. J. Appl. Phys. 1987, 61 (10): 4723-4729.
    [27] Albrecht T R, Grutter P, Horne H K et al. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 1991, 69 (2): 668-673.
    [28] Zhong Q, D Innis, K Kjoller et al. Fractured polymer silica fiber surface studied by tapping mode atomic-force microscopy. Surf. Sci. 1993, 290 (1-2): L688-L692.
    [29] Erlandsson R, Olsson L, and Martensson P, Inequivalent atoms and imaging mechanisms in ac-mode atomic-force microscopy of Si (111) — (7 × 7). Phys. Rev. B, 1997, 54 (12): R8309-R8312.
    [30] Giessibl F J. Atomic resolution of Si (111) — ( 7×7) surface by atomic force microscopy. Science, 1995, 267 (5194): 68-71.
    [31] Burnham N, and Colton R J. Measuring the nanomechanical and surface forces of materials using an atomic force microscope. J. Vac. Sci. Technol. A, 1989, 7 (4) : 2906-2913.
    [32] Giessibl F J. Advances in atomic force microscopy. Rev. Mod. Phys. 2003, 75 (3) : 945-983.
    [33] Synge E H. A suggested method for extending microscopic resolution into the ultramicroscopic region. Phil. Mag. 1928, 6: 356-362.
    [34] Pohl D W, Denk W, and Lanz M. Optical stethoscopy: image recording with resolution A/20. Applied Physics Letter, 1984, 44(7):651—653.[35] Stevenson R and Richards D. The use of a near-field probe for the study of semiconductor heterostructures. Semicond. Sci. Technol. 1998, 13 (8): 882-886.
    [36] Metiu H. ed. Near-field microscopy and spectroscopy. J. Chem. Phys. 2000, 112 (18): 7761-7782.
    [37] Zeisel D, Nettesheim S, Dutoit B et al. Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemical etched fibre tips. Appl. Phys. Lett. 1996, 68 (18): 2491-2492.
    [38] Veerman J A, Otter A M, Kuipers L et al. High-definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling. Appl. Phys. Lett. 1998, 72 (24): 3115-3117.
    [39] James P L, Antognozzi M, Tamayo J et al. Interpretation of contrast in tapping mode AFM and shear-force microscopy. A study of Nafion. Langmuir. 2001, 17 (2): 349-360.
    [40] Hecht B, Bielefeldt H, Inouye Y et al. Facts and artefacts in near-field optical microscopy. J. Appl. Phys. 1997, 81 (6): 2492-2498.
    [41] Zenhausern F, Martin Y, and Wickramasinghe H K. Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution. Science, 1995, 269 (5227): 1083-1085.
    [42] Yang T J, Lessard G A, and Quake S R. An apertureless near-field microscope for fluorescence imaging. Appl. Phys. Lett. 2000, 76 (3): 378-380.
    [43] Wessel J. Surface-enhanced optical microscopy. J. Opt. Soc. Am. B, 1985, 2 (9): 1538-1541.
    [44] Novotny L, Bian R X, and Xie X S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 1997, 79 (4): 645-648.
    [45] Sanchez E J, Novotony L, and Xie X S. Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys. Rev. Lett. 1999, 82 (20): 4014-4017.
    [46] Kramer A, Trabeinger W, Hecht B et al. Optical near-field enhancement at a metal tip probed by a single fluorophore. Appl. Phys. Lett. 2002, 80 (9) : 1652-1654.
    [47] Zayats A V, and Sandoghdar V. Apertureless near-field second-harmonic microscopy. Opt. Commun. 2000, 178 (1-3): 245-249.
    [48] Michaelis J, Hettich C, Mlynek J et al. Optical microscopy using a single-molecue light source. Nature, 2000, 405 (6784): 325-327.
    [49] Kuhn S, Hettich C, Schmitt C et al. Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy. J. Microsc. 2001, 202 (1): 2-6.
    [50] Shubeita G T, Sekatskii S K, Chergui M et al. Investigation of nanolocal fluorescence resonance energy transfer for scanning-probe microscopy. Appl. Phys. Lett. 1999, 74 (23): 3453-3455.[51] Kneipp K, Kneipp H, Itzkan I et al. Surface-enhanced Raman scattering and biophysics. J. Phys. Condens. Matter. 2002, 14 (18): R597-R624.
