电极性能改善及其在染料敏化太阳电池中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,染料敏化太阳电池(DSC)因原材料价格低廉,工艺简单,转换效率较高,应用前景广泛,被认为是具有高性价比的新一代太阳电池,而引起世界各国的广泛关注。在提高染料敏化太阳电池光电转换效率的同时,进一步降低电池的制造成本,是本领域当前国际研究的热点。本论文针对染料敏化太阳电池的光阳极和对电极制造过程中出现的问题,提出了新型成膜剂—聚乙烯吡咯烷酮(PVP)制备高致密性TiO2薄膜,采用新结构构建对电极,拟在降低材料成本、提高薄膜成品率的同时,进一步提高玻璃基底染料敏化太阳电池的转换效率。本论文的主要研究工作如下:
     1.高致密性TiO2薄膜的研究
     本文采用刮涂和高温烧结相结合的方法在玻璃基底上制备纳米TiO2薄膜。在TiO2料的制备中,针对常规纳米Ti02薄膜易出现裂纹等缺陷的问题,提出采用新型成膜剂—PVP制备纳米TiO2薄膜。首先进行了不同PVP系列对Ti02薄膜特性及其电池性能影响的研究,优选出K30系列PVP成膜剂;然后针对优选出的K30系列PVP与常用粘结剂—乙基纤维素(M70)进行对比实验,探寻最优成膜剂。以期在宏观上减少Ti02薄膜的裂缝,从而降低染料敏化电池的暗电流;在微观上增加TiO2薄膜孔隙率,从而增加单层染料分子的吸附量,提高光生电子数,增加短路电流,使电池效率进一步提高。为增加光在TiO2薄膜中的散射,开展了400nm大颗粒层和不同尺寸的Ti02颗粒对TiO2薄膜性能及电池性能影响的研究。
     2.对电极结构的研究
     对电极在染料敏化太阳电池中是不可或缺的一部分。目前多采用镀铂的对电极,即采用不同方法将铂镀在导电玻璃上。本论文尝试引入高反射率、高电导率的金属铝、银,与具有高催化特性的铂结合,形成新型对电极结构,以期改善染料敏化电池的光利用率,进一步提高电池效率。
     在保持铂催化功能的前提下,尽可能减薄铂膜的厚度,降低电池成本。但对电极的导电和光反射特性将降低。为此,提出两种新型对电极结构。第一种由基底材料、铝薄膜和其上的铂薄膜构成。此新型对电极具有如下优点:1)基底材料的选择更自由,可以是普通玻璃、塑料、不锈钢等;2)铝的电导率高,可显著降低电池串联电阻,改善欧姆接触;3)铝的价格便宜;4)铝膜制备工艺简单、沉积温度低、沉积速率高;5)铝薄膜对可见光具有高反射率,可增加光程,提高太阳光利用率。在对新型对电极特性及其对电池性能影响的初步研究后,发现金属铝等不耐电解液的腐蚀问题。为此,本论文提出了系列改进措施。
     针对热分解法制备的铂层较薄、呈透明的特点,提出第二种新型对电极结构。其由铂、基底材料和高反射性的金属(铝、银)构成。该结构可将未被染料分子充分吸收而透过透明铂薄膜的部分太阳光,由金属铝或银薄膜将之反射回染料敏化电池中,从而提高太阳光的利用率,改善电池特性。而且,该结构也解决了上述第一种新型对电极结构中金属铝等不耐电解液腐蚀的问题。本论文针对第二种新型对电极,进行了其对电池性能影响的初步研究。
     3.以FTO导电玻璃为衬底、用PVP做成膜剂制备的染料敏化太阳电池的光电转换效率为6.37%。将提出的第一种新型对电极用于DSC中,电池效率由3.46%提高到7.07%,同样,背面蒸发金属银制备的第二种新型对电极组成DSC的效率增幅最大,由4.39%提高到6.05%。
Due to the low cost, easy to fabricate, highly photovoltaic conversion efficiency, and wide applications prospects, Dye sensitized solar cells (DSC) have been intensively studied all over the world during the last decade. It is an international research focus that the DSC' efficiency is improved and the production cost is reduced at the same time. In this paper, we considered a question appearing in the process of photo anode and counter electrode and proposed a new type of filmogen-Poly vinyl pyrrolidone(PVP). Highly compact TiO2 thin films were prepared with a new type filmogen, Poly vinyl pyrrolidone(PVP). It was found that new type of counter electrode can improve the conversion effiency of glass subtrate DSC. Main researches in my paper are as follows:
     1. Researches on highly compact TiO2 thin films
     In this paper, TiO2 thin films were prepared on conductive glass with methods of doctor blade and high temperature sintering. In the preparation process of TiO2 pastes, a new kind of filmogen (PVP) was proposed directing at solving the crash of TiO2 thin films. First, different series of PVPs influenced the quality of TiO2 thin films and solar cells' performances, which aimed to seek the best series filmgen, that is to say, K30 series PVP. Second, TiO2 thin films were prepared by different filmogens such as M70 or K30 PVP, which were compared in order to seek the optimum filmogen, that is to say, looking for TiO2 thin films that can reduce cracks from view of macroscopy. In view of microscopy, increasing the absorption of single layer dyes, enhancing the number of photo-electronics and improve short circuit and solar cell' efficiency. In order to increase light scattering in TiO2 thin films, we analyzed how 400nm large particles layer and different size TiO2 particles influenced quality of TiO2 thin films and performances of solar cells.
