用户名: 密码: 验证码:
以玉米芯为原料生物转化木糖醇的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木糖醇被广泛用于食品、医药、化工、轻工及国防等领域。随着社会的进步和经济的发展,木糖醇的需求量将会逐年增加。以木质纤维素类生物质生产木糖醇不仅能够降低木糖醇生产的原料成本,同时在废物处理、环境保护等方面起到一定的作用。木糖是木质纤维素水解物中含量仅次于葡萄糖的一种单糖。木糖的有效利用是木质纤维素生物转化生产木糖醇的关键环节之一。因此,高糖利用率的木糖发酵菌种的选育一直是该领域的热门课题。
     本论文以发酵工程的理论为指导,从自然环境中分离筛选出一株发酵木糖产木糖醇的菌株,对该菌株进行了鉴定,同时对其发酵木糖生产木糖醇的工艺进行了参数优化,为工业化生产木糖醇奠定了一定基础。研究内容与结果如下:
     1.从玉米芯中筛选出产木糖醇的菌种菌株e,通过形态学鉴定,菌株e有典型的酵母菌落形态,能同化硝酸钾,同化乙醇,不能产生类淀粉化合物。
     2.对筛选出的菌株e进行分子生物学鉴定,鉴定结果:菌株e为丝孢酵母属中的Trichosporon coremiiforme。
     3.通过单因素试验得出摇瓶上的木糖醇最佳发酵条件为:碳源浓度为40g/l,氮源浓度为6g/l,pH为7,接种量为6%,装液量为60ml,选取种子龄为23h,37℃下发酵4d。
     4.在单因素实验的基础上进行了正交试验,正交试验最佳工艺条件为:碳源浓度为40g/l,氮源浓度为6g/l,pH为7,接种量为6%,在此最优条件下木糖醇转化率达到69.1%。通过优化设计比初始木糖醇转化率提高了51.1%。
     5.从玉米芯到木糖的生产过程中,预处理对木糖产量有重要影响,细菌B7对玉米芯预处理2天较为合适,预处理过程中最适玉米芯添加量为10%。通过预处理,半纤维素转化率由原来的7.64%上升到18.14%,增长了10.5%。
The biotransformation research used corn cob as raw materials into xylitol
     Xylitol as one of intermediate products of glucose metabolism in the human body,is widely used as a functional sweeteners.
     In addition,xylitol can improve liver function,therapy acute and chronic hepatitis,acute myocarditis,diabetes,renal failure,etc.It is also used widely in chemical industry,light industry and national defense and other fields.
     China is a large agricultural country,which products corncob more than 1000 million tons per year,but most of these resources are not fully utilized,and even resulted in different levels of environmental pollution.So how to use these plant fiber resources effective has become one of the important studies for many countries.Expansion of production of bioethanol utilizing lower-value lignocellulose offers a great potential for not only reducing the production cost but also protecting the environment as it produces far less air pollutants than gasline.D-Xylose is the most abundant monosaccharide in lignocellulose hydrolysate after glucose.Consequently,ethanolic fermentation of xylose is of major concern for the efficient utilization of lignocellulosic hydrolysates to produce fuel ethanol.Therefore,to obtain a bacterial strain that can largely use xylose to produce ethanol is always a hot topic within this area.
     This study was based on microbiology theory.According to habitation of xylose zymogenic,a bacterium,which can ferment xylose to product ethanol,was filtered from natural environment.It was identified by analyzing its physiological and biochemical characteristics and applying several molecule biological means.Then the parameters of technique of fermenting xylose to product ethanol were optimized,to lay a foundation of the cellulose to the alcohol production technique.The main content of this research is as follows.
     1.After the first riddled of proliferation cultured,separating 36 kinds of bacteria,and then through the resumption of screening and the cell transformation,we found the capacity to product xylitol of the strain e was significantly higher than other strains,whose rate of xylose transformed is 18%,so we select the strain e for further study.Strain e is typical yeast colony morphology,its cell short-oval to spherical,budding reproduction,no ascospores,no ballistospore,formation a large number of pseudohyphal hypha in the coverslip on corn meal agar culture medium.Strain e can assimilate potassium nitrate,ethanol,but cannot produce like-starch.
     2.Applying modern molecular biology techniques to classify and identify the screened strain e,the results as follow:strain e is the Trichosporon coremiiforme of trichosporon.The registration number of nucleotide sequence of its D1/D2 of rDNA genes is FJ491404 in GenBank.
     3.Obtained fermentation xylitol best conditions through single-factor test on the shake-flask are as follows:carbon concentration of 40g / 1,nitrogen concentration of 6 g / 1, pH 7,inoculation size 6%,and liquid 60ml,and selected seed age is 23 hours,37℃fermentation for 4 days.