    [52] Milner R G, and Richards D. The role of tip plasmons in near-field Raman microscopy. J. Microsc. 2001, 202 (1): 66-71.
    [53] Hartschuh A, Sanchez E J, Xie X S et al. High-resolution near-field Raman micrscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 2003, 90: 095503.
    [54] Alessandrini A and Facci P. AFM: a versatile tool in biophysics. Meas. Sci. Technol. 2005, 16: R65-R92.
    [55] Drake B, Prater C B, Weisenhorn A L et al. Imaging crystals, polymers, and processes in water with the atomic force microscope. Science, 1989, 243 (4898): 1586-1589.
    [56] Dai H, Hafner J H, and Lieber C M. Nanotubes as nanoprobes in scanning probe microscopy. Nature, 1996, 384: 147-151.
    [57] Grigg D A, Rusell P E, and Griffith J E. Tip-sample forces in scanning probe microscopy in air and vacuum. J. Vac. Sci. Technol. A. 1992, 10 (4) : 680-683.
    [58] Mate C M, McClelland M, Erlandsson R et al. Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 1987, 59 (17) : 1942-1945.
    [59] Frisbie C D, Rozsnyai L F, Noy A et al. Functional group imaging by chemical force microscopy. Science, 1994, 265 (5181): 2071-74
    [60] Tamayo J and Garcia R. Deformation, contact time, and phase-contrast in tapping mode scanning force microscopy. Langmuir. 1996, 12 (18) : 4430-4435.
    [61] San Paulo A, and Garcia R. High-resolution imaging of antibodies by tapping-mode atomic force microscopy: attractive and repulsive tip-sample interaction regimes. Biophys. J. 2000, 78 (3): 1589-1605.
    [62] Revenko I, and Proksch R. Magnetic and acoustic tapping mode microscopy of liquid phase phospholipids bilayers and DNA molecules. J. Appl. Phys. 2000, 87 (1): 526-533.
    [63] Han W, Lindsay S M, and Jing T. A magnetically driven oscillating probe microscope for operation in liquids. Appl. Phys. Lett. 1996, 69 (26): 4111-4113
    [64] Magonov S N, Elings V, and Whangbo M-H. Phase imaging and stiffness in tapping mode AFM. Surf. Sci. 1997, 375 (2-3): L385-391.
    [65] Cleveland J P, Anczykowski B, Schmid A E et al. Energy-dissipation in tapping-mode atomic-force microscopy. Appl. Phys. Lett. 1998, 72 (20): 2613-2615.
    [66] Tamayo J and Garcia R. Effects of elastic and inelastic interactions on phase-constrast images in tapping-mode scanning force microscopy. Appl. Phys. Lett. 1997, 71 (16): 2394-2396
    [67] Hansma P K et al. Tapping mode atomic force microscopy in liquid. Appl. Phys. Lett. 1994, 64 (13): 1738-1740.
    [68] Moller C, Allen M, Elings V et al. Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces. Biophys. J. 1999, 77 (2): 1150-1158.[69] Stark M, Moller C, Muller D J et al. From images to interactions: high-resolution phase imaging in tapping-mode atomic force microscopy. Biophys. J. 2001, 80 (6): 3009-3018.
    [70] Tamayo J, Humphris A D L, and Miles M J. Piconewton regime dynamic force microscopy in liquid. Appl. Phys. Lett. 2000, 77 (4): 582-584.
    [71] Muller D J, Fotiadis D, Scheuring S et al. Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. Biophys. J. 1999, 76 (2): 1101-1111.
    [72] Bustamante C and Keller D. Scanning force microscopy in biology. Physics Today, 1995, 48 (12): 32-38.
    [73] Samori P, Franke V, Mangel T et al.Poly-para-phenylene-ethynylene assemblies for a potential molecular nanowire: an SFM study. Optical Mat. 1998, 9: 390-393
    [74] Mou J, Czajkowsky D M, Yiyi Z et al. High-resolution atomic-force microscopy of DNA: the pitch of the double helix. FEBS Lett. 1995, 371 (3): 279-282.
    [75] Wagner P. Immobilization strategies for biological scanning probe microscopy. FEBS Lett. 1998, 430 (1-2): 112-115.
