低维金/银纳米材料的制备、光学性质及生物应用探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料是纳米技术应用的基础,低维金属纳米材料是纳米材料基本物理性质研究的理想模型,其特殊的光、电、磁等方面的优越的物理性质使其在生物领域和纳米器件研制方面有重要的应用前景。本文以金/银等贵重金属为研究对象,设计合成了两种新材料体系:金纳米球壳、银纳米链,研究了它们的特殊的光吸收性质和光热转换性质,并利用这些特性,在肿瘤的近红外热疗方面开展了探索性研究;探讨了飞秒激光对这些金属纳米材料形貌和结构的影响;制备了银包覆的稀土氧化物发光材料,研究了金属纳米粒子的包覆对Eu~(3+)发光性质的影响。取得的主要成果有:
     (1) 采用湿化学法制备了Au纳米球壳。Au纳米球壳的粒径约为20 nm,壳层厚度约为5 nm,尺寸分布比较均匀,具有良好的近红外吸收特性。首次研究了这种材料的光热转换性质:经808 nm的激光(5 W/cm~2)照射后,在12 min内,温度可升高30℃。
     (2) 采用湿化学法利用水/油的相界面反应制备了具有超宽近红外吸收特性的Ag纳米链网状材料。Ag纳米链直径约为50 nm,长度分布范围较宽,吸收强度大,吸收峰宽而且平坦,光热转换性质更加优越。
     (3) 在国内,首次将上述具有近红外吸收特性的金属纳米材料应用于生物体外和体内的热疗实验中。实验结果表明,近红外光热疗对于肿瘤细胞和肿瘤组织有一定的抑制作用。
     (4) 发现了飞秒激光诱导金属纳米材料形貌改变的现象并分析了机理。Ag纳米棒水溶胶在800 nm的飞秒激光辐照下发生了光化学反应,在电子喷射和表面光化学反应的作用下形成了零维的纳米粒子,并随着辐照时间的增长,粒子尺寸逐渐变小。空心的金纳米球壳,在800 nm飞秒激光辐照形成的静电场作用下形成了不同长度的纳米管。
     (5)研究了液相和粉末状态下的Ag包覆的Y_2O_3:Eu~(3+)纳米粒子的发光性质。研究发现,Ag纳米粒子能有效的提高Y_2O_3:Eu~(3+)的分散性,并在一定程度上阻止了Eu~(3+)向溶液中的振动基团的无辐射跃迁,使其在液相中的荧光强度增强。
Nanomaterials were the base of the application of nanotechnology. Low-dimensional metal nanostructured materials were the perfect models in the study of the essential physical properties of nanomaterials. They had the significant applications in biomedicine and nanodevices because of their unique electronic, optical, and mechanical properties. In this thesis, noble metal gold and silver were selected as the objects for study. Two kinds of nanomaterials were synthesized: gold nanoshell and silver nanochain. The special absorption and photothermal conversion properties were studied and the thermal therapy experiments were carried out in vitro and vivo. The effect of the femtosecond laser in the shape changes of the metal nanomaterials were discussed. The silver enwrapped rare earth oxide was prepared and the influence of the silver nanoparticles in the luminescence of the Eu~(3+) was researched. The main results are as follows:
    (1) The gold nanoshells were prepared by a wet-chemical synthesis method. The diameter was ~ 20 nm, the thickness of the shell was ~ 5 nm and the distribution of the size was uniform. This kind of material gained the excellent absorption in near-infrared (NIR) and photothermal conversion properties. The temperature of the hydrosol was increased as high as 30℃ under exposure of an 808 nm coherent diode laser with powder density of 5 W/cm~2.
    (2) Cross-sectional Ag nanochains were prepared using the method of water/oil emulsion. The diameter of the Ag nanochains was ~ 30 nm and the distribution of the length was wide. This kind of material demonstrated strong and super-wide absorption
引文
[1] R. P. Feynman, There is plenty of room at the bottom, Lecture at the annual meeting of the American Physical Society at the California Institute of Technology, 1959.
