用户名: 密码: 验证码:
结核DNA疫苗的构建、免疫功能及保护效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结核病仍对人类健康构成重要威胁。全球现有TB患者近3000万,每年病死数近300万。结核病唯一可用的免疫预防制剂是BCG。它的免疫保护力介于0-80%之间,WHO的调查研究表明其保护力也仅为50%。成年人及老年人并不能得到BCG的有效保护。BCG对热敏感,在运输、贮存中需要低温保存。因此寻找新型高效,效果稳定的疫苗一直是相关领域研究人员关注的热点。
     本研究的目的,是设计和构建真核表达结核菌蛋白的载体即DNA疫苗,并对其免疫功能及保护力进行研究。所设计构建的10种结核DNA疫苗依次为TB-V1,表达结核菌Mtb8.4;TB-V2,表达结核菌Ag85B蛋白;TB-V3,表达Mtb8.4、38kDa的Th表位和CTL表位以及Ag85B的融合蛋白;TB-V4,表达GST和Mtb8.4的融合蛋白;TB-V5,表达GST与Ag85B的融合蛋白;TB-V6,表达含hIL-2信号肽的Mtb8.4;TB-V7,表达含信号肽的Ag85B;TB-V8,表达含信号肽的Mtb8.4、38kDa蛋白的CTL/Th表位以及Ag85B成熟蛋白的融合蛋白;TB-V9,表达信号肽的Mtb8.4与GST的融合蛋白;TB-V10,表达含信号肽的Ag85B与GST的融合蛋白。TB-V6-TB-V10等5种载体,均在表达结核蛋白的N末端插入hIL-2的信号肽。p-hIL2质粒表达hIL-2;p-hIL2s质粒仅表达hIL-2的信号肽,作为对照。
     所构建的12种质粒DNA,经PCR、酶谱鉴定后,并对插入表达目的的DNA片段进行了测序分析,表明所构建的12种载体质粒与构建设计准确无误。
     p-hIL2、p-IL2s、TB-V6、TB-V7、TB-V8、TB-V9与TB-V10质粒DNA,以0.1M PBS将其分别稀释成1mg/mL溶液,除菌,然后分别在0d、15d和30d,分3次在8-10周龄的雌性C57BL/6小鼠四肢肌肉各注射0.1mL(100 μg/只小鼠)。对照组为等剂量的pVAX1、D-IL2s、PBS溶液。阳性对照组为BCG,以10~5CFU注射小鼠皮内,与其他小鼠初免时一同免疫,该组每只小鼠只免疫1次。疫苗免疫组、对照组共12组,分别是TB-V6~TB-V10等5组,p-IL2质粒注射组,TB-V6+p-hIL2
    
    2作者:华南热带农业大学博士研究生朱中元,导师:张春发
    和TB一7+,hILZ联合免疫2组(每种质粒各50 ug免疫),PBs,BcG,
    pVAXI和尸LZs共4个对照组。每组10只小鼠。
     在最后一次DNA疫苗加强免疫15天后,杀死每组的其中5只小鼠,
    取脾磨成匀浆,并用10%FCS RPMll64O培养基将脾淋巴细胞配成10V
    mL浓度,加入到24孔培养板中,200 pl吼,5%Cq条件下培养72h,
    上清经ELIsA法测定鼠白细胞介素一(mIL一2)、而L-6、而L一10和鼠7
    干扰素(mIFN斗)。处死小鼠时采血,用于测定hIL一2。
     在DNA疫苗最后一次加强免疫的21天,将结核菌H37RLv株培养约
    20天的细菌磨成悬液,取106/0.llnL菌经尾静脉注射实验感染每组剩下
    的5只小鼠。感染15天后,杀死所有小鼠,取脾、肝和肺分别称重,制
    成匀浆,接种0.lmL于改良罗氏培养基(L一)培养瓶,置37C培养20一30
    天,计数。并根据器官重量和稀释倍数,换算出每种器官培养物的
    CFUlg。每个小鼠的每种器官各接种3支L一培养,取其均数作为最后
    结果。
     检测各免疫组、对照组的上清中的而L一2,而L一6,而L一10和
    而FN斗以及血清中hIL一2的含量,显示TB一v6,TB一V7,TB一vs,
    TB一vg,TB一V10,TB一v6+P扣L2,TB一v7+p扣L2及p一hILZ等8个免疫
    组的mIFN斗及mIL一显著高于pVAXI,PBs和p一LZs质粒对照组,与
    BCG免疫组的水平稍低或相当。其中p.hiLZ注射组,TB一v6+p-hiLZ
    以及犯一7+p一址LZ联合免疫组小鼠血清hIL一2水平显著升高。而这8组
    的体外淋巴细胞培养上清中的nilL一6及mIL一10的含量不升高或升高不
    明显。表明犯J6~TB一vlo等5种DNA疫苗及p扣LZ表达载体能够刺
    激预防结核病所需的几1型免疫应答。
     TB一6~TB一V10等5种疫苗免疫的5只小鼠的脾结核菌载量分别为
    44 1 68、28400、1 8597、34703和22954CFIJ/g。TB一v6+P一LZ和
    TB一V7+P一L2联合免疫组和p一hILZ注射组的脾结核菌载量分别为
    12471、34x57和51339 CFU/g。对照组邓S、pVAXI、p一LZs及BCG
    的脾细胞悬液的结核菌计数结果均数分别是:61012、60716、69395
    和1 1 164CFU/g。表明本研究中构建的,IB一6~TB一v10等疫苗具有减少
    免疫鼠经H37Rv攻击后脾脏结核菌载量,且TB一vs疫苗,TB一v6+P一砚
    联合免疫,产生的保护力与BCG免疫产生的保护力非常接近。为进一
    步研究这些疫苗防止大动物感染结核菌H37Rv的实验研究奠定了基
    础。
     我们在结核DNA疫苗的构建设计中使用了hIL一2信号肤序列,并采
    用表达hIL.2的质粒与TB DNA疫苗联合免疫及构建表达融合蛋白
    (GST)的疫苗,并获得与BCG非常接近的保护力。均为TB DNA疫
    
    结核D队疫苗的构建、免疫功能及保护效果研究」
    苗研究首次报道。取得了预期的研究结果,对其他疫苗的研究有指导
    参考价值。
     结论:
    1.所构建的表达结核菌蛋白或融合蛋白的载体:邓一1、TB一2、
    TB~V3、TB.V4、TB~VS、TB一V6、TB~V7、TB一VS、TB一Vg、TB一V10、