    [76] Thomson N H, Kasas S, Smith B et al. Reversible binding of DNA to mica for AFM imaging. Langmuir 1996, 12 (24): 5905-5908.
    [77] Bustamante C, Erie D A, and Keller D. Biochemical and structural applications of scanning force microscopy. Curr. Opin. Struct. Biol. 1994, 4 (5): 750-760.
    [78] Yang J and Shao Z. Effect of probe force on the resolution of atomic force microscopy of DNA. Ultramicroscopy. 1993, 50 (2): 157-170.
    [79] Moreno-Herrero F, Colchero J, and Baro A M. DNA height in scanning force microscopy Ultramicroscopy. 2003, 96 (2): 167-174.
    [80] Rippe K, Mucke N, and Langowski J. Superhelix dimensions of a 1868 base pair plasmid determined by scanning force microscopy in air and in aqueous solution. Nucleic Acids Res. 1997, 25 (9): 1736-44.
    [81] Rippe K, Guthold M, von Hippel P H et al. Transcriptional activation via DNA-looping: visualization of intermediates in the activation pathway of E. coli RNA polymerase x sigma 54 holoenzyme by scanning force microscopy. J. Mol. Biol. 1997, 270 (2): 125 - 38.
    [82] Hoh J H, Lal R, John S A et al. Atomic force microscopy and dissection of gap junctions. Science, 1991, 253 (5026): 1405 - 1408.
    [83] Fotiadis D, Scheuring S, Muller S A et al. Imaging and manipulation of biological structures with the AFM. Micron, 2002, 33 (4): 385 - 397.
    [84] Mou J, Czajkowsky D M, Sheng S et al. High resolution surface structure of E. coli GroES oligomer by atomic force microscopy. FEBS Lett. 1996, 381 (2): 161-164.
    [85] Zhang Y, Sheng S J, and Shao Z. Imaging biological structures with the cryo atomic force microscope. Biophys. J. 1996, 71 (4): 2168-2176[86] Alessandrini A, Gerunda M, Facci P et al. Tuning molecular orientation in protein films. Surf. Sci. 2003, 542 (1): 64-71.
    [87] Schabert F A, Henn C, and Engel A. Native Escherichia coli OmpF porin surface probed by atomic force microscopy. Science. 1995, 268 (5027) 92-4.
    [88] Schillers H, Danker T, Schnittler H J et al. Plasma membrane plasticity of Xenopus laevis oocyte imaged with atomic force microscopy. Cell Physiol. Biochem. 2000, 10 (1-2): 99 - 107.
    [89] Danker T and Oberleithner H. Nuclear pore function viewed with atomic force microscopy. Pflugers Arch. 2000, 439 (6): 671 - 681.
    [90] Dufrene Y F, and Lee G U. Advances in the characterization of supported lipid films with the atomic force microscope. Biochim. Biophys. Acta. 2000, 1509 (1): 14-41.
    [91] Leonenko Z V, Carnini A, and Cramb D T. Supported planar bilayer formation by vesicle fusion: the interaction of phospholipid vesicles with surfaces and the effect of gramicidin on bilayer properties using atomic force microscopy. Biochim. Biophys. Acta. 2000, 1509 (2): 131-47
    [92] Zasadzinski J A N, Helm C A, Longo L M et al. Atomic force microscopy of hydrated phosphatidylethanolamine bilayers. Biophys. J. 1991, 59 (3): 755-760.
    [93] Zhai X, and Kleijn J M. Molecular structure of dipalmitoylphosphatidylcholine Langmuir - Blodgett monolayers studied by atomic force microscopy. Thin Solid Film. 1997, 304 (2): 327-332.
    [94]Rinia H A, Snell M M E, van der Eerden J P et al. Visualizing detergent resistant domains in model membranes with atomic force microscopy. FEBS Lett. 2001, 501 (1): 92-6
    [95] Dufrene Y F, Barger W R, Green J-B D et al. Nanometer-scale surface properties of mixed phospholipids monolayers and bilayers. Langmuir. 1997, 13 (18): 4779-84
    [96] Henderson E R. Imaging living cells by atomic force microscopy. Prog. Surf. Sci. 1994, 46 (1): 39-60.
    [97] Dvorak J A. The application of atomic force microscopy to the study of living vertebrate cells in culture. Methods. 2003, 29 (1): 86-96.