     2. Researches on improving counter electrode
     Counter electrode was a part of vital importance in DSC. Now the platinum counter electrode on conductive glass is often prepared by different preparation methods. In this paper, high reflective and conductive metal, such as aluminum or silver were drawn into counter electrode, which composed new types counter electrode, in order to raise light use ratio and solar cells' efficiency.
     In the premise of keeping the platinum catalysis, the thickness of platinum was reduced, however, the reflectance and conduction of counter electrode was also reduced. For this reason, two types of counter electrodes were proposed. First, a new type of counter electrode consisting of glass substrate, aluminum film and platinum film was proposed. The advantages of this kind of counter electrode are as follows:1) Substrate materials can be selected in a wide range, such as general glass, plastic and stainless steel.2) The high conductivity of aluminum can significantly reduce series resistance of DSC and improve ohmic contact.3) The cost of aluminum is much cheaper.4) The deposition of aluminum film is a process, which is very easy, low temperature, high deposition rate.5) Aluminum has high reflectance to visible light, which can make incident light reflect on the TiO2 layer again and improve the utilization of sunlight. But due to the strong causticity of electrolytes, some measures are proposed.
     According to the characteristic of thin and transparent platinum by a method of thermal decomposition, a new structure of counter electrode, which was formed by platinum thin film, FTO, glass, and silver thin film or silver nanoparticles, was proposed. This new structure that coated with a layer of silver or aluminum on the back side of conductive glass, can obviously make more use of sunlight and increase the short-circuit current. It was evident that this new structure of counter electrode only utilized the reflectance of silver and had no effect on improving conductance of the counter electrode. The second type of counter electrode resolves the strong causticity of electrolytes about the first counter electrode. For the second new type of counter electrode, its influence on solar cell' performances were researched. 3. Final, the efficiency of DSC based on conductive FTO glass was 6.37%. The first new type of counter electrode was proposed, which applied for DSC and improved solar cells'efficiency from 3.46% to 7.07%. And then the second new type of counter electrode that metal silver was evaporated onto back of conductive glss, was proposed to use in DSC and increase DSC' efficiency from 4.39% to 6.05%.