    [2] 吕洞庭,梦幻纳米,第一版,中共中央党校出版社,2001,94-96.
    [3] 张立德,纳米材料,第一版,化学工业出版社,2000,5-60.
    [4] Lide Zhang and Jimei Mo, Nanomaterials and Nanostructure, Science Press, 2001
    [5] R. Kubo, Electronic properties of fine metallic particles, J. Phys. Soc. Jpn, 1962, 17, 975-986.
    [6] L. Esaki and R. Tsu, Superlattice and negative differential conductivity in Semiconductors, IBM J. Res. Development, 1970, 61-65.
    [7] R. Tsu and L. Esaki, Tunneling in a finite superlattice, Appl. Phys. Lett., 1973, 22, 562-564.
    [8] L. Esaki and L. L. Chang, New transport phenomenon in a semiconductor superlattice, Phys. Rev. Lett., 1974, 33, 495-498.
    [9] H. Gleiter, Nanocrysralline materials. Progress in Mater Sci., 1989, 33, 223-315.
    [10] J. Hu, M. Ouyang, P. Yang and C. M. Lieber, Growth and electrical properties of nanotube/nanowire heterojunctions, Nature, 1999, 399, 48-51.
    [11] J. Goldberger, R. He, S. Lee, Y. Zhang, H. Yan, H. Choi and P. Yang, Single crystal gallium nitride nanotubes, Nature, 2003, 422,599-602.
    [12] J. T. Hu, L. S. Li, W. D. Yang, L. Manna, L. W. Wang and A. P. Alivisatos, Linearly polarized emission from colloidal semiconductor quantum rods, Science, 2001,292, 2060-2063.
    [13] A. P. Alivisatos, Naturally aligned nanocrystals, Science, 2000, 289, 736-737.
    [14] M. Cao, C. Liu, S. Gao, G. Sun, X. Wu, C. Hu and Z. Wang, Single-drystal dendrite nano-pines of magnetic a-Fe_2O_3—1arge-scale synthesis, formation mechanism and properties, Angew. Chem., 2005, 44, 4179-4201.
    [15] H. Ohde, F. Hunt and C. M. Wai, Synthesis of Silver and Copper nanoparticles in a water-in-supercritical-carbon dioxide microemulsion. Chem. Mater. 2001, 13, 4130-4135.
    [16] S. Xu, H. Zhou, J. Xu and Y. Li, Synthesis of size-tunable silver iodide nanowires in reverse micelles. Langmuir 2002, 18, 10503-10504.
    [17] M. Cao, Changwen Hu and Enbo Wang, The first fluoride one-dimensional nanostructures: microemulsion-mediated hydrothermal synthesis of BaF_2 whiskers. J. Am. Chem. Soc. 2003,125, 11196-11197.
    [18] B. Dubertret, M. Calame and A. J. Libchaber, Single-mismatch detection using gold-quenched fluorescent oligonucleotides Nature Biotech. 2001,19, 365-370.
    [19] H.Imahori and S.Fukuzumi, Porphyrin monolayer-modified gold clusters as photoactive materials Adv.Mater., 2001,13, 1197-1199.
    [20] S. Wwiss, Fluorescence spectroscopy of single biomolecules. Science, 1999, 283, 1676-1683.
    [21] S. Nie, S. R. Eniory, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 1997, 275, 1102-1106.
    [22] Y. Xia, P. Yang, Chemistry and physics of nanowires, Adv. Mater. 2003, 15, 351-352.
    [23] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayer, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater., 2003,15, 353-389.
    [24] Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298, 2176-2179.
    [25] Y. Sun and Y. Xia, Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc, 2004, 126,3892-3901.
    
    [26] Y. Sun and Y. Xia, Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal. Chem, 2002, 74, 5297-5305.
    
    [27] Y. Sun, B. Mayers and Y. Xia, Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano. Lett., 2003,3,675-679.
    [28] Y. Sun, B. Gates, B. Mayers and Y. Xia, Crystalline silver nanowires by soft solution processing. Nano Lett., 2002, 2, 165-168.