    [98] Putman C A J, van der Werf K O, de Grooth B G et al. Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy. Biophys. J. 1994, 67 (4): 1749-1753.
    [99] Nagao E, and Dvorak J A. Phase imaging by atomic force microscopy: analysis of living homoeothermic vertebrate cells. Biophys. J. 1999, 76 (6): 3289-3297
    [100] Charras G T, and Horton M A. Single cell mechanotransduction and its modulation analysed by atomic force microscope indentation. Biophys. J. 2002, 82 (6): 2970 - 81.[101] Schneider S W, Yano Y, Sumpio B E et al. Rapid aldosterone-induced cell volume increase of endothelial cells measured by the atomic force microscope. Cell. Biol. Int. 1997, 21 (11): 759-68.
    [102] Dufrene Y F. Application of atomic force microscopy to microbial surfaces: from reconstituted cell surface layers to living cells. Micron, 2001, 32(2): 153-65
    [103] Kasas S and Ikai A. A method for anchoring round shaped cells for atomic force microscope imaging. Biophys. J. 1995, 68(5): 1678-1680.
    [104] Dufrene Y F, Boonaert C J P, Gerin P A et al. Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium. J. Bacteriol. 1999, 181(17): 5350-5354
    [105] Ahimou F, Touhami A, and Dufrene Y F. Real-time imaging of the surface topography of living yeast cells by atomic force microscopy. Yeast, 2003, 20(1): 25-30.
    [106] Allison D P, Kerper P S, Doktycz M J et al. Direct atomic force microscope imaging of EcoRI endonuclease site specifically bound to plasmid DNA molecules. Proc. Natl. Acad. Sci. 1996, 93(17): 8826-8829.
    [107] Doktycz M J, Sullivan C J, Hoyt P R et al. AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces. Ultramicroscopy, 2003, 97: 209-216.
    [108] Le Grimellec C, Lesniewska E, Cachia C. Imaging of the Membrane Surface of MDCK Cells by Atomic Force Microscopy. Biophys. J. 1994, 67: 36-41.
    [109] Wu S F, Zhang J, Li Y L et al. Development of AF/PSTM. Proc. SPIE Int. Soc. Opt. Eng. 2002, 4923: 21.
    [110] Courjon D, Sarayeddine K, and Spajer M. Scanning tunneling optical microscopy. Opt. Commun. 1989, 71: 23-28.
    [111] Reddick R, Warmack R, and Ferrell T. New form of scanning optical microscopy. Phys. Rev. B, 1989, 39(1): 767-770.
    [112] 吴世法.近代成象技术与图像处理.北京:国防工业出版社,1997.
    [113] Yao J E, Guo N, Wu S F et al. Photon scanning tunneling microscope and its application. J. Trance Micro-Probe Technol. 1997, 15(4): 621-628.
    [114] 郭宁,夏德宽,吴世法等.光子扫描隧道显微镜(PSTM)的研制与样品显微成像技术.物理,1993,22(12):679-683.
    [115] 吴世法,姚骏恩,简国树等.光子扫描隧道显微镜的进展.光学学报,1998,18(2):191-198.
    [116] 姚骏恩,吴世法,高崧等.一种纳米分辨率近场光学显微镜——光子扫描隧道显微镜.电子显微学报,1997,16(3):222-228.
    [117] Girard C, Joachim C, and Gauthier S. The physics of the near-field. Rep. Prog. Phys. 2000, 63: 893-938.
    [118] Courjon D and Bainier C. Near field microscopy and near field optics. Rep. Prog. Phys. 1994, 57 (10): 989-1028.[119] Born M, and Wolf E. Principles of Optics. Oxford: Pergamon, 1964.
    [120] Balcou P, and Dutriaux L. Dual Optical Tunneling Times in Frustrated Total Internal Reflection. Phys. Rev. Lett. 1997, 78(5): 851-854.
    [121] Pohl D, and Courjon D, ed. Near-Field Optics (NATO ASI vol E 242). Dordrecht: Kluwer, 1993.
    [122] Jung L D, Campbell C T, Chinowsky T M et al. Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films. hangmuir, 1998, 14(19): 5636-5648.