    表达bIL.2的载体卜拍LZ和表达hiL一2信号肤的载体尸LZs等经抗性筛
    选、酶谱鉴定及DNA序列分析,结果表明12种DNA疫苗表达载体质粒
    的构建均与设计要求准确无误。
    2.TB一6、TB一V7、TB一7、TB一VS、TB一Vg与TB一V105种DNA疫苗
    单独免疫,或者
Tuberculosis was an ancient, but still is a chronic consumptive disease that threatens the human lives globally. There are 30 million cases of TB in the world and 3 million TB cases die annually. BCG is the only available vaccine for prevention of tuberculosis. Investigation results showed that the protective efficacy of the yaccine was from -36% to 80%. A well-designed and controlled survey indicated the BCG efficacy was about 50%. The goal of this study is to characterize and compare the immune responses and protective efficacy in mice induced by varied plasmid DNA vaccines that express the surface antigens of Mtb8.4, Ag85B etc of Mtuberculosis and BCG
    Ten plasmid DNA vaccines that express M tuberculosis surface antigens or fusion proteins as well as human interleukin-2 (hIL-2) using pVAXl as a vector have been constructed. Among them, TB plasmid DNA vaccine TB-V1, TB-V2, TB-V3, TB-V4 and TB-V5 expressed Mtb8.4, Ag85B, Mtb8.4-38kDa CTL/Th epitopes-Ag85B, Mtb8.4-GST and Ag85B-GST antigens or fusion proteins respectively; TB-V6 and TB-V7 plasmid expressed M tuberculosis Mtb8.4 and Ag85B protein with ML-2 signal peptide and TB-V8 expressed Mtb8.4, 38kDa CTL/Th epitope and Ag85B fusion protein with hIL-2 signal peptide; TB-V9 and TB-V10 expressed Mtb8.4-GST, Ag85B-GST fusion proteins with hIL-2 signal peptide respectively. The plasmid of p-IL2s was also constructed as a negative control since hIL-2 signal peptide was inserted into the vector only. The DNA fragments containing the sequences encoding the antigens of Mtb8.4, Ag85B, 38 kDa CTL/Th epitope were generated from M tuberculosis H37Rv genomic DNA by PCR and hIL-2 and GST cDNA
    
    
    were sub-cloned from the plasmid of pGex-2T-hIL-2 respectively. The constructs of the plasmid DNA vaccine were transformed into bacteria DH5a cells and the plasmid DNA were verified by restriction endonucleases mapping and sequence analysis.
    For the immunization experiments, C57BL/6 mice were used as test animal and they were divided into 12 groups with 10 mice each. The C57BL/6 mice were immunized by injecting into legs muscles with lOOjig plasmid DNA 3 times at 15 days intervals. Groups No 1 to Group No 5 were immunized with TB-V6~TB-V10, and Groups No. 6 to No. 8 were immunized with p-hIL2, p-WL2+TB-V6 and p-hIL2+TB-V7 (SO^ig/each) respectively. Groups No 9 to No 12 were as controls that were immunized with PBS, plasmid DNA of pVAXl, p-IL2s and BCG. BCG was introdermally injected at the dosage of 105 CPUs only once.