    [29] Y. Sun, B. Mayers, Y. Xia, Template-engaged replacement reaction: a one-step to the large-scale synthesis of metal nanostrutures with hollow interiors. Nano Lett, 2002,2,481-485.
    [30] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks and Y. Xia, Uniform silver nanowires synthesis by reducing AgNO_3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 2002,14, 4736-4745.
    [31] Y. Xiong, Y. Xie, C. Wu, J. Yang, Z. Li and F. Xu, Formation of silver nanowires through a sandwiched reduction process. Adv. Mater., 2003, 15, 405-408.
    [32] Y. Sun and Y Xia, Triangular nanoplates of silver: synthesis, characterizations, and use as sacrificial templates for generating triangular nanorings of gold. Adv. Mater.2003,15, 695-699.
    [33] Y. Sun and Y. Xia, Multiple-walled nanotubes made of metals. Adv. Mater.2004, 16,264-268.
    [34] D. Zhang, L. Qi, J. Ma and H. Cheng, Synthesis of submicrometer-sized hollow silver spheres in mixed polymer-surfactant solutions, Adv. Mater, 2002, 14, 1499-1502.
    [35] B.D. Busbee, S. O. Obare and C. J. Murphy, An improved synthesis of high-aspect-ratio gold nanorods. Adv. Mater. 2003,15, 414-416.
    [36] M. Lahav, T. Sehayek, A. Vaskevich and I. Rubinstein, Nanoparticle nanotubes. Angew. Chem., 2003,115, 5734-5737.
    [37] J. Q. HU, Q. Chen, Z. X. Xie, G. B. Han, R. H. Wang, B. Ren, Y. Zhang, Z. L. Yang and Z. Q. Tian, A simple and effective route for the synthesis of crystalline silver nanorods and nanowires. Adv. Funct. Mater., 2004,14, 183-189.
    [38] R. Jin, Y Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz and J. G. Zheng, Photoinduced conversion of silver nanospheres to nanoprisms. Science, 2001, 294,1901-1903.
    [39] R. Jin, Y. Cao, E. Hao, G S.Metraux, G. C.Schatz, C. A. Mirkin, Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Nature, 2003, 425,487-490.
    [40] F. Kim, J. H. Song, P. Yang, Photochemical synthesis of gold nanorods. J. Am. Chem. Soc, 2002,124, 14316-14317.
    [41] Xiao,Y. Xie, R. Tang, M. Chen and T. Tian, Novel Ultrasonically assisted templated synthesis of palladium and silver dendritic nanostructures. Adv. Mater, 2001,13,1887-1891.
    [42] C. Li, W. Cai, C. Kan, G. Fu, L. Zhang, Ultrasonic solvent induced morphological change of Au colloids. Mater. Lett., 2003, 58, 196-199.
    [43] L.M.Liz-Marzan, P.Mulvaney, The assembly of coated nanocrystals. J. Phys. Chem. B, 2003,107, 7312-7326.
    
    [44] Y. Mizukoshi, T. Fujimoto, Y.Nagata, R.Oshima,Y.Maeda, Characterization and catalytic activity of core-shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method. J. Phys. Chem. B, 2000, 104, 6028-6032.
    [45] S. J. Oldenburg, R. D. Averitt, S. L. Westcott, N. J. Halas, Nanoengineering of optical resonances. Chem. Phys. Lett., 1998, 288, 243-247.
    [46] J. B. Jackson and N. J. Halas, Silver nanoshells: variations in morphologies and optical properties. J. Phys. Chem. B, 2001,105, 2743-2746.
    [47] E. Prodan, P. Nordlander and N. J. Halas, Electronic structure and optical properties of gold nanoshells. Nano. Lett.. 2003, 3, 1411-1415.
    [48] E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz and J. T. Hupp, Optical properties of metal nanoshells. J. Phys. Chem. B, 2004, 108, 1224-1229.
    [49] E. Prodan and P. Nordlander, Structural runability of the plasmon resonances in metallic nanoshells. Nano. Lett. 2003,3, 543-547.
