生物质热解气白云石催化重整的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质的热解气化是利用生物质能的一个重要手段,也是将生物质能转换成高品位能源的一个重要方法。生物质热解产生的气体主要包括CO、H_2、CO_2、CH_4,以及少量的烯烃和炔烃。生物质直接热解得到的热解气中可燃气体的含量有限,因此需要对热解气进行催化重整,增加热解气中H_2、CO的含量,提高热解气在工业上的使用效率。
     对热解气催化重整国内多用金属催化剂,如镍基催化剂。金属催化剂催化效率高,但是制备过程复杂,成本较高,不适合工业化大规模生产。因此本文用白云石做催化剂进行催化重整,并全面探讨了在其他不同工艺条件下白云石的催化效果。
     在实验研究的条件范围内,我们得出在以白云石为催化剂的条件下,温度越高产气量越大,但是在750℃时重整气体中可燃气体含量最大;原料粒径的变化主要影响进料,粒径越小,重整气体中可燃气体含量越大;通入水蒸气可以大幅度增加产气量,并且增加重整气体中氢气的含量,但是同时也增加了二氧化碳的含量,降低了一氧化碳的含量,另外通过控制水蒸气的流量可以控制最后重整气体中氢气与一氧化碳含量的比值。
     实验研究表明,如果需要得到高H_2含量的合成气,工艺条件应该设为750℃、原料粒径0.1--1mm、通入水蒸气(其中控制水蒸气的流量可以控制H_2和CO含量的比值);如果需要得到高产气量的合成气,工艺条件应该设为900℃、原料粒径0.1--1mm、通入水蒸气;如果需要得到高可燃气体含量的合成气,则工艺条件应该设为900℃、原料粒径0.1--1mm、不通入水蒸气。
     本文还分析了白云石的催化效果,简单将白云石与焦碳、镍基催化剂做了比较,得出白云石是一种高效、清洁、廉价的催化剂,非常适合工业生产。
The pyrolyzation of biomass is a important measure to make use the biomass enengy,is also an important method to change biomass energy into high-grade sources of energy. The gas that produced by pyrolyzation of biomass includes CO , H_2 , CO_2 , CH_4 , as well as a few olefin and alkyne mainly.The Combustible gas direct produced by by pyrolyzation of biomass is limited,so we need reforming the pyrolyzation gas to increase the content of CO , H_2 ,and improve the efficiency of pyrolyzation gas used in industry.
     The catalyst used in reforming pyrolyzation gas mostly is metal catalyst in the homeland,such as nickel catalyst. metal catalyst has a high efficiency,but preparation process is complicated ,and has a high cost,so metal catalyst is not fit for Industrialization. In this dissertation, we use dolomite to be reforming catalyst,and discuss catalysis effect of dolomite all-round.
     Under the experimental conditions examined,we find in the condition of make dolomite as reforming catalyst,the higher temperature we enactment,the more pyrolyzation gas we can gain.But,we can get the most combustible gas in the condition of 750℃;the variety of matetial particle size infect feed-iness mainly,the smaller the matetial particle size is,the more combustible gas the reforming gas contains;lead into vopar can increase the yield of reforming gas consumedly, increase the content of H_2 and CO_2 in the reforming gas ,and reduce the content of CO in the reforming gas,we can also regulate content of H_2 and CO in the reforming gas by controlling the flux of vopar.
     The experiment studies illuminate that if we want to get high-content of H_2 in the reforming gas,we need the condition that is 750℃and 0.1mm—1mm dia and non vopar;if we want to get high yield of reforming gas,we need the condition that is 900℃and 0.1mm—1mm and leading into vopar;if we want to get high-content combustible gas in the reforming gas,we need the condition that is 900℃and 0.1mm—1mm and non vopar.
     In this dissertation,we analyse the effect of reforming catalyst dolomite,with comparing caramel catalyst and nickel catalyst,we find dolomite catalyst is a high-effect , clean , low-priced catalyst,and is fit for Industrialization.