    [123] Landragin A, Courtois J-Y, Labeyrie G et al. Measurement of the van der Waals Force in an Atomic Mirror. Phys. Rev. Lett. 1996, 77(8): 1464-1467.
    [124] Esslinger T, Weidemuller M, Hemmerich A et al. Surface-plasmon mirror for atoms. Opt. Lett. 1993, 18(6): 450-452.
    [125] Iftiquar S M. Application of photon scanning tunneling microscope to measure optical near field for atom manipulation. Ultramicroscopy, 2005, 103: 109-115.
    [126] Van Labeke D, and Barchiesi D. Scanning-tunneling optical microscopy: a theoretical macroscopic approach. J. Opt. Soc. Am. A, 1992, 9(5): 732-9.
    [127] Girard C, and Dereux A. Near-field optics theories. Rep. Prog. Phys. 1996, 59(5) 657-699.
    [128] Greffet J-J, and Carminati R. Image formation in near-field optics. Prog. Surf, Sci 1997, 56(2): 133-237.
    [129] Landau L D, and Lifshitz E M. Field Theory 3rd edn. London: Pergamon, 1960.
    [130] 吴世法.光子隧道扫描图像分解方法[P],中国发明专利,ZL93 1 04111.299,1993-03-8(申请日),1999-07-09(授权日).
    [131] Bainier C, Courjon D, and Baida F. Evanescent interferometry by scanning optical tunneling detection. J. Opt. Soc. Am. A, 1996, 13(2): 267-275.
    [132] 吴世法.原子力与光子扫描隧道组合显微镜图像分解方法[P],中国发明专利,ZL96 1 11979.9,1996-09-03(申请日),2002-07-31(授权日).
    [133] Valaskovic G A, Holton M, and Morrison G H. Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes. Appl. Opt. 1995, 34(7): 1215-1228.
    [134] Zeisel D, Nettesheim S, Dutoit B et al. Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips. Appl. Phys. Lett. 1996, 68(18): 2491-2492.
    [135] 徐凯,潘石,吴世法等.热拉伸和化学腐蚀相结合制备弯光纤尖.物理学报.2003,52(5):1190-1195.
    [136] Lee P F, Pan S, Wu S F et al. Fabrication of a brush-shaped curvy fiber probe for Near-Field optics by heated pulling combined with chemical etching, China NAN02005, Beijing, China, June 9-11, 2005, 3P-133-281.[137] Courjon D. Near-field microscopy and near-field Optics. London: Imperial College Press, 2003.
    [138] 1996-99 Digital Instruments Veeco Metrologh Group. Multimode~(TM) SPM instruction manual. Version 4. 31ce.
    [139] Harris C M, and Crede C E, ed. Shock and vibration handbook. New York: McGraw-Hill, c1976.
    [140] Li Y L, Wu S F, Li P F et al. Tapping mode atomic force microscope combined with reflection scanning near-field optical microscope (AF/RSNOM). Opt. Commun. 2006, 258(2): 275-279.
    [141] 翟玉梅,李培军、赵晶等.海湾扇贝生殖腺的研究,河北大学学报(自然科学版),1996,16(5):5-9.
    [142] Ashkin A, Dziedzic J M, Bjorkholm J E et al. Observation of a Single Beam Gradient Force Optical Trap for Dielectric Particles. Opt. Lett. 1986, 11(5): 288-290.
    [143] E. F. Nichols and G. F. Hull, Phys. Rev., vol. 13, p. 293, 1901.
    [144] P. N. Lebedev. Untersuchungen uber die Druckkrafte des Lichtes. Annalen der Physik, 1901, 6: 433.
    [145] Ashkin A. Trapping of atoms by resonance radiation pressure. Physical Review Letters, 1978, 40(12): 729-732.
    [146] Chu S. Laser manipulation of atoms and particles. Science, 1991, 253(5.22): 861-866.
    [147] Chu S. Laser trapping of neutral particles. Scientific Americans, 1992, 266; 2: 49-54.
    [148] Ashkin A. Acceleration and trapping of particles by radiation pressure. Physical Review Letters, 1970, 24(4): 156-159.
    [149] Ashkin A, and Dziedzic J M. Optical Levitation by Radiation Pressure. Appl. Phys. Lett. 1971, 19(8): 283-285.