    15 days after the last boost immunization, 5 mice in each tested group were killed and the spleen lymphocyte suspensions were harvested and cultured in 24-well plates for 72hr at 37. The supernatants were collected and assayed for murine interleukin-2(mIL-2) , IL-6 , IL-10 and murine interferon gamma (mIFN-) activities. A quantitative ELISA assay was used to identify the hIL-2 activity for the serum from the eyes of the mice. 21 days after the last boost immunization, the remaining 5 mice were challenged by injection of 0.1 ml of M tuberculosis H37Rv strain suspension (10 CPUs). 15 days post challenges, the mice were killed and their lungs, livers and spleens were homogenized respectively. The immune response and protective efficacy assay were performed with three repeating by couture 0.1 ml of the each suspension onto the Lowenstein-Jensen slants and the CPUs were counted after 20-30 days culture. The bacterial loads were calculated according to the organ's weight and dilutions.
    The results showed that the average activities of mIL-2, INF- Y in the speenocyte culture supernatants of the immunized group of TB-V6-TB-V10, p-WL2, TB-V6+p-hIL2 and TB-V7+p-hIL2 were significant different with those of PBS, pVAXl and p-IL2s controls, but were almost as high as BCG immunized controls. However, the activity of mIL-6 and mIL-10 was low both in tested or control groups which indicated that Thl immune response can be induced by the 5 plasmid DNA vaccines TB-V6-TB-V10 which is required for immunity against M tuberculosis. High hIL-2 activity in the sera of the p-hIL2, TB-V6+p-hIL2 an
引文
1. Andersen, A.B. and Hausen, E.B. 1989. Structure and mapping of antigenic domains of protein antigen b, a 38,000-molecular-weight protein of Mycobacterium tuberculosis Infect. Immun. 57, 2481-2488
    2. Andersen,A.B., Ljungqvist, L. and Olsen,M. 1990. Evidence that protein antigen b of Mycohacterium tuberculosis is involved in phosphate metabolism. J. Gen. Microbiil.136, 477-480.
    3. Anonymous. 2001. Global tuberculosis control. World Health Organization report. WHO/CDS/TB/2001.287.
    4. Baldwin,S. L., C. D'Souza, A.D. Roberts, B. P. Kelly, A. A. Frank, M. A. Lin,J. B. Ulmer, K. Huygen, D. M.. Me Murray, and I. M. Orme. 1998. Evaluation of new vaccines in the mouse and guinea pig model of tuberculosis. Infect Immun. 66:2951-2959.
    5. Baldwin, S. L., et al. 1999. Immunogenicity and protective efficacy of DNA vaccines encoding secreted and non-secreted forms of Mycobacterium tuberculosis Ag85A. Tuber. Lung Dis. 79:251-9
    6. Berthet FX, et al. 1998. A Mycobacterinm tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10). Microbiology. 144:3195-3
    7. Bloom, B. R., and C. J.L. Murray. 1992. Tuberculosis: commentary on a reemergent killer. Science 257:1055-1064.
    8. Camacho LR, Ensergueix D, Perez E, Gicquel B, Gnilh-ot C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 1999; 34:257-67
    9. Camus, J.C., Pryor, M.J., Medigue,C. and Cole, S.T. 2002.Re-annotation of the genome sequence of Mycobacterium tuberculosis H3TRv. Microbiology 148, 2967-2973
    10. Chambers, M. A., H.-M. Vordermeier, A. Whelan, N. Commander, R. Tascon,D. Lowrie, and R. G. Hewinson. 2000. Vaccination of mice and cattle with plasmid DNA encoding the Mycobacterium bovis antigen MPB83. Clin. Infect. Dis. 30(Suppl. 3):S283-S287.
    11. Chambers, M. A., A. Williams, G. Hatch, D. Gavier-Wide'n, G. Hall, K. Huygen, D. Lowrie, P. D. Marsh, and R. G. Hewinson. 2002. Vaccination of guinea pigs with DHA encoding the mycobacterial antigen MPB83 influences pulmonary pathology but not hematogenous spread following acrogenic infection with Mycobacterium bovis. Infect. Immun. 70:2159-2165.