     4.Based on the single factor experiment,we do orthogonal test,which optimum conditions are carbon source concentration,40g/l;nitrogen source concentration,6g/l;initial pH,7.0;inoculum size,6%,the same to the single factor experiment,under this optimum condition,the conversion rate of xylitol reaches 69.1%.By optimizing the design,the conversion rate of the xylitol advanced 51.1%than initial.The conversion rate of Trichosporon coremiiforme is no significant differences compare to the yeast strains used for xylitol fermentation at domestic and abroad.However,in low-carbon source concentration, Trichosporon coremiiforme has particularly high conversion rate,but the corn cob,straw and other crops after the initial degradation has the low concentrations of monosaccharide,so Trichosporon coremiiforme is more suitable for the biological transformation of the initial degradation products of the corn cob,straw and other crop,which is important in comprehensive utilization of waste and environmental protection.
     5.In the production process from corn cob to xylose,pretreatment have an important impact on the production of xylose,and bacterial B7 pre-treats corncob for 2 days more appropriate,which process of the optimum content of corn cob is 10%.Through the pretreatment,hemicellulose conversion rate increased from 7.64%to 18.14%,rised 10.5%. Although hemicellulose is not very high conversion rate,only 18.14%,and xylose output is only 6.92g / 1,but the double strains step-by-step approach has a great development prospects, because the method uses two types of bacteria,bacteria B7 and Aspergillus niger,with the advantages of simple raw materials and low cost compare to the traditional enzyme approach and high-temperature cooking method and has the environment protection superiority.Besides this,the double strains step-by-step approach utilizes the scrap corn cob,reached the goal of waste utilization.We believe that after further study,double strains step-by-step approach will attain the satisfactory results in all respects.
     In this paper,we screen out the strain using xylose produce xylitol,confirm the appropriate conditions for xylitol production,and through corncob xylose conversion to a preliminary study,create the double strains step-by-step approach,based for the multi-strains treatment method.Applying the double strains step-by-step approach not only solve the com cob environment pollution problem,but also obtain high output of xylitol,so it has practical application of high significance.
引文
[1]贺东海,赵光辉,聂圣才,等.木糖醇的功能特性及应用[J].河北化工,2006(1):27-45.
    [2]葛春燕.木糖醇对重型颅脑外伤后病人血糖及胰岛素释放的影响[J].上海护理,2004,8(10):881-882.
    [3]李景峰,孙喜平.木糖醇的生产应用与开发前景[J].适用技术之窗,1999(4):7-8.
    [4]柴义,黄宝文.我国木糖醇生产现状及发展构想[J].沈阳化工,1999,28(2):4-7.
    [5]王关斌,赵光辉.木糖醇的生产与发展趋势[J].浙江化工,2005,36(2):25-26.
    [6]郑建仙.功能性食品甜味剂[M].北京:中国轻工业出版社,1997:8-10.
    [7]周昕.木糖醇的体内过程及临床应用[J].山东医药工业,2002(4):29-30.
    [8]HYVONEN L,KOIVISTOINEN P,VOIROL F.Food Technological Evaluation of Xylitol[J].Advances in Food Research,1982,28:373-403.
    [9]郑建仙.功能性糖醇[M].北京:化学工业出版社,2005:1-6.
    [10]尤新.木糖醇的生产和应用[M].北京:中国轻工业出版社,1984:250-252.
    [11]尤新.玉米的综合利用及深加工[M].北京:中国轻工业出版社,1993:52-54.
    [12]吴星.木糖醇微生物转化的研究[J].工业微生物,1994,4(4):24-26.
    [13]尤新.木糖醇及其功能[J].食品工业科技,2003,24(8):87-88.
    [14]NIGAM P,SINGH D.Processes for Fermentative Production of Xylitol - a Sugar Substitute[J].Process Biochemistry,1995,30(2):117-124.
    [15]KONTIOKARI T,UHARI M,KOSKELA M.Antiadhesive effects of xylitol on otopathogenic bacteria[J].Journal of Antimicrobial Chemotherapy,1998,41:563-565.
    [16]江立强.木糖醇在食品中应用现状及前景[J].江西食品工业,2006(2):40-42.
    [17]YOUNG-EUN LEE,YOUN-HEE CHOI,SEONG-HWA JEONG,et al.Morphological Changes in Streptococcus mutans After Chewing Gum Containing Xylitol for Twelve Months[J].Current Microbiology,2009,58(4):332-337.
    [18]李梅.木糖醇的生产工艺进展[J].石油化工应用,2007,26(6):8-11.
    [19]雷武.木糖及木糖醇的生产工艺[J].化工之友,2000(2):38.
    [20]向晓丽,陈天鄂.木糖醇的制备方法及其应用[J].湖北化工,2002(2):27-28.
    [21]孙昆山,吴绵斌,夏黎明.利用可再生纤维素资源生物转化生成木糖醇的研究进展[J].食品与发酵工业,2001(9):74-78.