引文
[1]马隆龙,吴创之,孙立.生物质气化技术及其应用.北京:化学工业出版社, 2003,4: 1~152
    [2]吴创之,马隆龙.生物质能现代化利用技术.北京:化学工业出版社, 2003. 5. 1~212
    [3]吴创之,郑舜鹏,阴秀丽,等. MW级生物质气化发电技术.全国清洁能源技术研讨会暨成果展示会文集.北京: 1999. 314
    [4]肖军,段菁春,王华,等.生物质利用现状.安全与环境工程, 2003, 10(1): 11~14
    [5]南方.生物质热解气化技术及其应用前景.农村能源, 1998(1): 21~23
    [6]戴林,李景明, Ralph Overend.中国生物质能转换技术发展与评价.北京:中国环境科学出版社, 1998. 41
    [7] Maschio G. Pyrolysis, a promising route for biomass utilization. Biomass Technology, 1992, 42: 219~231
    [8]倪萌, M K H Leung, K Sumathy.生物质热化学过程制氢技术.可再生能源, 2004(5): 37~40
    [9]吕鹏梅,常杰,熊祖鸿等.生物质在流化床中的空气-水蒸气气化研究.燃烧化学学报, 2003, 32(4): 305~310
    [10] Schmieder H, Abeln J, Boukis N, et al. Hydrothermal Gasification of Biomass and Organic Wastes. Journal of Supercritical Fluids, 2000, 17(2): 145~153
    [11]郝小红,郭烈锦.超临界水生物质催化气化制氢实验系统与方法研究.工程热物理学报, 2002, 23(2): 143~146
    [12]吕友军,冀承猛,郭烈锦.农业生物质在超临界水中气化制氢的实验研究.西安交通大学学报, 2005, 39): 238~(3242
    [13] Cohen R, Olesen O, Faintani J, Suljak G, US 4 870 511 ,1989
    [14] Wananabe T, Hirata T, Mizusawa M. IHI Eng. Rev. , 4 (Oct. ) ,1988
    [15] Astanovsky D L, Astanovsky L Z, Raikov B S, Korchaka N I. Hydrogen Energy Progress IX, Proceeding of 9th World Energy Conference. Paris, 1992
    [16] Wertheim R. Sederquist R. US 4 816 353, 1989
    [17] Dicks A L. J . Power Sources , 1996, 61 (1/2): 113-124
    [18] Rampe T, Heinzel A, Vogel B. J. Power Sources, 2000, 86 (1/2): 536-541
    [19] Han J, Kim Il S, Choi KS. Int. J. Hydrogen Energy, 2002, 27 (10): 1043-1047
    [20] Edwards N, Ellis S R, Frost J C, Golunski S E, van Keulen A N J, Lindewald N G, Reinkingh J G. J. Power Sources, 1998, 71 (1/2): 123-128
    [21] Lindstrêm B, Pettersson L J. Int. J. Hydrogen Energy, 2001, 26 (9): 923-933
    [22] Klouz V, Fierro V, Denton P, Katz H, Lisse J P, Bouvot-Mauduit S, Mirodatos C. J. Power Sources, 2002, 105(1): 26-34
    [23] Mariìo F J, Cerrella E G, Duhalde S, JobbagyM, Laborde MA. Int. J. Hydrogen Energy, 1998, 23(12): 1095-1101
    [24] Bardford M C J, Vannice M A. CO2 reforming of CH4 oversupported Pt catalysts [J] . J Catal, 1998, 173 (1): 157-171
    [25] Qin D, Lapszewica J. Study of mixed steam and CO2 reforming of CH4 to syngas on MgO-supported metal [J] . Catal Today, 1994, 21(2-3): 551-560
    [26] J R Rostrup-Nielsen, J H Bak Hansen. CO2-reformingof methane over t ransition metals [J] . 1993, 144(1): 38-49
    [27]徐恒泳,孙希贤,范业梅等.甲烷、二氧化碳转化制合成气的研究Ⅰ.催化剂及其催化性能[J] .石油化工, 1992, 21 (3): 147-153