    12. Chambers MA, Williams A, Gavier-Widen D et al. Identification of a Mycobacterium boris BCG auxotrophic mutant that protects guinea pigs against
    
    M. bovis and hematogenous spread of Mycobacterium tuberculosis without sensitization to tuberculin. Infect Immun 2000; 68:7094-9
    13. Colditz, G. A., T. F. Brewer, C. S. Berkley, M. E. Wilson, E. Burdick, H. V. Fineberg, and F. Mosteller. 1994. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta analysis of the published literature. JAMA 271:698-702
    14. Cole,S.T., Brosch.R., Parkhill.J., Garnier, T. Churcher, C. Harris.D., Gordon,S.V., Eiglmeier,K., Gas,S., Barry Ⅲ,C.E., Tekaia.F., Badcock,K., Basham,D., Brown,D, Chillingworth,T. Connor, R., Davies,R, Devlin,K., Feltwell, T., Gentlest, Hamlin,N., Holroyd,S., Hornsby, T, Jagels, K., Krogh,A., McLean,J, Moule, S., Murphy, L, Oliver, S., Osborne, J., Quail,M.A. Rajandream,M.A., Rogers,J., Rntter, S., Seeger, K, Skelton,S., Squares,S., Sqares,R., Sulston,J.E, Taylor, K, Whitehead,S. and-Barrell,B.G, 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393 (6685), 537-544
    15. Coler, R. N., Y. A. Skeiky, T. Vedvick, T.. Bement, P. Ovendale, A. Cmpos-Neto, M. Alderson, and S. G. Reed. 1998. Molecular cloning and immunological reactivity of a novel low molecular mass antigen of Mycobacterium tuberculosis. J. Immunol. 161:2356-2364.
    16. Cox JS, Chen B, McNeil M, Jacobs Jr WR. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 1999; 402: 79-83
    17. Delogu, G., and M. J. Brennan. 2001. Comparative immune response to PE and PE_PGRS antigens of Mycobacterium tuberculosis. Infect. Immun. 69:5606-5611.
    18. Delogn, G., A. Howard, F. M. Collins, and S. L. Morris. 2000. DNA vaccination against tuberculosis: expression of a ubiquitin-conjugnted tuberculosis protein enhances antimycobacterial immunity. Infect. Immun. 68:3097-3102.
    19. Delogn, G., A. Li, C. Repique, F. Collins, and S. L. Morris. 2002. DNA vaccine combinations expressing either tissue plasminogen activator signal sequence fusion proteins or ubiquitin-conjugated antigens induce sustained protective immunity in a mouse model of pulmonary tuberculosis. Infect. Immun. 70:292-302.
    20. Denis, O., A. Tanghe, K. Pamiet, F. Jurion, T. P. van den Berg, A. Vanonckelen,J. Ooms, E. Saman, J. B. Ulmer, J. Content, and K. Huygen. 1998.Vaccination with plasmid DNA encoding mycobacterial antigen 85A stimulates a CD4+ and CD8+ T-cell epitopic repertoire broader than that stimulated by Mycobacterium tuberculosis H37Rv infection. Infect. Immun. 66:1527-1533.
    21. De Wit L., Palou M., Content J.; 1994. "Nucleotide sequence of the 85B-protein gene of Mycobacterium boris BCG and Mycobacterium tuberculosis"; DNA Seq. 4:267-270.
    22. Dillon, D. C., M. R. Alderson, C. H. Day, D. M. Lewinsohn, R. Coler, T. Bement,
    
    A. Campos-Neto, Y. A. W. Skeiky, I. M. Orme, A. Roberts, S. Steen,W. Dalemans, R. Badaro, and S. G. Reed. 1999. Molecular characterization and human T-cell responses to a member of a novel Mycobecterium tuberculosis mtb39 gene family. Infect. Immun. 67:2941-2950.
    23. Donnelly, J. J., J. B. Ulmer, J. W. Shiver, and M. A. Liu. 1997. DNA vaccines. Annu. Rev. Immunol. 15:617-648.
    24. D'Souza, S., V. Rosseels, O. Denis, A. Tanghe, N. De Smet, F. Jurion, K.Palfliet, N. Casfiglioni, A. Vanonckelen, C. Wheeler, and K. Huygen. 2002.Improved tuberculosis DNA vaccines by formulation-in cationic lipids. Infect.Immun. 70:3681-3688.
    25.端木宏谨.掌握结核病流行趋势,指导结核病防治工作.2002.中华结核和呼吸杂志.25(1):1-2
    26. Erb, K. J., J. Kirman, L. Woodfield, T. Wilson, D. M. Collins, J. D. Watson, and G. LeGros. 1998. Identification of potentiai CDS_ T cell epitopes of the 19 kD and AhpC proteins from Mycobacterium tuberculosis: no evidence for CDS_ T cell priming against the identified peptides after DNA vaccination of mice. Vaccine 16:692-697.
    27. FDA, Points to consider on Plasmid DNA Vaccines Preventive Infectious Disease Indications, Pubfished December 22,1996. Docket no.96N-0400
    28. Fonseen, D. P. A. J., B. Benaissa-Trouw, M, Van Engelen, C. A. Kraaijeveld,H. Snippe, and A. F. M. Verheul. 7001. Induction of cell-mediated immunity against Mycobacterium tuberculosis using DNA vaccines encoding cytotoxic and helper T-cell epitopes of the 38-kilodalton protein. Infect. Immun. 69:4839-4845.