    [150] Ashkin A, and Dziedzic J M. Stability of Optical Levitation by Radiation Pressure. Appl. Phys. Lett. 1974, 24(12): 586-588.
    [151] Ashkin A, and Dziedzic J M. Optical Levitation in High Vaccuum. Appl. Phys. Lett. 1976, 28(6): 333-335.
    [152] Ashkin A, and Dziedzic J M. Feedback Stabilization of Optically Leviated Particles. Appl. Phys. Lett. 1977, 30(4): 202-204.
    [153] Ashkin A. Applications of Laser Radiation Pressure. Science, 1980, 210 (5): 1081-1088.
    [154] Ashkin A, Dziedzic J M. Observation of radiation-pressure trapping of particles by alternating light beams. Physical Review Letters, 1985, 54 (12): 1245-1248.
    [155] Ashkin A. Trapping of Atoms by Resonance Radiation Pressure. Phys. Rev. Lett. 1978, 40 (12): 729-732.
    [156] Chu S, Bjorkholm J E, Cable A et al. Experimental Observation of Optically Trapped Atoms. Phys. Rev. Lett. 1986, 57 (3): 314-317.[157] BurnsMM, Fournier J-M, and Golovchenko J A. Optical binding. Physical Review Letters, 1989, 63 (12): 1233-1236.
    [158] Denk W, and Webb W W. Optical measurements of picometer displacements of transparent microscopic objects. Appl. Opt. 1990, 29 (16): 2382-2391.
    [159] Smith SB, Cui Y, and Bustamante C. Optical-Trap Force Transducer that Operates by Direct Measurement of Light Momentum. Methods in Enzymology, 2003, 361:134-162.
    [160] Happel J, and Brenner H. Low Reynolds Number Hydrodynamics. 2nd ed. Dordecht, the Netherlands: Kluwer Aeademic. 1991, 553 pp.
    [161] Brennen C, and Winet H. Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 1977, 9:339-98.
    [162] Gittes F, and Schmidt C. Signals and Noise in Micromechanical Measurements. Methods in Cell Biology, 1998, 55: 129-156.
    [163] Bechhoefer J, and Wilson S. Faster, cheaper, safer optical tweezers for the undergraduate laboratory. Am. J. Phys. 2002, 70 (4): 393-400.
    [164] Ashkin A, Dziedzic J M. Optical trapping and manipulation of viruses and bacteria. Science, 1987, 235 (4795): 1517-1520.
    [165] Ashkin A, Dziedzic JM, and Yamane T. Optical trapping and manipulation of single cells using infrared-laser beams. Nature, 1987, 330 (24): 769-771.
    [166] Shingyoji C, Higuchi H, Yoshimura M et al. Dynein arms areoscillating force generators. Nature, 1998, 393 (6703): 711-714.
    [167] Svoboda K, Schmidt C F, Schnapp B J et al. Direct observation of kinesin stepping by optical trapping interferometry. Nature, 1993, 365 (6448): 721-727.
    [168] Finer JT, Simmons RM, and Spudich JA. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature, 1994, 368 (6467): 113-119.
    [169] Yin H, Wang M D, Svoboda K et al. Transcription against an applied force. Science, 1995, 270 (5242): 1653-1657.
    [170] Wang M D, Schnitzer M J, Yin H et al. Force and velocity measured for single molecules of RNA polymerase. Science, 1998, 282 (5390) : 902-907.
    [171] Block S M, Blair D F, and Berg H C. Compliance of bacterial flagella measured with optical tweezers. Nature, 1989, 338 (6215): 514-518.
    [172] Berry R M, and Berg H C. Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers. Proceedings of the National Academy of Sciences, 1997, 94 (26) : 14433-14437
    [173] Noji H, Yasuda R, Yoshida M et al. Direct observation of the rotation of F1-ATPase. Nature, 1997, 386 (6622): 299-302.
    [174] Yasuda R, Noji H, Kinosita Jr K et al. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 steps. Cell, 1998, 93 (7): 1117-1124.[175] Smith S B, Cui Y, and Bustamante C. Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science, 1996, 271 (5250): 795-799.
    [176] Berns M W, Wright W H, Tromberg B J et al. Use of a laserinduced optical force trap to study chromosome movement on the mitotic spindle. Proceedings of the National Academy of Sciences, 1989, 86 (12):4539-4543.