    [22]李琰,王晓曦,张雪.玉米芯制木糖醇生产工艺的优化研究[J].郑州工程学院学报,2004,25(1):71-73.
    [23]张厚瑞,何成新,梁小燕,等.半纤维素水解物生物转化生产木糖醇[J].生物工程学报,2000,16(3):304-306.
    [24]冯婕,张利平,黄雪松.发酵生产木糖醇的影响因素[J].食品与发酵工业,2002,27(3):66-70。
    [25]BAR A.Caries prevention with xylitol A review of the scientific evidence[J].World Review of Nutrition and Dietetics,1988,55:183-209.
    [26]BARBOSA M F S,DE MEDEIROS M B,DE MANCILHA.Screening of yeasts for production of xylitol from D-xylose and some factors which affect xylitol yield in Candidu guilliermondii[J].Journal of Industrial and Microbial Biotechnology,1988,3:241-251.
    [27]丁兴红.利用玉米芯半纤维素水解液发酵生产木糖醇的研究[D].杭州:浙江大学.2006.
    [28]苏桂锋,周庆礼,王 旭.假丝酵母发酵生产木糖醇的研究[J].陕西科技大学学报,2008,26(1):50-52.
    [29]徐俊,郑建仙,葛亚中.木糖醇的发酵法生产[J].中国食品添加剂,2003(5):44-49.
    [30]刘森,杨涛,崔薇薇.尖孢镰刀菌发酵生产木糖醇的工艺研究[J].现代食品科技,2008,24(4):342-347
    [31]SILVA SS,RIBEIRO JD,FELIPE MGA,VITOLO M.Maximizing the xylitol production from sugarcane bagasse hydrolysate by controlling the aeration rate[J],Applied Biochemistry Biotechnology,1997,64:557-563.
    [32]ROSEIRO JC,PEITO MA,GIRIO FM,AMARAL-COLLACO.The effects of the oxygen transfer coefficient and substrate concentration on the xylose fermentation by Debaromyces hansenii[J].Archives of Microbiology,1991,156:484-490.
    [33]NOLLEAU VL,PREZIOSI-BELLOY JM,NAVARRO.The reduction of xylose to xylitol by Candida guilliermondii and Candida parapsilosis:incidence of oxygen and pH[J].Biotechnology Letters,1995,17:417-422.
    [34]ROBERTO IC,MANCILHA IM,SATO S.Influence of K_La on bioconversion of rice straw hemicellulose hydrolysate to xylitol[J].Bioprocess Engineering,1999,21:505-508.
    [35]NOLLEAU V,PREZIOSI-BELLOY L,DELGENES JP,et al.Xylitol production from xylose by two yeast strains[J].Current Microbiology,1993,27:191-197.
    [36]FELIPE MGA,VITOLO M,MANCILHAIM.Xylitol formation by Candida guilliermondii grown in a sugar cane bagasse hemicellulosic hydrolysate:effect of aeration and inoculum adaptation[J].Acta Biotechnologica,1996,16:73-79.
    [37]PAZ EDD,SANTANA MHA,EGUCHI SY.Enhancement of the oxygen transfer in a circulating three-phase fluidized bed bioreactor[J].Applied Biochemistry Biotechnology,1993,40:455-66.
    [38]AGUIAR JWB,FARIA LFF,COUTO MAPG,et al.Growth model and prediction of oxygen transfer rate for xylitol production from d-xylose by C.guilliermondii[J].Journal of Biochemistry Engineering,2002,12:49-59.
    [39]WALTHER T,HENSIRISAK D,AGBLERVOR A.The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis[J].Bioresource Technology,2001,76:213-220.
    [40]TIMETHY DL,DIEN BS.Xylitol production from corn fibre hydrolysates by a two-stage fermentation process[J].Process Biochemistry,2000,35:765-769.
    [41]SARACOGLU NE,ARSLAN Y.Comparison of different pretreatments in ethanol fermentation using corn cob hemicellulosic hydrolysate with Pichia stipitis and Candida shehatae[J].Biotechnology Letters,2000,22:855-858.
    [42]CONVERTI A.,PEREGO P,DOMINGUEZ J,et al.Effect of temperature on the microaerophilic metabolism of Pachysolen tannophilus[J].Enzyme Microbilogy Technology,2001,28:339-345.
    [43]MORITA TA,SILVA SS,FELIPE MGA.Effects of Initial pH on Biological Synthesis of Xylitol Using Xylose-Rich Hydrolysate[J].Applied Biochemistry Biotechnology,2000,86:751-759.
    [44]SENE L.Effects of Environmental Confitions on Xylose Reductase and Xylitol Dehydrogenase Production by Candida guilliermondii[J].Applied Biochemistry Biotechnology,2000,86:371-380.