引文
[1]中国可再生能源发展项目办公室.中国光伏产业发展研究报告.2004
    [2]http://www.nrel.gov
    [3]任家生.太阳能的利用与发展.电子器件,1996,19(4):292-297
    [4]赵玉文.太阳电池新进展.物理学与新能源材料专题,2004,33(2):99-105
    [5]Goetzberger A, Heblinga C, Schock H W. Photovoltaic materials, history, status and outlook. Mat Sci Eng R,2003,40:1
    [6]Oregan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 film. Nature,1991,353:737-740
    [7]张晓丹,“器件质量级微晶硅薄膜及高效微晶硅太阳能电池制备的研究”:[博士论文]天津:南开大学光电子所,2005
    [8]黄锡坚等编著,《硅太阳能电池及其应用》,中国铁道出版社,1985年,P30-59
    [9]何宇亮,陈光华等.《非晶态半导体物理学》,高等教育出版社,1989年,P56
    [10]Dai Songyuan, Wang Jian, Sui Yifeng. et al. Dye-sensitized solar cell, from cell to module. Sol Energ Mat Sol C,2004,84:125-133
    [11]黄春辉,李富友,黄岩谊.光电功能超薄膜.北京:北京大学出版社,2001.305
    [12]Jean M, Nunzi C R. Organic photovoltaic materials and devices. Physique,2002, 3(4):523-542
    [13]孔凡太,戴松元.染料敏化太阳电池研究进展.化学进展,2006,18(11):1409-1424
    [14]孟庆波,林原,戴松元.染料敏化纳米晶薄膜太阳电池.物理,2004,33(3):177-183
    [15]戴松元,王孔佳等.纳米晶体化学太阳电池的研究.太阳学报,1997,18(2):228-232
    [16]Seigo Ito, Michael Gratzel. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin solid films,2007.05.090
    [17]Ma T L, Kida T, Akiyama M, et al. Preparation and properties of nanostructured TiO2 electrode by a polymer organic medium screen printing technique. Electro-chem. Common, 2003,4:369-372
    [18]Xiaobo Chen, Samuel S. Mao. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications. Chem. Rev.2007,107,2891-2959
    [19]胡林华,戴松元,王孔嘉.纳米TiO2多孔膜的微结构对染料敏化纳米薄膜太阳电池性能的影响.物理学报,2005,54(4):1914
    [20]曾隆月,戴松元,王孔嘉.染料敏化纳米薄膜太阳电池TiO2薄膜的研究进展.太阳能学报,2005,26(4):589-596
    [21]赵勇,盛显良,翟锦.染料敏化太阳电池中TiO2光阳极研究进展.化学进展,2006,18:1452-1459
    [22]Tsoukleris D S, Arabatzis I M, Chatzivasiloglou E, et al.2-Ethyl-1 hexagon based screen-printed titanium thin film for dye-sensitized solar cell. Sol. Energy,2005, 79:422-430
    [23]Nazeeruddin M K, Kay A, Rodicio I. Conversion of light to electricity by cis-X2 bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X=Cl-,Br-.I-,CN-,and SCN-) on nano-crystalline titanium dioxide electrodes. J. Am. Chem. Soc,1993,115(14):6382
    [24]梁茂,陶占良,陈军.染料敏化太阳能电池中的敏化剂.化学通报,2005,12:889-896
    [25]Nazeeruddin M K, Angelis F D, Fantacci S, et al. Combined experimental and DFT-TDDFT computational study of photo-electrochemical cell ruthenium sensitizers. J. A. m. Chem. Soc,2005,127:16835-16847
    [26]Papageorgiou N, Maier W F, Gratzel M. An iodide/triiodide reduction electrocatalyst for aqueous and organic media. Electrochem soc,1997,144(3):876-884
    [27]Klaus Schwarzburg, Frank Wilig. Diffusion impedance and space charge capacitance in the nanoporous dye-sensitized electrochemical solar cell. J Phys Chem B,2003,107:3552-3555
    [28]Shi Chengwu, Dai Songyuan and Kongjia. et al. Influence of 1-methyl-3-pmpyl-infidazolium iodide on I-/I3-red ox behavior and photovoltaic performance of dye-sensitized solar cells. Sol Energy Mat.Solc,2005,86:527-535
    [29]Anneke Hauch, Andreas Georg. Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. electrochimica,2001,3457-3466
    [30]G. Sasi Kumar, M.Raja and S. Parthasarathy. High performance electrodes with very low platinum loading for polymer electrolyte fuel cells. Electrochimica Acta,1995, 40(3):285-290