    [50] S. L. Westcott , S. J. Oldenburg , T. R. Lee and N. J. Halas, Construction ofsimple gold nanoparticle aggregates with controlled plasmon-plasmon interactions. Chem. Phys. Lett, 1999, 300, 651-655.
    [51] S. Link and M. A. El-Sayed, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Reviews in Phys. Chem., 2000,19, 409-453.
    [52] M. Born, E. Wolf, Principles of optics. 6th ed., Cambridge University, Cambridge, 1980.
    
    [53] P. Mulvaney, Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 1996,12, 788-800.
    [54] T. Hayakawa, S. T. Selvan and M. Nogami, Enhanced fluorescence from Eu~(3+) owing to surface plasma oscillation of silver particles in glass. J. Non-Cryst. Solids, 1999, 259, 16-22.
    [55] C. Louis, S. Roux, G. Ledoux, L. Lemelle, P. Gillet, O. Tillement and P. Perriat, Gold nano-antennas for increasing luminescence. Adv. Mater. 2004, 16,2163-2166.[56]朱屯,王福明,王习东,国外纳米材料技术进展与应用,第一版,化学工业出版社,2002.
    [57] S. K. Sahoo, T. K. De, P. K. Ghosh and A. Maitra pH- and thermo-sensitive hydrogel nanoparticles. J. Colloid Interface Sci., 1998, 206, 361-368.
    [58] L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas and J. L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad Sci. U.S.A, 2003, 100, 13549-13554.
    [59] D. P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne and J. L. West, Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett., 2004, 209, 171-176.
    [60] C. Loo, A. Lowery, N. Halas, J.West, and R. Drezek, Immunotargeted Nanoshells for Integrated Cancer Imaging and Therapy. Nano Lett., 2005, 5, 709-711.
    [61] Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O'Neal, G. Stoica, and L. V. Wang, Photoacoustic tomography of a nanoshell contrast agent in the in Vivo rat brain. Nano Lett., 2004, 4, 1689-1692.
    [62] J. Chen, F. Saeki, B. J. Wiley, H.Cang, M. J. Cobb, Z. Li, L. Au, H. Zhang, M.1 B. Kimmey, X. Li and Younan Xia, Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett., 2005, 5, 473-477.
    [1] Y. Sun and Y. Xia, Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc, 2004, 126,3892-3901.
    
    [2] Y. Sun, B. Gates, B. Mayers and Y. Xia, Crystalline silver nanowires by soft solution processing. Nano Lett., 2002, 2, 165-168.
    [3] Y. Xia and P. Yang, Chemistry and physics of nanowires. Adv. Mater., 2003, 15, 351-352.
    [4] F. Kim, J. H. Song, P. Yang, Photochemical synthesis of gold nanorods. J. Am. Chem. Soc, 2002,124, 14316-14317.
    
    [5] Y. Sun, B. Mayers and Y. Xia, Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano. Lett., 2003, 3, 675-679.
    [6] M. Maillard, S. Giorgio and M. Pileni, Silver nanodisks. Adv. Mater, 2002, 14, 1084-1086.
    
    [7] R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz and J. G. Zheng, Photoinduced conversion of silver nanospheres to nanoprisms. Science, 2001, 294, 1901-1903.
    [8] Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298, 2176-2179.
    
    [9] Y. Sun, B. Mayers, Y Xia, Template-engaged replacement reaction: a one-step to the large-scale synthesis of metal nanostrutures with hollow interiors. Nano Lett., 2002,2,481-485.
    
    [10] E. Mathlowitz, J. S. Jacob, Y. S. Jong, G P. Carino, D. E. Cgickering, P. Chaturvedl, C. A. Santos, K. Vijayaraghavan, S. Montgomery, M. Bassert, C. Morrell, Biologically erodable microsphere as potential oral drug delivery system. Nature, 1977, 386,410-414.
    
    [11] S. P. Naik, A. S. T. Chiang, R. W. Thompson, F. C. Huang, Fabrication of silicalite-1 hollow spheres by the self-assembly of nanocrystals. Chem. Mater., 2003,15, 787-792.