    29. Fujimara AE, et al. 2001. DNA sequences encoding CD4+ and CDS+ T-cell epitopes arc important for efficient protective immunity induced by DNA vaccination with a Trypanosoma cruzi gene. Infect Immun. 69:5477-86
    30. Garcia-Lora,A., Martinez,M., Pedrinaci,S. and Garrido,F. 2003. Different regulation of PKC isoenzymes and MAPK by PSK and IL-2 in the proliferative and cytotoxic activities of the NKL human natural killer cell line. Cancer Immunol. lmmtmother. 52 (1), 59-64
    31. Glickman MS, Cox JS, Jacobs Jr WR. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 2000; 5:717-27
    32.龚非力 主编。医学免疫学。北京,科学出版社,2001。66-89。
    33. Guleria L, Teitelbaum R, McAdam RA, Kalpana G, Jacobs Jr VCR, Bloom BR. Auxotrophic vaccines for tuberculosis. Nat Med 1996 2:334-7
    34. Gurunathan, S., D. M. Klinman, and R. A. Seder. 2000. DNA vaccines:immunology, application and optimization. Annu. Rev. Immunol. 18:927-974.
    35. Hariharan, M. J., D. A. Driver, K. Townsend, D. Brumm, J. M. Polo, B. A.Belli,
    
    D. J. Carton, D. Hsu, D. Mittelstaedt, J. E. McCormack, L. Karavodin,T. W. Dnbensky, S. M. W. Chang, and T. A. Banks. 1998. DNA immunization against herpes simplex virus: enhanced efficacy using a Sindbis virus-based vector. J. Virol. 72:950-958.
    36. Hess. J, Miko D, Catic A, Lehmensiek V, Russell DG, Kaufmann SH. Mycobacterium boris bacille Calmette-Guerin strains secreting listeriolysin of Listeria monocytogenes. Proc Natl Acad Sci USA 1998; 95:5299-304
    37. Horwitz MA, Harth G, Dillon BJ, Maslesa-Gafie S. Recombinant bacillus Calmette-Guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc Natl Acad Sci USA 2000; 97:13853-8
    38. Hnygen, K., J. Content, O. Denis, D, L. Montgomery, A. M. Yawnmn, R. R. Deck, C. M. DeWitt, I. M. Orme, S. Baldwin, C. D'Souza, A. Drowart, E.Lozes, P. Vandenbussche, J.-P. Van Vooren, M. A. Liu, and J. B. Ulmer.1996. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine. Nat. Med. 2:893—98.
    39. Jiang, K., Zhong,B., Ritchey, C., Gilvary, D.L., Hong-Geller, E., Wei, S. and Djeu,J.Y. 2003. Regulation of Akt-dependent cell survival by Syk and Rac. Blood 101 (1), 236-244
    40. Inoue T., et al. 2002. Topical administration of HSV gD-IL-2 DNA is highly protective against murine herpetic stromal keratitis. Cornea 21:106-10
    41. Kamath, A. T., C. G. Feng, M. MacDonald, H. Briscoe, and W. J. Britton. 1999. Differential protective efficacy of DNA vaccines expressing secreted-proteins of M. tuberculosis. Infect. Immun. 67:1702-1707.
    42. Kamath, A. T., T. Hanke, H. Briscoe, and W. J. Britton. 1999. Co-immunization with DNA vaccines expressing granulocyte-macrophage colony-stimulating factor and mycobacterial proteins enhances T-cell immunity, but not protective efficacy against M. tuberculosis. Immunology 96:511-516.
    43. Kim JJ, et al. 2000. Coimmunization with IFN-gamma or IL-2, but not IL- 13 or IL-4 cDNA can enhance Thl-type DNA vaccine-induced immune responses in vivo.J Interferon Cytokine Res 20:311-9
    44. Lefevre, P., O. Denis, L. De Wit, A. Tanghe, P. Vandenbussche, J. Content, and K. Huygell, 2000. Cloning of the gene encoding a 22-kDa cell surface antigen of Mycobacterium bovis BCG and analysis of its potential for DNA vaccination against tuberculosis. Infect. Immun. 68:1040-1047.
    45. Levy, J. A. 1993. Pathogenesis of human immunodeficiency virus infection. Microbiol. Rev. 57:183-289
    46. Li, Z., A. Howard, C. Kelley, G. Delogu, F. Collins, and S. Morris. 1999. Immunogenicity of DNA vaccines expressing tuberculosis proteins fused to tissue
    
    plasminogen activator signal sequences. Infeet. Immun. 67:4780-4786.