    [31]Stoychev D, Papoutsis A, Kelaidopoulou A, et al. Electrode position of platinum on metallic and nonmetallic substrates selection of experimental conditions. Materials Chemistry and Physics,2001,72:360-365
    [32]姜春华,胡宇宁,万发荣等.染料敏化纳米晶体Ti02太阳能电池的对电极结构.感光科学与光化学,2006,24(5):325-334
    [33]Melissa Penny, Troy Farrell, Geoffrey Will. Modelling interfacial charge transfer in dye-sensitised solar cell. Photochemistry,2004, (164):41-46
    [34]Barnard A S and Curtiss L A. Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Letters,2005,5(7):1261-1266
    [35]Zhao G, Kozuka H, Lin H, Takahashi M, Yoko T. Preparation and photoelectrochemical properties of Ti1-xVxO2 solid solution thin film photoelectrodes with gradient bandgap. Thin Solid Films,1999,340:125-131
    [36]GratzelM, Concersion of Sunlight to Electric Power by Hanocrystalline Dye Sensitized Solar Cell. Photochenistry and Photobiology, Chemistry,2004,164:3-14
    [37]M. Spaeth JVR, P. Sommeling et al. Dye-sensitized solar cells from laboratory scale to pre-pilot stage.3rd WCPEC,2003, Osaka
    [38]戴松元,王孔嘉,隋毅峰,翁坚等.大面积染料敏化纳米薄膜太阳电池的研制.太阳能学报,2004,25:807-810
    [39]Han L CY, Islam A, et al.16th International Conference of Photochemical Conversion and Solar storage,2006:211
    [40]Arakawa H YT, Takeuchi A. Photovoltaic Energy Conversion. Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Vols 1 and 2,2006, 1
    [41]Kenichi O, Hiroshi M, Takuya K, Tetsuya E, Nobuo T. 100mm×100mm large-sized dye sensitized solar cells. Journal of Photochemistry and Photobiology A:Chemistry,2004, 164:193-198
    [42]姚启钧原著,华东师范大学《光学》教材编写组改编,光学教程.北京:人民教育出版社,1981,522
    [43]张苑,蔡宁,赵颖等.TritonX-100对染料敏化太阳电池性能影响的研究.影像科学与光化学,2008,26(2):125-130
    [44]远存达,蔡宁,赵颖等.染料敏化太阳电池工艺参数的优化.人工晶体学报,2009,38(1):54-59
    [45]McConnell R D. Assessment of the dye sensitized solar cell. Renewable and SustainableEnergy Reviews,2002,6:273-295
    [46]http://www.bb.ustc.edu.cn/jpkc/guojia/dxwlsy/kj/part1/pdf/smdj.pdf
    [47]http://www.emroom.cn/forumdisplay.php?fid=27
    [48]http://www.hbh-kytj.com/upfile/distanttrainpdf/141.pdf
    [49]http://202.198.133.32/fxhx/ppt/2_3.ppt
    [50]Zhang Q, Gao L, Guo J, et al. Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Applied Catalysis B.2000,26(3): 207-215
    [51]范乐庆,吴季怀,林建明等.染料敏化太阳能电池的二氧化钛膜性能研究.感光科学与光化学.2003,21(3):231-235
    [52]远存达,赵颖,蔡宁等.TiC14处理对Ti02薄膜显微结构以及染料敏化太阳电池性能的影响.人工晶体学报.2008,37(5):1132-1135
    [53]Hu Linhua, Dai Songyuan, Wang Kongjia. Influence of particle coordination number in nanoporous TiO2 films on the performance of dye-sensitized solar cell modules.2005, 22(2):493-495
    [54]Christophe J, Yu J C, Yu J G, Ho W K, et al. Effects of F-doping on the photocatalytic activity and micro-structures of nanocrystalline TiO2 powders. Chemistry of Materials, 2002,14(9):3808-3816
    [55]M K Nazeeruddin, P Pechy, T Renouard et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. Am. Chem. Soc,2001,123(8): 1613-1624
    [56]胡智学,戴松元,王孔嘉,徐轶达.染料在纳米TiO2薄膜表面吸附性能的研究.化学研
    究与应用,2002,14(3):277-279
    [57]Gratzel M, et al. Nanocrystalline titanium oxide electrodes for photovoltaic application. Journal of the American Chemical Society,1997,80(12):3157-3171