    [12] S. M. Marinakos, J. P, Novak, L. C. Brousseau, A. B. House, E. M. Edeki, J. C. Feldhaus, D. L. Feldheim, Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation. J. Am. Chem. Soc, 1999,121, 8518-8522.
    [13] Y. Sun and Y. Xia, Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal. Chem., 2002, 74, 5297-5305.
    [14] L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas and J. L. West, Nanoshell-mediated near-infrafed thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U.S.A, 2003,100, 13549-13554.
    
    [15] K. Clays, E. Hemdrickx, M. Triest and A. Persoons, Second-order nonlinear optics in isotropic liquids: Hyper-Rayleigh scattering in solution. J. Mol. Liq. 1995,67, 133-135.
    [1] S. Iijima, Helical microtubules of graphitic carbon. Nature, 1991, 354, 56-58.
    [2] Y. Xia, P. Yang, Y Sun, Y. Wu, B. Mayer, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater., 2003, 15, 353-389.
    [3] Z. W. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of semiconducting oxides, Science, 2001, 291, 1947-1949.
    [4] Z. L. Wang, Nanobelts, nanowires, and nanodiskettes of semiconducting oxides from materials to nanodevices, Adv. Mater., 2003, 15, 432-436.
    [5] Y. Sun and Y. Xia, Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc., 2004, 126, 3892-3901.
    [6] Y. Sun, B. Gates, B. Mayers and Y. Xia, Crystalline silver nanowires by soft solution processing. Nano Lett., 2002, 2, 165-168.
    [7] Y. Xia and P. Yang, Chemistry and physics of nanowires. Adv. Mater., 2003, 15, 351-352.
    [8] A. G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M. F. Anderson, S.Franzen and D. L. Feldheim, Multifunctional Gold Nanoparticle-Peptide Complexes for Nuclear Targeting. J. Am. Chem. Soc., 2003, 125, 4700-4701.
    [9] P. M. Tessier, O. D. Velev, A. T. Kalambur, J. F. Rabolt, A. M. Lenhoff and E. W. Kaler, Assembly of Gold Nanostructured Films Templated by Colloidal Crystals and Use in Surface-Enhanced Raman Spectroscopy. J. Am. Chem. Soc., 2000, 122, 9554-9555.
    [10] B. A. Korgel and D. Fitzmaurice, Self-Assembly of Silver Nanocrystals into Two-Dimensional Nanowire Arrays. Adv. Mater., 1998, 10, 661-665.
    [11] S. Liu, J. Yue and Aharon Gedanken, Synthesis of Long Silver Nanowires from AgBr Nanocrystals. Adv. Mater. 2001, 13, 656-658.
    [12] P. Jiang, S. Li, S. Xie, Y. Gao and L. Song, Machinable long PVP-stabilized silver nanowires. Chem. Eur. J., 2004, 10, 4817-4821.
    [13] N. R. Jana, L. Gearheart and C. J. Murphy, Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem. Commun. 2001, 617-618.
    [14] J. Xiao, Yi Xie, R. Tang, M. Chen and X. Tian, Novel ultrasonically assisted templated synthesis of palladium and silver dendritic nanostructures. Adv. Mater. 2001, 13, 1887-1891.
    [15] Y. Sun and Y. Xia, Large-scale synthesis of uniform silver nanowires through a soft. self-seeding, polyol process. Adv. Mater. 2002, 14,833-837.
    [16] Y. Sun and Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298:2176-2179.
    [17] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks and Y. Xia, Uniform silver nanowires synthesis by reducing AgNO_3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 2002, 14, 4736-4745.
    [18] D. Zhang, L. Qi, J. Ma and H. Cheng, Formation of silver nanowires in aqueous solutions of a double-hydrophilic block copolymer. Chem. Mater. 2001, 13, 2753-2755.
    [19] C. J. Murphy and N. R. Jana, Controlling the aspect ration of inorganic nanorods and nanowires. Adv. Mater., 2002, 14, 80-82.
    [20] Y. Xiong, Y. Xie, C. Wu, J. Yang, Z. Li and F. Xu, Formation of silver nanowires through a sandwiched reduction process. Adv. Mater., 2003, 15, 405-408.