    [45]KASTNER JR,ROBERTS RS,JONES W J.Effects of pH on cell viability and product yields in D-xylose fermentations by Candida shehatae[J].Applied Microbiology Biotechnology,1996,45:224-228.
    [46]OLSSON L,HAHN-HAGERDAL B.Fermentation of lignocellulosic hydrolysates for enthanol production[J].Enzyme Microbilogy Technology,1986,18:312-331.
    [47]PARAJO JC,DOMINGUEZ H,DOMINGUEZ J M.Production of xylitol from concentrated wood hydrolysates by Debaryomyces hansenii:effect of the initial cell concentration[J].Biotechnology Letters, 1998,18(5):593-598.
    [48]张潇,朱冬青,王丹,等.粗糙脉孢菌(Neurospora crassa)木糖发酵的研究[J].微生物学报,2003,43(4):466-472.
    [49]GIRIO FM,ROSEIRO JC,DUARTE-REIS AR,et al.Effect of oxygen transfer rate on levels of keyenzymes of xylose metabolism in Debaryomyces hansenii[J].Enzyme Microbilogy Technology,1994,16:1074-1078.
    [50]GIRIO FM,AMARO C,AZINHEIRA H,et al.Polyols production during single and mixed substrate fermentation in Debaryomyces hansenii[J].Bioresour Technology,2000,71:245-251.
    [51]GRANSTROM TB,ARISTIDOU AA,JOKELA J,et al.Growth characteristics and metabolic flux analysis of Candida milleri[J].Biotechnology & Bioengineering,2000,70:197-207.
    [52]DOMINGUEZ JM,GONG CS,TSAO GT.Pretreatment of sugar cane bagasse hemicellulose hydrolysate for xylitol production by yeasts[J].Applied Microbiology Biotechnology,1996,57:49-56.
    [53]HAHNHAGERDAL B,JEPPSSON H,SKOOG K,et al.Biochemistry and physiology of xylose ferrn entation by yeast[J].Enzyme Microbilogy Technology,1994,16:933.
    [54]赵寿经,黄丽,王辉,等.利用发酵法和酶法综合技术改进玉米淀粉生产湿法浸泡工艺[J].吉林大学学报(工学版),2008,38(06):1489-1494.
    [55]赵寿经,孙莉丽,钱延春,等.利用蛋白酶发酵液替代SO_2改进玉米淀粉生产浸泡工艺研究[J].食品与发酵工业,2007,33(10):76-80.
    [56]张纪忠.微生物分类学[M].上海:复旦大学出版社,1990:415-416.
    [57]赵丽丽,陈存社,郭凤莲.26srDNA序列分析法鉴定酵母菌[J].中国酿造,2008(15):49-51.
    [58]KURTZMAN C P,ROBNETT C J.Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit(26S) ribosomal DNA partial sequences[J].Antonie van Leeuwenhoek,1998,73(4):331-371.
    [59]白逢彦,贾建华,梁慧燕.假丝酵母属疑难菌珠大亚基rDNA D1/D2区域序列分析及其分类学意义[J].菌物系统,2002,21(1):27-32.
    [60]SUEL B,BORK P,HUYNEN M.Genome evolution:Gene fusion versus gene fission[J].Trends Genet,2000,16(1):9-11.
    [61]ATTESON K.The performance of neighbor-joining methods of phylogenetic reconstruction[J].Algorithmica,1999,25(2):251-278.
    [62]李金霞,刘光全,程池.酿酒酵母26SrDNA区域序列分析及其系统发育研究[J].酿酒,2007,34(1):37-39.
    [63]张凌燕,张梁,王正祥,等.一株高效利用木糖的酵母菌的分离及鉴定[J].生物加工过程,2008,6(4):56-60.
    [64]王步江.微生物转化木糖生产木糖醇的初步研究[D].杨凌:西北农林科技大学,2005.
    [65]董丽辉,固定化细胞生物转化半纤维素水解液生产木糖醇[D].杭州:浙江工业大学,2004.
    [66]SILVA C J S M,MUSSATTO S I,ROBERTO I C.Study of xylitol production by Candida guilliermondii on a bench bioreactor[J].Journal of Food Engineering,2006,75(1):115-119.
    [67]石娇蕊,降解木质素菌株筛选及玉米秸秆多菌种发酵条件优化(D].长春:吉林大学。2008.
    [68]杨胜.饲料分析及饲料质量检测技术[M].北京:北京农业大学出版社,1993:58-63.
    [69]许凤,钟新春,孙润仓,詹怀宇.秸杆中半纤维素的结构及分离新方法综述[J].林产化学与工业,2005,25(S]):179-182.
    [70]王玉万,徐文玉.木质纤维素固体基质发酵物中半纤维素、纤维素和木素的定量分析程序[J].微生物学通报,1987(02):81-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700