    [58]Andreas Kay and Michael Gratzel. Dye-Sensitized Core-Shell Nanocrystals:Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide. Chem. Mater,2002,14(7):2930-2935
    [59]Anders Hagfeldt, Michael Gratzel. Light induced redox reaction in nanocrystalline systems. Chemical Reviews,1995,95(1):49-68
    [60]Kambe S, Nakade S, Kitamura T, et al. Influence of the electrolytes on electron transport in mesoporous TiO2-electrolyte systems. Phys. Chem. B,2002,106(11):2967-2972
    [61]H Lindstrom, H Rensmo, S Sodergren et al. Electron transport properties in dye-sensitized nanoporous nanocrystalline TiO2 films. Phys. Chem,1996,100(8):3084-3088
    [62]Hara K, Horiguchi T, Kinoshita T, et al. Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells. Solar Energy Materials and Solar Cells,2001,70(2):151-161
    [63]A. Hinsch, J. M. Kroon, R. Kern, et al. Long term stability of dye sensitized solar cell. Prog. Photovolt:Res.Appl.2001,9:425-438
    [64]Barbe C J, Arendse F, Comte P, et al. Nanocrystalline titanium oxide electrodes for photovoltaic application. Journal of the American Ceramic Society,1997, 80(12):3157-3171
    [65]Park NG, Vande Logemant, Frand A, J, Comparison of dye-sensitized rutile and anatase-based TiO2 solar cells. Phys chem.B,2000,104(38):8989-8994
    [66]Jiang K J, Kitamura T, Yin H, et al. Dye sensitized solar cells using brookite nanoparticle TiO2 films as electrodes. Chemistry Letters,2002,31(9):872
    [67]倪萌,Leung M K H, Leung D Y C.染料敏化太阳电池光阳极厚度的研究.电源技术,2006,30(11):917
    [68]Takurou N, Murakami, Michael Gratzel. Counter electrodes for DSC:Application of functional materials as catalysts. Inorganica Chimica Acta,2008,361:572-580
    [69]Stoychev D, Papoutsis A, Kelaidopoulou A, et al. Electrode position of platinum on metallic and nonmetallic substrates-selection of experimental conditions. Materials Chemistry and Physics,2001,72:360-365
    [70]Yan S L, Moriyama T, Uchida H, et al. In situ STM observation with atomic resolution on platinum film electrodes formed by a sputtering method. Chem Commun,2000:2279-2280
    [71]Papageorgiou N, Maier W F, Gratzel M. An iodide/triiodide reduction electrocatalyst for aqueous and organic media. Electrochem soc,1997,144(3):876-884
    [72]陈今茂,马玉涛,王桂强等.纳晶敏化太阳能电池中铂修饰对电极的一种新制法.科学通报,2005,50(1):28-31
    [73]方晓明,张正国,马婷丽.染料敏化纳米薄膜太阳电池的新型对电极研究.太阳能学报,2006,27(2):111-115
    [74]G. Sasi Kumar. M. Raja and S. Parthasarathy. High performance electrodes with very low platinum loading for polymer electrolyte fuel cells. Electrochimica Acta.1995,40(3): 285-290
    [75]Carl A Marrese. Preparation of strongly adherent platinum black coatings. Anal. Chem.1987,59(1):217-218
    [76]Takurou N. Murakamia and Michael Gratzel. Counter electrodes for DSC:Application of functional materials as catalysts. Inorganica Chimica Acta.2008,361(3):572-580
    [77]Xiaoming Fang, Tingli Ma, Guoqing Guan, et al. Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell. Journal of Electroanalytical Chemistry,2004,570(2):257-263

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700