    47. Lowrie, D. B., C. L. Silva, M. J. Colston, S. Ragno, and R. E. Tascon. 1997. Protection against tuberculosis by a plasmid DNA vaccine. Vaccine 15:834-838.
    48. Lowrie, D. B., R. E. Tascon, V. L. D. Bonatu, V. M. F. Lima, L. H. Faccioli, E. Stavropoulos, M. J. Colston, R. G. Hewinson, K. Moelling, and C. L. Silva. 1999. Therapy of tuberculosis in mice by DNA vaccination. Nature 400:269-271.
    49. Lozes, E., et al. 1997. Immunogenicity and efficacy of a tuberculosis DNA vaccine encoding the components of the secreted antigen 85 complex. Vaccine 15:830-3
    50.刘宇红,姜广路,赵立平,付育红,李云絮,毕志强,王民.2002.第四次全国结核病流行病学抽样调查—结核分枝杆菌耐药性分析与评价.中华结核和呼吸杂志.25:224-227
    51. Manca, C., K.Lyashchenko, H. G. Wiker, D. Usai, R. Colangeli, and M. L. Gennaro. 1997. Molecular cloning, purification, and serological characterization of MPT63, a novel antigen secreted by Mycobacterium tuberculosis. Infect. Immun. 65:16-23.
    52. Marshall BG, Wangoo A, O'Gaora P, Cook HT, Shaw RJ, Young DB. Enhanced antimycobacterial response to recombinant Mycobacterium boris BCG expressing latencyassociated pepfide. Infect Immun 2001; 69:6676-82
    53. Martin, E., A. T. Kamath, J. A. Triccas, and W. J. Britton. 2000. Protection against virulent Mycobacterium avium infection following DNA vaccination with the 35-kilodalton antigen is accompanied by induction of gamma interferon-secreting CD4_T cells. Infect. Immun. 68:3090-3096.
    54. Martin, E., P. W. Roche, J. A. Triccas, and W. J. Britton. 2001. DNA encoding a single mycobacterial antigen protects against leprosy infection. Vaccine 19:1391-1396.
    55. Matsuo K., Yamaguchi R., Yamazaki A., Tasaka H., Yamada T.; 1988. Cloning and expression of the Mycobacterium boris BCG gene for extracellular alpha antigen. J. Bacteriol. 170:3847-3854.
    56. McShane, H. 2002. Prime-boost immunization strategies for infectious diseases. Curr. Opin. Mol. Ther. 4:23-27.
    57. McShane, H., R. Brookes, S. Gilbert, and A. V. S, Hill. 2001. Enhanced immunogenicity of CD4「 T-cell responses and protective efficacy of a DNAmodified vaccinia virus Ankara prime-boost vaccination regimen for murine tubereulosis. Infect. Immun. 69:681-686.
    58. Montgomery, D. L., K. Huygen, A. M. Yawmam, R. R. Deck, C. M. Dewitt, J. Content, M. A. Lin, and J. B. Ulmer. 1997. Induction of humoral and cellular immune responses by vaccination with M-tuberculosis antigen 85 DHA. Cell. Mol. Biol. 43:285-292.
    59. Morris S., et al. 2000. The immunogenisity of single and combination DNA vaccines against tuberculosis. Vaccine. 18:2155-63
    
    
    60. Mothe BR, et al. Dominance of CD8 responses specific for epitopes bound by a single major histocompatibility complex class Ⅰ molecule during the acute phase of viral infection. J Virol. 76:875-84
    61. Murray PJ, Aldovini A, Young RA. Manipulation and potentiation of antimycobacterial immunity using recombinant baeille Calmette-Guerin strains that secrete cytokines. Proc Natl Acad Sci USA 1996; 93:934-9
    62. Mustafa AS et al. 1998. Comparison of antigen specific T-cell response of tuberculosis patients using complex or single antigens of Mycobacterium tuberculosis. Scand J Immunol, 48:535-43
    63. Mustafa A.S., et al. 2000. Identification and HLA Restriction of Naturally Derived Th1-Cell Epitopes firm the Secreted Mycobacterium tuberculosis Antigen 85B Recognized by Antigen-Specific Human CD4+ T-Cell Lines. Infect Immunol 68:3933-400
    64. Niethammer AG, et al. 2001. Targeted interleukin 2 therapy enhances protective immunity induced by an autologous oral DNA vaccine against murine melanoma. Cancer Res 61:6178-84
    65. Palendira, U, A. T. Kamath, C. G. Feng, E. Martin, P. J. Chaplin, J. A. Triccas, and W. J. Britton. 2002. Coexpression of interleukin-12 chains by a self-spficing. vector increases the protective cellular immune response of with DNA vaccines expressing granulocyte-macrophage colony-stimulating factor and mycobacterial proteins enhances T-cell immunity, but not protective efficacy against M. tuberculosis. Immunology 96:511-516.