    [177] Laing H, Wright W H, He W et al. Micromanipulation of mitotic chromosomes in PTK2 cells using laser-induced optical forces ('optical tweezers'). Experimental Cell Research, 1991, 197 (1):21-35.
    [178] Laing H, Wright W H, Cheng S et al. Micromanipulation of chromosomes in PTK2 cells using laser microsurgery (optical scalpel) in combination with laser-induced optical forces (optical tweezers). Experimental Cell Research, 1993, 204 (1):110-120.
    [179] Laing H, Wright W H, Rieder C L et al. Direct movement of chromosome arms and fragments in mitotic newt lung cells using optical scissors and optical tweezers. Experimental Cell Research, 1994, 213 (1): 308-312.
    [180] Ashkin A. Forces of a single-bean gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 1992, 61(2): 569-582.
    [181] Barton J P, and Alexander D R. Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam. J. Appl. Phys. 1989, 66 (7): 2800-2802.
    [182] Barton J P, Alexander D R, and Schaub S A. Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam. J. Appl. Phys. 1989, 66 (10): 4594-4602.
    [183] Wright W H, Sonek G J, and Berns MW. Radiation trapping forces on microspheres with optical tweezers. Appl. Phys. Lett. 1993, 63 (6): 715-717
    [184] Kerker M. The Scattering of Light and Other Electromagnetic Radiation, pp. 32-37. New York, NY: Academic, 1969.
    [185] Gordon J P. Radiation forces and momenta in dielectric media. Phys. Rev. A, 1973, 8 (1): 14-21.
    [186] Visscher K, Brakenhoff GJ. Theoretical study of optically induced forces on spherical particles in a single beam trap I : Rayleigh scatters. Optik. 1992, 89(2): 174-180.
    [187] Chaumet P C, and Nieto-Vesperinas M. Time-averaged total force on a dipolar sphere in an electromagnetic field. Opt. Lett. 2000, 25 (15): 1065-1067.
    [188] Chaumet P C, and Nieto-Vesperinas M. Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate. Phys. Rev. B, 2000, 61 (20): 14119-14127.
    [189] Harada Y, and Asakura T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt. Commun. 1996, 124 (5-6): 529-541.[190] Rohrbach A, and Stelzer E H. Trapping Forces, Force Constants, and Potential Depths for Dielectric Spheres in the Presence of Spherical Aberrations. Appl. Opt. 2002, 41 (13): 2494-2507.
    [191] Rohrbach A, and Stelzer E H. Optical trapping of dielectric particles in arbitrary fields. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2001, 18 (4): 839-853.
    [192] Wright WH, Sonek GJ, Tadir Y et al. Laser trapping in cell biology. IEEE J. Quantum Electron. 1990, 26 (12): 2148-2157.
    [193] Bakker Schut T C, Hessenlink G, de Grooth BG et al. Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps. Cytometry. 1991, 12(6): 479-485.
    [194] Gussgard R, Lindmo T, and Brevik I. Calculation of trapping force in a strongly focused laser beam. Journal of Opti. Soc. Am. 1992, 9 (10): 1922-1930.
    [195] Visscher K, and Brakenhoff GJ. Theoretical study of optically induced forces on spherical particles in a single beam trap Ⅱ: Mie scatters. Optik. 1992, 90(2): 57-60.
    [196] Roosen G, and Imbert C. Optical levitation by means of two horizontal laser beams: a theoretical and experimental study. Physics Letters A, 1976, 59 (1): 6-8
    [197] DavisLW. Theory of electromagnetic beams. Physical Review A, 1979, 19 (3): 1177-1179.
    [198] Siegmann A E. Laser. Mill Valley, CA: University Science. 1986.
    [199] Jackson J D. Classical Electrodynamics, p. 239. New York, NY: Wiley. 2nd ed. 1975.
    [200] Ren K F, Greha G, and Gouesbet G. Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects. Opt. Commun. 1994, 108: 343-354.
    [201] Gouesbet G, Maheu B, and Grehan G. Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation. J. Opt. Soc. Am. A Opt. Image Sci. Vis.1988, 5 (9) : 1427.
    [202] Nahmias Y K, and Odde D J. Analysis of radiation forces in laser trapping and laser-guided direct writing applications. IEEE Journal of Quantum Electronics, 2002, 38 (2): 131-141.