    [28]黄传敬,郑小明,费金华.甲烷二氧化碳重整制合成气镍-钴双金属催化剂[J] .应用化学, 2001, 18(9): 741·6 1·贵州化工Guizhou Chemical Industry, 2006. 10,31(5): 745
    [29]许峥,李玉敏,张继炎等.甲烷二氧化碳重整合成气的镍基催化性能Ⅰ.制备条件和载镍量的影响[J] .催化学报, 1997, 18 (5): 140-143
    [30]索掌怀,金明善,徐秀峰等.担载Ni催化剂中Ni担载量及金属助剂对CH4和CO2重整反应活性的影响[J] .烟台大学学报, 2001, 14 (3): 174-179
    [31]陈吉祥,王日杰,李玉敏等.不同镍盐前驱物对CH4-CO2重整Ni/γ- Al2O3催化剂性能的影响[J] .燃料化学学报, 2001, 29 (6): 494-498
    [32]索掌怀,徐秀峰,金明善等. Ni/ MgO/ Al2O3催化剂中Ni前体对甲烷-二氧化碳重整反应活性的影响[J] .分子催化, 2001, 15 (3): 175-180
    [33] Osaki T, Horiuchi T, Suzuki K, et al. Catalyst perfor-mance of MoS2 and WS2 for the CO2-reforming of CH4 Suppression of carbon deposition [J] . Appl Catal, 1997, 180 (1): 85-100
    [34] Mahesh V Iyer, Lawrence P Norcio, Alex Punoose, et al. Catalysis for synthesisgas formation from reforming ofmethane[J]. Topicsin Catalysis, 2004, 29 (3-4): 197-200
    [35] Sergio Rapagna, Ajmal Latif. Steam Gasification of Almond Shells in a Fluidized Bed Reactor: the Influence of Temperature and Particle Size on Product Yield and Distribution. Biomass and Bioenergy, 1997, 12(4): 281-288
    [36] Rolando Zanzi, Krister Sjostrom, Emilia Bjornbom. Rapid high-temperature Pyrolysis of Biomass in a Free-fall Reactor. Fuel, 1996, 75(5): 545-550
    [37] Shiguang Li, Shaoping Xu, Shuqin Liu, et al. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Processing Technology, 2004, 85: 1201-1211
    [38]张晓东,周劲松.生物质热解煤气中焦油含量的影响因素.燃烧科学与技术, 2003, 9(4): 329-334
    [39] S Rapagna, N Jand. Steam gasification of biomass in a fluidized bed of olivine particles. Biomass and Bioenergy, 2000(19): 187-197
    [40] Narvaez I, Corella J, Orio A. Fresh tar elimination over a commercial steam reform catalyst: Kinetics and effect of different variable of operation. Ind Eng Chem Res, 1997, 36(2): 317-327
    [41] Di Blasi, C. Kinetic and heat transfer control in the slow and flash pyrolysis of solids. Ind Eng Chem Res, 1996, 35: 37-46
    [42] RapagnàS, Latif A. Steam gasification of almond shells in a fluidized bed reactor: The influence of temperature and particle size on product yield and distribution. Biomass and Bioenergy, 1997, 12: 281-288
    [43] Delgado J, Aznar M P. Biomass gasification with steam in fluidized bed: Effectiveness of CaO, MgO and CaO-MgO for hot raw gas cleaning. Ind Eng Chem Res, 1997, 36: 1535-1543
    [44] Delgado J, Aznar M P. Biomass gasification with steam in fluidized bed: Effectiveness of CaO, MgO and CaO-MgO for hot raw gas cleaning. Ind Eng Chem Res, 1997, 36: 1535-1543

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700