    66. Perez E, Samper S, Bordas Y, Gnilhot C, Gicquel B, Martin C. An essential role for phoP in Mycobacterinm tuberculosis virulence. Mol Microbiol 2001; 41: 179-87
    67.全国结核流行病抽样调查小组.全国第二次结核流行病学抽样调查综合简报.中华结核和呼吸杂志,1990,13:67-70
    68. Roche, P. W., K. D. Neupane, S. S. Fallbus, A. Kamath, and W. J. Britton. 2001. Vaccination with DNA of the Mycobacterium tuberculosis 85B antigen protects mouse foot pad against infection with M. leprae. Int. J. Lepr. Other Mycobact. Dis. 69:93-98.
    69. Ravn P, et al. 1999. Human T cell responses to the ESAT-6 antigen from Mycobacterium tuberculosis. J Infect Dis, 179:637-45
    70. Sasaki, S., R. R. Amara, A. E. Oran, J. M. Smith, and H.L. Robinson. 2001.Apoptosis-mediated enhancement of DNA-raised immune responses by mutant caspases. Nat. Biotechnol. 19:543-547.
    71. Silva C.L., et al. 1994. A single mycobacterial protein (hsp 65) expressed by a transgenic antigen-presenting cell vaccinates mice against tuberculosis, Immunol 82:244-248
    72. Singh, M., M. Briones, G. Oft, and D. O'Hagan. 2000. Cationic microparticles:a
    
    potent delivery system for DNA vaccines. Proc. Natl. Acad. Sci. USA 97:811-816.
    73. Smith DA, Parish T, Stoker NG, Bancroft GJ. Characterization of auxotrophic mutants of Mycobacterium tuberculosis and their potential as vaccine candidates. Infect Immun 2001; 69:1142-50
    74. Skjot, R. L. V., et al. 2000. Comparative Evaluation of Low-Molecular-Mass Proteins from Mycobacterium tuberculosis Identifies Members of the ESAT-6 Family as Immunodominant T-Cell Antigens. Infect. Immun. 68:214-20
    75. Smith, D.B., Davern, K.M, Board, P.G., Tin, W.U., Garcia, E.G. and Mitchell, G.F. 1986. Mr 26,000 antigen of Schistosoma japonicum recognized by resistant WEHI 129/J mice is a parasite glutathione S-transferase. Proc. Natl. Acad. Sci. U.S.A. 83 (22), 8703-8707
    76. Smith, D.B., Johnson,K.S. 1988. Single-step purification of polypeptides expressed in Eseherichia coli as fusions with glutathione S-transferase. Gene 67 (1), 31-40
    77. Stewart GR, Snewin VA, Walzl G et al. Overexpression of heat-shock proteins reduces survival of Mycobacterium tuberculosis in the chronic phase of infection. Nat Med 2001; 7:732-7
    78.萨姆布鲁克J.,D.W.拉塞尔著,黄培堂等译.分子克隆实验指南(第三版).北京,科学出版社.2002,1-1949
    79. Tang, D, M. Devit, and S. A. Johnston. 1992. Genetic immunization is a simple method for eliciting an immune response. Nature 356:152-154, 61.
    80. Tanghe, A., J. Content, J.-P. Van Vooren, F. Portaels, and K. Huygen. 2001. Protective efficacy of a DNA vaccine encoding antigen 85A from Mycobacterium bovis BCG against Buruli ulcer. Infect. Immun. 69:5403-5411.
    81. Tranghe, A., S. D'Souza, V. Rosseels, O. Denis, T. H. M. Ottenhoff, W. Dalemans, C. Wheeler, and K. Huygen. 2001. Improved immunogenicity and protective efficacy of a tuberculosis DNA vaccine encoding Ag85 by protein boosting. Infect. Immun. 69:3041-3047.
    82. Tanghe, A., O. Denis, B. Lambrecht, V. Motte, T. van den Berg, and K. Huygen. 2000. Tuberculosis DNA vaccine encoding Ag85A is immunogenic and protective when administered by intramuscular needle injection, but not by epidermal gene gun bombardment Infect. Immun. 68:3854-3860.
    83. Tanghe, A, P. Lefevre, O. Denis, S. D'Souza, M. Braibant, E. Lozes, M.Singh, D. Montgomery, J. Content, and K. Huygen. 1999. Immunogenicity and protective efficacy of tuberculosis DNA vaccines encoding putative phosphate transport receptors. J. Immunol. 162:1113-1119.
    84. Tascon, R. E., M. J. Colston, S. Ragno, E. Stavropoulos, D. Gregory, and D.B. Lowrie. 1996. Vaccination against tuberculosis by DNA injection. Nat. Med. 2:888-892.