    [203] Schneider M, and Webb W W. Measurement of submicron laser beam radii. Applied Optics, 1981, 20 (8): 1382-1388.
    [204] Collett W L, Ventrice C A, and Mahajan S M. Electromagnetic wave technique to determine radiation torque on micromachines driven by light. Appl. Phys. Lett. 2003, 82 (16): 2730-2732.
    [205] Zhang D, Yuan X-C, Tjin S C et al. Rigorous time domain simulation of momentum transfer between light and microscopic particles in optical trapping. Opt. Express, 2004, 12 (10): 2220-2230.[206] Zakharian A R, Mansuripur M, and Moloney J V. Radiation pressure and the distribution of electromagnetic force in dielectric media. Opt. Express, 2005, 13 (7): 2321-2336.
    [207] Gauthier R C. Computation of the optical trapping force using an FDTD based technique. Opt. Express, 2005, 13 (10): 3707-3718.
    [208] Yee K S. Numerical solution of initial boundary value problems involving Maxwell's eqution in isotropic media. IEEE Trans. Antennas and Propagat. 1966, 14: 302-307.
    [209] Taflove A, and Hagness S C. Computational Electrodynamics: The Finite-Difference Time-Domain Method 2~(nd) ed. (Artech House, Boston, 2000).
    [210] Kunz K S, and Luebbers R J. The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, 1993).
    [211] Taflove A, and Brodwin M E. Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell' s equations. IEEE Transactions on Microwave Theory and Techniques, 1975, 23 (8): 623-630.
    [212] Blaschak J, and Kriegsmann G. A Comparative Study of Absorbing Boundary Conditions. Journal of Computational Physics, 1988, 77 (1): 109-139.
    [213] Mur G. Absorbing boundary conditions for the finite-diference approximation of the time-domain electromagnetic-field equations. IEEE Tansactions on Electromagnetic Compatibility, 1981, EMC-23: 377-382.
    [214] Liao Z P, Wong H L, Yang B et al. A transmitting boundary for transient wave analysis. Sci. Sin., Ser. A, 1984, 27 (10) : 1063-1076.
    [215] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 1994, 114 (2): 185-200.
    [216] Sacks Z S, Kingsland D M, Lee D M et al. A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans. Antennas Propagat. 1995, AP-43 (12): 1460-1463.
    [217] Gedney S D. An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices. IEEE Trans. Antennas Propagat. 1996, AP-44 (12): 1630-1639.
    [218] Richards B, and Wolf E. Electromagnetic diffraction in optical systems Ⅱ. Structure of the image field in an aplantic system. Pro. R. Soc. London Ser. A, 1959, 253: 358-379.
    [219] Sheppard C J R. Approximate forms for diffraction integrals in high numerical aperture focusing. Optik, 1997, 105 (2): 77-82.
    [220] Sheppard C J R. High-aperture beams. J. Opt. Soc. Am. A, 2001, 18 (7): 1579-1587.
    [221] Ichimura I, Hayashi, and Kino G S. High-density optical recording using a solid immersion lens. Applied Optics, 1997, 36 (19): 4339-4348.
    [222] Challender W A, Sendur I K, and Peng C. Scattered field formulation of finite difference time domain for a focused light beam in dense media with lossy materials. Opt. Express, 2003, 11 (23): 3160-3170.[223] NeumanKC, and Block S M. Optical trapping. Rev. Sci. Instrum. 2004, 75 (9): 2787-2809.
    [224] Malagnino N, Pesce G, Sasso A et al. Measurements of trapping efficiency and stiffness in optical tweezers. Opt. Commun. 2002, 214: 15-24.
    [225] Nieminen T A, Rubinsztein-Dunlop H, Heckenberg N R et al. Numerical modeling of optical trapping. Computer Physics Communications, 2001, 142: 468-471.
    [226] Lynn Paterson. Novel micromanipulation techniques in optical tweezers: (A thesis for the degree of Doctor of Philosophy). Scotland: University of St Andrews, 2003.
    [227] Chang Y-R, Hsu L, Chi S. Optical trapping of a spherically symmetric rayleigh sphere: a model for optical tweezers upon cells. Optics Communications, 2005, 246: 97-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700