    [21] Y. Sun and Y. Xia, Triangular nanoplates of silver: synthesis, characterizations, and use as sacrificial templates for generating triangular nanorings of gold. Adv. Mater., 2003, 15, 695-699.
    [22] Y. Sun and Y. Xia, Multiple-walled nanotubes made of metals. Adv. Mater., 2004, 16, 264-268.
    [23] Z. Chen, P. Zhan, Z. Wang, J. Zhang, W. Zhang, N. Ming, C. T. Chan and P. Sheng, Two-and three-dimensional ordered structures of hollow silver spheres prepared by colloidal crystal templating. Adv. Mater., 2004, 16, 417-422.
    [24] C. J. Murphy and N. R. Jana, Controlling the aspect ration of inorganic nanorods and nanowires. Adv. Mater., 2002, 14, 80-82.
    [25] B.D. Busbee, S. O. Obare and C. J. Murphy, An improved synthesis of high-aspect-ratio gold nanorods. Adv. Mater., 2003,15, 414-416.
    [26] M. Lahav, T. Sehayek, A. Vaskevich and I. Rubinstein, Nanoparticle naotubes. Angew. Chem., 2003,115, 5734-5737.
    [27] J. Q. HU, Q. Chen, Z. X. Xie, G. B. Han, R. H. Wang, B. Ren, Y. Zhang, Z. L. Yang and Z. Q. Tian, A simple and effective route for the synthesis of crystalline silver nanorods and nanowires. Adv. Funct. Mater., 2004,14, 183-189.
    [28] G. Ramanath, J. D'Arcy-Gall, T. Maddanimath, A. V. Ellis, P. G. Ganesan, R. Goswami, A. Kumar, and K. Vijayamohanan, Templateless room-temperature assembly of nanowire networks from nanoparticles. Langmuir, 2004, 20, 5583-5587.
    [29] T. Maddanimath, A. Kumar, D'Arcy-Gall, P. G. Ganesan, K. Vijayamohanan and G. Ramanath, Wet-chemical templateless assembly of metal nanowires from nanoparticles. Chem. Commun., 2005, 1435-1437.
    [30] S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi and J. V. Frangioni, Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol, 2004, 22, 93-97.
    [31] X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung and S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol, 2004, 22,969-976.
    [32] L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas and J. L. West, Nanoshell-mediated near-infrafed thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. U.S.A, 2003,100, 13549-13554.
    [33] Y. Wang, X.Xie, X. Wang, G.Ku, K. L. Gill, D. P. O'Neal, G. Stoica and L. V. Wang, Photoacoustic tomography of a nanoshell contrast agent in the vivo rat brain. Nano Lett. 2004, 4, 1689-1692.
    [34] Z. Liu, H. Song, L. Yu and L. Yang, Fabrication and near-infrared photothermal conversion characteristics of Au nanoshells. Appl. Phys. Lett., 2005, 86, 113109.
    [1] B. Jeremic, Radiation therapy. Hematol Oncol Clin North Am. 2004, 18, 1-2.
    [2] D. R. Stacy, B. Lu, D. E. Hallahan, Radiation-guided drug delivery system. Expert Rev. Anticancer Then, 2004, 4, 283-8.
    [3] S. A. Vora, S. L. Garner, Role of radiation therapy for facial skin cancers. Clin. Plast Surg., 2004, 31, 33-8.
    [4] S. Hocht, T. Wiegel, A. Siegmann, W. Hinkelbein, Radiochemotherapy in unresectable pancreatic cancer. Front Radiat Then Oncol., 2004, 38, 87-93.
    [5] 王振国,肿瘤防治与康复,北京时事出版社,第一版,2001.
    [6] S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dot, L. H. Cohn, M. G. Bawendi and J. V. Frangioni, Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping. Nat. Biotechnol., 2004, 22, 93-97.
    [7] X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung and S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol., 2004, 22, 969-976.