    85. Tollefsen, S., T. E. Tjelle, J. Schneider, M. Harboe, H. G. Wilier, G. Hewinson, K. Hnygen, and L Mathiesen. 2002. Improved cellular and humoral immune
    
    responses against Mycobacterium tuberculosis antigens after intramuscular DNA immunization combined with muscle electroporation. Vaccine 20:3370-3378.
    86. Turner, J, E. R. Rhoades, M. Keen, J. T. Belisle, A. A. Frank, and I. M. Orme. 2000. Effective preexposure tuberculosis vaccines fail to protect when they are given in an immunotherapenfic mode. Infect. Immun. 68:1706-1709.
    87. Tuteja R, et al. 2000. Augmentation of immune responses to hepatitis E virus ORF2 DNA vaccination by codelivery of cytokine genes.Viral Immunol 13:169-78
    88. Ulmer, J. B. 2001. Tuberculosis DNA vaccines. Scand. J. Infect. Dis. 33:246-248.
    89. Ulmer, J. B., J. J. Dannelly, S. E. Parker, G. H. Rhodes, P. L. Felgner, V. J. Dwarki, S. H. Gromkowski, R. R. Deck, C. M. DeWitt, A. Friedman, et al. 1993. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259:1745-1749.
    90. Vareldzis BP, J Grosset, ID Kantur, et al. 1994. Drug resistant tuberculosis: laboratory issues. World Health Organization recommendations. Tuber Lung Dis, 75: 1-7 :
    91. Velaz-Faircloth, M., A. J. Cobb, A. L. Horstman, S. C. Henry, and R. Frothing, ham. 1999. Protection against Mycobacterium avium by DNA vaccines expressing mycobacterial antigens as fusion proteins.with green fluorescent protein. Infect. Immun. 67:4243-4250.
    92.吴乃虎.基因工程原理(第二版)。北京,科学出版社,2001。474-481。
    93. Vordermeier, H. M., P. J. Cockle, A. O. Whelan, S. Rhodes, M. A. Chambers, D. Clifford, K. Huygen, R. Tascon, D. Lowrie, M. J. Colston, and R. G. Hewinson. 2001. Effective DNA vaccination of cattle with the mycobacterial antigens MPB83 and MPB70 does not compromise the specificity of the comparative intradermal tuberculin skin test. Vaccine 19:1246-1255.
    94. Wolff, J. A., J. J. Lutdke, G. Ascadi, P. Willams, and A. Jani. 1992. Long term persistence of plasmid DNA and foreign gene expression in muscle cells. Hum. Mol. Genet. 1:363—369.
    95. Wolff, J. A., R. W. Malone, P. Williams, W. Chong, G. Acsadi, A. Jani, and P. L. Feigner. 1990. Direct gene transfer into mouse muscle in vivo. Science 247:1465-1468.
    96. World Health Organization. Anti- tuberculosis drug resistance in the world. The WHO/IUATLD global project on anti-tuberculosis drug resistance surveillance, 1994 1997 Geneva: WHO, 1997
    97. World Health Organization, 1998, Global Tuberculosis Control. World Health Organization, Geneva, Switzerland
    98.谢惠安,阳国太,林善梓,王锡甫,肖成志,主编.现代结核病学.第一版,北京,人民卫生出版社.2000,1-9
    99. Yeremeev, V. V., I. V. Lyadova, B. V. Nikonenko, A. S. Apt, C. Abou-Zeid, J. Inwald, and D. B. Young. 2000. The 19-kD antigen and protective immunity in a
    
    murine model of tuberculosis. Clin. Exp. Immunol. 120:274-279.
    100. Zarzour HM, et al. 2002. NY-ESO-1 119-143 is a promiscuous major histocompatibility complex class Ⅱ T-helper epitope recognized by Th1-and Th2-type tumor-reactive CD4+ T cells. Cancer Res. 62:213-8
    101. Zhu, X. J., N. Venkataprasad, H. S. Thangaraj, M. Hill, M. Singh, J. Ivanyi, and H. M. Vordermeier. 1997. Functions and specificity of T cells following nucleic acid vaccination of mice against Mycobacteruum tuberculosis infection J. Immunol. 158:5921-5926.
    102.中国防痨协会.结核病诊断细菌学检验规程.中国防痨杂志,1996,18:28-31
    103.朱中元,等,结核分支杆菌inhA基因突变的测序研究.中华结核和呼吸杂志,2001,24:48-51
    104.朱中元,等.耐多药结核分支杆菌katG及inhA基因变异研究.中华检验医学杂志,2000,23:26-28
    105.朱中元,等.等位基因特异PCR技术检测结核分支杆菌耐异烟肼突变的研究.中国热带医学.2002,2:136-139
    106.朱中元,等.等位基因特异PCR技术检测结核分支杆菌耐利福平突变的研究.中国热带医学.2002,2:295-297

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700