    [8] Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O'Neal, G. Stoica, and L. V. Wang, Photoacoustic tomography of a nanoshell contrast agent in the in Vivo rat brain. Nano Lett., 2004, 4, 1689-1692.
    [9] J. Chen, F. Saeki, B. J. Wiley, H.Cang, M. J. Cobb, Z. Li, L. Au, H. Zhang, M.1 B. Kimmey, X. Li and Younan Xia, Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett., 2005, 5, 473-477.
    [10] L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas and J. L. West, Nanoshell-mediated near-infrafed thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad Sci. US.A, 2003, 100, 13549-13554.
    [11] D. P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne and J. L. West, Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004, 209, 171-176.
    [12] C. Loo, A. Lowery, N. Halas, J.West, and R. Drezek, Immunotargeted Nanoshells for Integrated Cancer Imaging and Therapy. Nano Lett., 2005, 5, 709-711.
    [13] 徐淑云,卞如濂,陈修等,药理实验方法学,人民卫生出版社,第二版,1991.
    [1] 孟宪赓,赵崇军,邱建荣,飞秒激光在金属纳米材料制备和材料微结构加工中的应用.激光与光电子学进展,2004,41,48-52.
    [2] Y. W. Cao, R. Jin and C. A. Mirkin, DNA-modified core-shell Ag/Au nanoparticles. J. Am. Chem. Soc. 2001, 123, 7961-7962.
    [3] M. Maillard, S. Giorgio and M. Pileni, Silver nanodisks. Adv. Mater, 2002, 14, 1084-1086.
    [4] F. Kim, J. H. Song and P. Yang, Photochemical synthesis of gold nanorods. J. Am. Chem. Soc. 2002, 124, 14316-14317.
    [5] P. Grring, E. Pippel, H. Hofmeister, R. B. Wehrspohn, M. Steinhart and U. Gosele, Gold/carbon composite tubes and gold nanowires by impregnating templates with hydrogen tetrachloroaurate/acetone solutions. Nano. Lett., 2004, 4, 1121-1125.
    [6] Y. Y. Yu, S. S. Chang, C. L. Lee and C. R. Wang, Gold nanorods: electrochemical synthesis and optical properties. J. Phys. Chem. B, 1997, 101,6661-6664.
    [7] C. Li, W. Cai, C. Kan, G. Fu and L. Zhang, Ultrasonic solvent induced morphological change of Au colloids. Mater. Lett., 2003, 58, 196-199.
    [8] J.-P. Sylvestre, A. V. Kabashin, E. Sacher, M. meunier and J. H. T. Luong, Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. J. Am. Chem. Soc. 2004, 126, 7176-7177.
    [9] J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang and K. Hirao, Manipulation of gold nanoparticles inside transparent materials. Angew. Chem., 2004, 116, 2280-2284.
    [10] J. Qiu, M. Shirai, T. Nakaya, J. Si, X. Jiang, C. Zhu, K. Hirao, Space-selective precipitation of metal nanoparticles inside glasses AppL Phys. Lett., 2001, 81, 3040-3042.
    [11] S. Link, C. Burda, B. Nikoobakht and M. A. El-Sayed, Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J. Phys. Chem. B, 2000, 104, 6152-6163.
    [12] S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht and M. A. El-Sayed, Laser photothermal Melting and fragmentation of gold nanorods: energy and laser pulse-width dependence. J. Phys. Chem. A, 1999,103,1165-1170.
    [13] S. Link and M. A. El-Sayed, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Reviews in Phys. Chem., 2000,19, 409-453.
    [14] P. V. Kamat, M. Flumiani, and G. V. Hartland, Picosecond dynamics of silver nanoclusters photoejection of electrons and fragmentation. J. Phys. Chem. B, 1998,102,3123-3128.
    [15] K. Clays, E. Hemdrickx, M. Triest and A. Persoons, Second-order nonlinear optics in isotropic liquids: Hyper-Rayleigh scattering in solution. J. Mol. Liq. 1995,67,133-135.
    [16] R. H. Doremus, Optical properties of small clusters of silver and gold atoms. Langmuir, 2002, 18, 2436-2437.
    
    [17] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks and Y. Xia, Uniform silver nanowires synthesis by reducing AgNO_3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 2002,14, 4736-4745.
    
    [18] T. Hayakawa, S. T. Selvan and M. Nogami, Enhanced fluorescence from Eu~(3+) owing to surface plasma oscillation of silver particles in glass. J. Non-Cryst. Solids, 1999,259, 16-22.
    
    [19] Z. Liu, H. Song, L. Yu and L. Yang, Fabrication and near-infrared photothermal conversion characteristics of Au nanoshells. Appl. Phys. Lett., 2005, 86,113109.
    [20] Y. Sun and Y. Xia, Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc, 2004, 126,3892-3901.
    [1] J. H. Shin, G. N. van den Hoven and A. Polman, Origin of the 1.54 μm luminescence of erbium-implanted porous silicon. Appl. Phys. Lett., 1995, 66, 2379-2381.
    [2] M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi and K. Yamamoto, 1.54 μm photoluminescence of Er~(3~) doped into SiO_2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er~(3~). Appl. Phys. Lett., 1997, 71, 1198-1200.
    [3] E. Downing, L. Hesselink, J. Ralson and R. MacFarlane, A three-color, solid-state, three-dimensional display. Science, 1996, 273,1185-1189.
    [4] G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen and L. Guo, Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett., 2004, 4, 2191-2196.
    [5] C. M. Niemeyer, Nanoparticles. proteins, and nucleic acids: biotechnology meets materials science. Angew. Chem., Int. Ed., 2001, 40, 4128-2158.
    [6] W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell and A. P. Alivisatos, Biological applications of colloidal nanoerystals. Nanotechnology, 2003, 14, R15.
    [7] S. Heer, K. Kompe, H.-U. Gudel and M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF_4 nanocrystals. Adv. Mater., 2004, 16, 2102-2105.
    [8] J. Hampl, M. Hall, N. A. Mufti, Y. M. M. Yao, D. B. MacQueen, W. H. Wright and D. E. Cooper, Upconverting phosphor reporters in immunochromatographic assays. Anal. Biochem., 2001, 288, 176-187.
    [9] F. van de Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S.Niedbala and H. J. Tanke, Up-converting phosphor reporters for nucleic acid microarrays. Nat. Biotechnol., 2001, 19, 273-276.
    [10] T. Hayakawa, S. T. Selvan and M. Nogami, Enhanced fluorescence from Eu~(3+) owing to surface plasma oscillation of silver particles in glass. J. Non-Cryst. Solids, 1999, 259, 16-22.
    [11] T. Hayakawa, T. Selvan and M. Nogami, Field enhancement effect of small Ag particles on the fluorescence from Eu~(3+) -doped SiO_2 glass. Appl. Phys. Lett., 1999, 74, 1513-1515.
    [12] S. T. Selvan, T. Hayakawa and M. Nogami, Remarkable influence of silver islands on the enhancement of fluorescence from Eu~(3+) ion-doped silica gels. J. Phys. Chem. B, 1999,103, 7064-7067.
    [13] C. Louis, S. Roux, G. Ledoux, L. Lemelle, P. Gillet, O. Tillement and P. Perriat, Gold nano-antennas for increasing luminescence. Adv. Mater., 2004, 16, 2163-2166.
    [14] Y. Tao, G. Zhao, W. Zhang and S. Xia, Combustion synthesis and photoluminescence of nanocrystalline Y_2O_3: Eu phosphors. Materials Research Bulletin, 1997, 32, 501-506.
    [15] H. Song, B. Chen, B. Sun, J. Zhang and S. Lu, Ultraviolet light-induced spectral change in cubic nanocrystalline Y_2O_3: Eu~(3+). Chem. Phys. Lett., 2003, 372, 368-372.
    [16] A. Konrad, T. Fries, A. Gahn, F. Kummer, U.Herr, R. Tidecks and K. Samwer, Chemical vapor synthesis and luminescence properties of nanocrystalline cubic Y_2O_3: Eu. J. Appl. Phys., 1999, 86, 3129-3133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700